CHANGING Q AND α_D in the AA by means of shims and shunts

S. van der Meer

<u>Abstract</u>

Simple rules are given for changing Q_H vs the revolution frequency f_0 , and for changing the horizontal orbit position in the long straight sections vs f_0 by shimming the F quadrupoles.

Independent change of $Q_{\rm H}$ and α_p in the long straight sections by means of shunts on the F quadrupoles is also discussed.

Geneva, Switzerland December 1988

1. INTRODUCTION

This note contains some recipes that have been used in the past for improving

- a) the shape of the Q_H vs f₀ curve,
- b) the horizontal orbit position Δx in the long straight sections vs f_0 (both by shimming; f_0 is the revolution frequency) and
- c) for changing the overall value of $Q_{\rm H}$ and $\alpha_{\rm p}$ independently by using shunts across certain quadrupoles*.

Changing only Q_V vs f_0 is more difficult than changing Q_H , because the dispersion in the D quadrupoles (which mostly influence Q_V) is small. In practice, it has (fortunately) never been necessary.

The shimming rules were derived from very early measurements by R. Brown on a wide quadrupole. These measurements of relatively small effects were difficult and probably not very precise. In any case, the shims (washers on stainless steel pins) tend to saturate; especially, if many washers are put on one pin, the saturation may be strong and the effect of different washers will probably not add up linearly. Moreover, orbit changes caused by the shims will have a second-order effect on Q. Also, the exact orbit position versus f_0 in the different quadrupoles may change with time, because of bumps made for various purposes. As a result of all this, these shimming rules may easily be wrong by a factor 2. All they pretend to be is a starting point for successive approximations.

2. NOMENCLATURE OF QUADRUPOLES AND SHIMS

F quadrupoles exist in 3 groups of 4 quadrupoles each, traditionnally called F_1 , F_2 and F_3 (Fig. 1 and Table 1).

 F_3 quadrupoles are not used for shimming because they are at zero dispersion.

D quadrupoles could also be shimmed but are not considered here.

^{*} In this note, " α_p " is short for " α_p in the long straight sections" and Δx also refers to these straight sections.

<u>Table 1</u>

F1	F ₂	F3
QFW04	QFW06	QFNO2
QFW10	QFW08	QFN12
QFW16	QFW18	QFN14
QFW22	QFW20	QFN24

Shims are standard steel washers on pins numbered as shown in Fig. 2. The pins on the inside of the ring (stack region) have the same numbers as those on the outside (injection), but these two groups should, of course, be treated separately.

3. CHANGING Q_H AND **AX** INDEPENDENTLY

The properties of the AA lattice are such that changing Q_V only (leaving Q_H constant) by changing the currents in the F and D quadrupoles will not influence α_p in the long straight sections. However, if Q_H is changed, α_p will also change.

The same happens if Q_H is adjusted by shims on the F₂ quadrupoles. In fact, these quadrupoles are especially interesting for adjusting Δx (or its derivative, proportional to α_p). Their influence on Q_H may be compensated by shimming the F₁'s, which do not influence Δx very much. The reason is that between two F₁'s in the same bend (e.g. QFW04 and QFW10) the horizontal betatron phase difference is not too far from 180° (in fact, it is about 205°). If it would be exactly 180°, changing QFW04 and QFW10 by the same amount would just cause an orbit bump between them, and nothing elsewhere. Therefore:

<u>Rule 1</u>: Use F_1 's for Q_H , F_2 's for Δx

4. TABLES OF AQH FOR DIFFERENT SHIMS

In Tables 2 and 3 (for F_1 and F_2), Q_H changes vs f_0 are given per added washer per pin. It is assumed that a washer is added simultaneously on the upper and lower poles, upstream and downstream of each F_1 or F_2

quadrupole, i.e. 4 washers/quadrupole, 16 washers in total for each figure quoted in the Table.

As stated before, these figures are not very precise.

TABLE 2

 $\Delta Q_{\rm H}$ in 10^{-5} per washer per pin (top, bottom, downstream and upstream), all F1's

		fo	Pin no.														
		KHz	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	I n j	1844 1845 1846	0 0 0	0 0 0	0 0 0	21 11 5	47 20 11	111 46 22	154 81 44	107 127 80	11 94 107	-66 22 80	-73 -35 22	-60 -44 -16	-36 -35 -24	-26 -24 -20	-17 -15 -13
U T		1847 1848 1849	0 0 0	0 0 0	0 0 0	3 0 0	7 3 0	11 5 0	27 15 6	47 23 10	72 36 14	83 57 34	54 59 39	18 34 41	-11 11 27	-10 2 14	- 9 2 7
S	c +	1850	0	0	0	0	0	0	0	5	8	16	18	27	30	18	14
I D	i o n	1851 1852 1853	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	3 0 0	5 3 0	11 7 3	9 5 3	18 11 9	25 18 12	25 18 14	14 16 16
E		1854 1855 1856	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	2 0 0	1 0 0	7 4 0	8 4 0	9 4 0	13 11 5
	S	1844 1845 1846	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 2 6	0 2 5	1 4 7	7 11 13
N		S	1847 1848 1849	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 2	1 3 7	3 5 8	9 12 16	9 16 21	11 17 23
	a	1850	0	0	0	0	0	0	0	0	5	9	11	23	27	25	14
D	c k	1851 1852 1853	0 0 0	0 0 0	0 0 0	0 0 0	0 0 5	0 0 7	0 5 14	2 9 27	9 23 26	23 41 72	23 46 60	32 41 32	32 23 7	21 9 - 2	14 5 0
E		1854 1855 1856	0 0 0	0 0 0	0 0 4	2 13 34	11 26 63	16 22 85	36 87 156	67 122 72	42 60 0	89 22 -89	40 -35 -76	4 -39 -59	-16 -35 -34	-16 -24 -25	-13 -14 -19

TABLE 3

 $\Delta Q_{\rm H}$ in 10^{-5} per washer per pin (top, bottom, downstream and upstream), all F2's

		f ₀	Pin no.														
		KHz	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0		1844 1845 1846	6 6 3	14 7 2	63 13 5	176 57 20	259 119 40	94 221 80	-132 178 141	-176 0 170	-138 - 65 74	- 88 -135 - 37	-77 -97 -69	-39 -70 -69	-30 -46 -45	-27 -32 -32	-22 -24 -21
U T	I n j	1847 1848 1849	0 0 0	0 0 0	0 0 0	7 3 0	16 5 3	26 11 4	57 28 13	99 41 16	131 70 31	94 88 51	21 67 54	-21 26 46	-31 - 5 23	-26 -10 10	-16 - 5 5
s	с с	1850	0	0	0	0	0	0	3	8	10	20	20	36	33	23	15
I D	i o n	1851 1852 1853	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	5 3 0	7 5 3	13 8 5	13 7 5	20 13 10	30 20 12	28 20 13	18 18 18
E		1854 1855 1856	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	3 0 0	3 0 0	6 3 0	5 3 0	8 3 0	15 7 3
	s .	1844 1845 1846	0 0 0	0 0 0	0000	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 4	0 0 3	0 0 5	0 5 13
N		1847 1848 1849	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 2 5	1 3 5	1 3 5	8 11 16	8 13 20	10 16 23	16 18 18
T	a	1850	0	0	0	0	0	0	0	3	7	10	11	23	31	30	16
D E	k	1851 1852 1853	0 0 0	0 0 0	0 0 0	0 0 5	0 4 8	0 4 15	4 11 20	5 10 20	15 41 96	35 61 97	28 63 51	41 46 15	33 15 -15	20 5 -18	14 5 -10
		1854 1855 1856	2 4 5	2 4 8	3 10 37	15 41 127	23 83 180	51 166 185	52 92 0	111 148 - 55	118 - 52 -164	46 -109 - 95	-26 -93 -63	-41 -67 -53	-37 -41 -34	-26 -31 -26	-18 -23 -24

<u>Rule 2</u>: Do not try to make complicated changes in the Q distribution, using many pins at the same time. Changing these shims will also change Q_V in the same direction as Q_H but multiplied by $\beta_V/\beta_H.$ This factor is 0.67 for the F_1 's and 0.27 for the F_2 's.

5. TABLES OF AX AT THE BLG PICK-UPS

In the same way, Table 4 gives the recipe for Δx changes at the BLG pick-ups. Only the F₂ table is given because the F₁'s hardly influence Δx at all. Δx is defined to be positive towards the outside of the ring.

6. SOME PRACTICAL HINTS FOR SHIMMING

The pins are threaded over their entire length. They are screwed into the end plates of the quadrupole. Pins and nuts are non-magnetic.

Sometimes, when the nut that keeps the washers in place is unscrewed, the pins will also turn relative to the end plate. In fact, some pins that are full of washers are not screwed in completely to make space for more washers on the pin. If the pin is loose, take care that it is screwed far enough into the end plate before fixing the nut. The end plate is made of soft steel and its thread may easily be damaged if the pin is not far enough into its hole. Do not tighten the nut more than necessary.

Take care that washers do not drop onto the floor; it may be surprisingly difficult to find them back. Do not temporarily put them onto coil covers, etc. They tend to be forgotten and will be sucked into the quadrupole when it is switched on.

Reducing the number of washers on a given pin is of course only possible if there are enough to start with. It may be useful to check this first. Note that for historical reasons (compensation of effects from ferrites, removal of orbit asymmetries in the straight sections) the number of washers per pin may not be the same for all quadrupoles in a group.

7. SHUNTS ON F QUADRUPOLES

With the currents in F and D quadrupoles, the overall values of $Q_{\rm H}$ and $\alpha_{\rm p}$ cannot be adjusted separately. This may be done by shunting certain types of quadrupoles.

TABLE 4

 Δx in mm per washer per pin (top, bottom, downstream and upstream), all F₂'s

		f ₀						Pin 1	no.					
		KHz	3	4	5	6	7	8	9	10	11	12	13	14
0		1844 1845 1846	0.1 0 0	0.2 0.1 0	0.4 0.1 0	0.5 0.3 0.1	0.5 0.4 0.2	0.3 0.5 0.3	0.2 0.4 0.4	0.1 0.3 0.4	0 0.1 0.2	0 0.1 0.2	0 0.1 0.1	0 0.1 0.1
U T	I n j c	1847 1848 1849	0 0 0	0 0 0	0 0 0	0 0 0	0.1 0 0	0.1 0 0	0.2 0.1 0	0.3 0.2 0.1	0.3 0.2 0.1	0.2 0.2 0.2	0.2 0.2 0.1	0.1 0.1 0.1
s		1850	0	0	0	0	0	0	0	0	0	0.1	0.1	0.1
I D	i o n	1851 1852 1853	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.1 0 0	0.1 0 0	0.1 0 0
E		1854 1855 1856	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	S	1844 1845 1846	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
N		1847 1848 1849	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 -0.1	0 0 -0.1	0 0 -0.1
5	t a	1850	0	0	0	0	0	0	0	0	0	-0.1	-0.1	-0.1
D E	c k	1851 1852 1853	0 0 0	0 0 0	0 0 0	0 0 0	0 0 -0.1	0 0 -0.1	0 -0.1 -0.2	-0.1 -0.2 -0.3	-0.1 -0.2 -0.3	-0.2 -0.2 -0.2	-0.1 -0.2 -0.2	-0.1 -0.1 -0.1
		1854 1855 1856	0 0 -0.1	0 -0.1 -0.2	0 -0.1 -0.4	-0.1 -0.3 -0.5	-0.2 -0.4 -0.5	-0.3 -0.5 -0.3	-0.4 -0.4 -0.2	-0.4 -0.3 -0.1	-0.2 -0.1 0	-0.2 -0.1 - 0	-0.1 -0.1 0	-0.1 -0.1 0

The simplest case is a change of Q_H without changing α_p . This can be done by shunting the F₃ quadrupoles, since they are at zero dispersion. At the time of writing, each of the F₃ quadrupoles is shunted by a resistor of 0.84 Ω whose value may be adjusted between 0.57 Ω and 1.14 Ω . The voltage across each of these quadrupoles is 19 V and for the influence on Q_H we have

$$\Delta Q_{\rm H} \approx 0.66 \times 10^{-3} \Delta I_3$$

where ΔI_3 is the change in current (in A) in the F_3 quadrupoles (i.e. opposite in sign to the shunted current).

If α_p has to be changed, or a combination of α_p and Q_H , the simplest scheme is still to use these same quadrupoles in combination with an overall change in QF and QD currents, remembering that the slope of Δx (in mm) varies as follows with "normal" Q_H changes:

$$(\Delta x)_{1844.5 \text{kHz}} = (\Delta x)_{1855.5 \text{kHz}} \approx 500 \Delta Q_{\text{H}}$$

If a negative shunt current would be required (i.e. a positive ΔI_3), the same effect could be obtained by increasing the QF current and shunting the F_1 and F_2 quadrupoles. Some of these quadrupoles have been shunted already. These shunts are all different; they were used to symmetrise α_p around the ring, and especially to make it equal at the four BLG pick-ups.

FIGURE 1

FIGURE 2