PS/AR/NOTE 88-18 HK/FP/afm

AAC CONSOLIDATION PROJECT

H. Koziol, G. Le Dallic, S. Maury, F. Pedersen, L. Thorndahl

- 1. Introduction
- 2. Items for consolidation: 1989/1990
- 3. Summary (Table)

Distribution

PS Group Leaders Associates R. Billinge E. Jones

1. INTRODUCTION

The aim of phase I of the consolidation programme (years 1989/1990) is to bring the AAC performance to the design goal* of the ACOL-project and to attain a level of reliability and ease of operation compatible with the expected physics programme and decreasing support personnel.

This part of the programme is based on operational experience and performance achieved todate, as well as on extrapolations supported by machine experiments and theoretical work. The items are commented in chapter 2 and listed in the Table at the end of this paper.

Of the most urgent items in 1989/1990, some have already been anticipated of the project approval in 1988. The commitments in 1988 are expected to somewhat exceed 780 kSF.

2. ITEMS FOR CONSOLIDATION: 1989/1990

About 15 months after completion of the ACOL project, the deficiencies and weakness of the AAC (resulting in a missing factor of about 2.2 in accumulation rate and 1.5 in maximum p stack intensity) have been identified:

- 1) Incident proton beam intensity
- 2) Modifications for reasons of radiation safety
- 3) Antiproton production
- 4) Debunching in Antiproton Collector
- 5) Stochastic cooling
- 6) Antiproton Accumulator

Some of these items (1, 4, and 6) require qualified manpower and machine study time more than major capital investments.

2.1. Incident Proton Beam Intensity

2.1.1. RF-Feedback system in the PS

On top of the high-level rf feedback installed this year for efficient beam loading compensation, machine studies indicate that a one-turn delay low-level feedback similar to the system built for the travelling wave cavities in the SPS is needed to further reduce the strong revolution harmonics of the \bar{p} production beam during the merging process.

^{*} Design goal: $5 \times 10^7 \ \bar{p}$ accumulated per shot, every 2.4 s i.e. 7.5 * $10^{10} \ \bar{p}/h$ with all PS cycles about $10^{12} \ \bar{p}/day$ in realistic operation.

2.2. Modifications for Reasons of Radiation Safety

2.2.1. Target Area

- 2.2.1.1. <u>Remote handling and spare service vehicle</u>. Several items related to remote handling need consolidation. In particular, there is a need for a back-up service vehicle (used for remote lifting and handling of practically all components in the target area). A failure of the present development service vehicle could turn the AAC off for long periods. Making Mantis II operational is also essential for any major intervention in the zone.
- 2.2.1.2. <u>Improvement of target area mechanisms</u>. The reliability of the target area mechanisms is still a cause for concern. Remote handling of certain parts of the system is not possible or very difficult, and positioning tolerances are outside design goals. Thus the need for further improvements to those mechanisms. This consolidation is a compromise; a complete redesign (abandoned at present) would cost about 1 000 kSF.
- 2.2.1.3. <u>Radiation-hard quadrupoles</u>. A failure of one of the two radiation hard pulsed quadrupoles downstream of the collimator will at present result in very long downtime of the AAC since they can only be repaired by remote handling, if at all.

Construction of a spare quadrupole has been launched in 1988.

- 2.2.2. Off-Line Target
- 2.2.2.1. <u>Mock-up</u>. At present, alignment checks of new chariots can only be done in the target area, where the radiation levels are increasing steadily. The mock-up zone in building 232 must be finished to enable us to check the chariots prior to installation in the target area.
- 2.2.2.2. <u>Universal strip-line</u>. At present two different types of strip-lines are in use for the collector lens "chariot" (one for horn and 36 mm lens, another for the 20 mm lens), a third would be required for a test of a plasma lens, and a fourth would be required for pulsed target tests.

It is proposed to develop a "universal" strip-line which satisfies the voltage and current requirements of all these devices.

2.2.3. Radiation Level

2.2.3.1. <u>Improvement of tunnel roof shielding</u>. New concrete beams with different orientation are needed over sections 1 and 13 of the AA, to facilitate the handling of the roof shielding by overhead crane.

2.2.4. Access Control and Maintenance Aspects

- 2.2.4.1. <u>Power supplies: polarity inversion and earthing</u>. More polarity inverters will expedite changes between normal and reverse polarity modes. A motorized earthing system of the AA and AC ring supplies will expedite safe access to the ring enclosure during any time of the day and night and avoid numerous lock-out procedures.
- 2.2.4.2. <u>Improvement of AA septum coils</u>. Present operating temperatures are very close to the limit. The water connections are cumbersome to disconnect (required at each bakeout) with a fairly high level of induced radioactivity. A rebuilt coil for the two dc septa is proposed.

2.3. Antiproton Production

2.3.1. New 36 mm Lithium-Lens

This item was postponed during the ACOL project due to lack of funds. The yield is predicted to be about 50% higher than with the cheaper 20 mm Li-lens and 60 mm Al-horn used so far. Since the measured \bar{p} injec tion yield into AC falls short of expectations by a factor of about 1.5, it became urgent to reactivate that project early in 1988, in order to test and install this equipment in February 1989.

The 1.3 MA radiation hard pulse transformer is being designed and built by INP, Novosibirsk. The reimbursement for their work is not included in this budget proposal.

2.3.2. Improvement of p Transfer Efficiency

2.3.2.1. <u>Vacuum chamber in dogleg</u>. For simplicity and savings about 40 m of the dogleg injection line were built without a vacuum chamber and the beam passes through air. This results in a 10% loss in p yield due to scattering and absorption, and a factor 2 loss in proton stacking efficiency. A 10% gain in yield for 100 kSF is very cost effective!

2.3.3. Research and Development

2.3.3.1. <u>Target analysis (Ispra)</u>. Although no signs of target failure or fatigue have yet been observed at 10^{13} protons per pulse, calculations predict that target and/or window problems can occur above 1.5 * 10^{13} , an intensity which will be achieved soon. A collaboration with IRC, Ispra has been started this year, while the consultancy in this field provided by Sheffield City Polytechnic continues.

- 2.3.3.2. <u>Conducting target development</u>. While beam experiments with conducting targets have been stopped since 1985, a reliable conducting target is essential to achieve a substantial yield increase. This work must go on with a low spending level in preparation for 1991's.
- 2.3.3.3. Large magnetic horn. The improvement of the large magnetic horn is to get more p than with the present 400 kA magnetic horn, but maybe less than 50% expected from the 36 mm Lilens. The great advantage of the magnetic horn is the ease of exploitation relative to the Li-lens.

2.4. Debunching in Antiproton Collector

2.4.1. Improvement to AC rf System

The power supplies and interlocks, in particular the h=6 rf system, are still in a fairly experimental state. The specified voltage of 750 kV per gap has not yet been reached due to inadequate power of the driver (or inadequate matching between driver and final stage. Good performance of the h=6 \bar{p} debunching system is urgently needed to relieve the need for doing the same momentum reduction by stochastic cooling (essential in improving the efficiency of the 2.4 s cycle).

2.5. <u>Stochastic Cooling</u>

2.5.1. Enhancement of Cooling Rate

2.5.1.1. <u>Band III power amplifiers</u>. The ordering of one third of the stochastic cooling power amplifiers was intentionally postponed during the ACOL project due to lack of funds.

> The speed of the AC stochastic cooling is the major obstacle to operation at 2.4 s cycle time (design value, we presently operate more efficiently at 4.8 s cycle time). We therefore need all the microwave power which we can reasonably get, to improve the efficiency of 2.4 s operation.

> The amplifiers have already been ordered and will be delivered and installed in the Jan/Feb 89 shutdown.

2.5.1.2. <u>Power amplifier development (GaAs)</u>. Although the improvements to the AC cooling mentioned above will probably enable us to reach the design accumulation rate, further development is required to go substantially beyond that performance. The rapid evolution in GaAs technology should result in cheaper broadband power amplifiers, and development of more sensitive pick-up and kicker structures must be pursued during the years 89/90 if a substantial increase in accumulation rate is to be achieved during 1991's.

2.5.1.3. <u>Improvements of pick-ups and kickers</u>. A new structure of the pick-ups and kickers is under study in order to increase the coupling with the beam.

2.5.2. Noise Reduction (Cooling of Combiner Boards)

The most cost-effective way to increase the gain of all 3 bands of the AC stochastic cooling system by a factor of about 1.2 (equivalent to 45% added power) is to lower further the temperature of the 12 moving beams with pick-up and combiner boards from the present 115^{K} to $30-50^{K}$ by additional cryogenic cooling. In fact, most of the microwave power is of thermal origin and the major contribution comes from the combiner boards.

This project has been launched in June and installation is planned for the beginning of 1989.

2.5.3. Spares

2.5.3.1. <u>Spare parts for stochastic cooling system</u>. Due to lack of funds during the ACOL project, several of the AAC stochastic cooling systems simply have no spare parts. There is a substantial risk of reduced availability.

2.6. Antiproton Accumulator

2.6.1. Vacuum Improvement to Below 5E-12 Torr

The recent achievements in record stack intensities in AA have resulted from repairs and improvements to the ion clearing system. However, there are good reasons to believe that the stack intensity is still mainly limited by ion induced resonances. To push further up the threshold of these instabilities, we must reduce the residual neutralization. This can be obtained both by a further improvement to the clearing system, and by a better vacuum. We therefore propose an upgrade of the AA vacuum system: additional pumping speed, new gauges and a consolidation of the bakeout system.

2.6.2. Beam Instrumentation

2.6.2.1. <u>Scrapers, Schottky analysis, PU amplifiers</u>. The AA scrapers in section 21 urgently need new mechanisms (reliability). A second dual channel FFT is needed for real time Schottky analysis of \overline{p} momentum distributions. The head amplifiers for the AA orbit pick-up need to be replaced to enable us to measure the clearing currents without having to remove a large number of delicate head amplifiers.

2.6.3. RF System

2.6.3.1. Low-level rf and dampers. The h=1 low level rf systems for both AC and AA need both modules and improvements to the prototype modules presently used. A phase lock operating on the second harmonic of revolution frequency to be developed for the AA will improve p stacking and unstacking. Closed-loop feedback on the phases of the h=6 gaps in the AC is much needed to improve phase stability during p debunching.

> The AA dampers need consolidation of electronics, spares, pick-ups with lower noise (to improve Schottky diagnostics), better common mode control, and facilities to measure BTF's for performance checks, using an FFT analyzer.

> Recent observation of quadrupolar transverse instabilities excited by ions make development of a quadrupolar damper urgent. To keep such a damper operating during rf unstacking, new quadrupolar structures to be built. The h=160 (300 MHz) rf system for unstacking of low intensity \bar{p} pilot beam for LEAR needs consolidation as well.

2.6.4. Spares

2.6.4.1. <u>Spare quadrupoles for the AC/AA transfer line</u>. At present no spare quadrupoles are available. A new system, using permanent magnet quadrupoles as a replacement, is proposed.

1. INCIDENT PROTON BEAM INTENSITY 150 1.1 RF-Feedback System 150 1.1 RF-Feedback System 150 2. MODIFICATIONS FOR REASONS OF RADIATION SAFETY 1360 2. IT arget Area 750 2.1.1 Remote handling and spare service vehicle 450 2.1.2 Improvement of target area mechanisms 200 2.1.3 Radiation-hard quadrupoles downstream targ 100 2.2.2 Universal strip. line 80 2.3.1 Improvement of tunnel root shielding 50 2.3.1 Improvement of tunnel root shielding 50 2.4.2 Improvement of AA septum coils 80 3. ANTIPROTON PRODUCTION 1100 3.1.1 Power supply (1.3 MA) 300 3.1.1 Proteement of p-bar Transfer Efficiency 100 3.2.1 Improvement to AC RF system 300 3.3.2 Conducting target development 300 3.3.2 Conducting target development (GaAs) 100 3.3.2 Conducting target development (GaAs) 100 3.3.2 Conducting Rate 560 5.1.1 Band III power amplifiers 300 5.1.2 Power amplified development (GaAs) 100		SUMMARY OF AAC CONSOLIDATION PROJECT	т			Payments
1.1. RF-Feedback System 150 1.1.1.95 MHz Feedback system 150 2. MODIFICATIONS FOR REASONS OF RADIATION SAFETY 1360 2.1.1 Target Area 750 2.1.1 Remote handling and spare service vehicle 50 2.1.1 Remote handling and spare service vehicle 50 2.1.2 Improvement of target area mechanisms 200 2.2.2 Universal stip line 80 2.3.1 Rediaton-frad quadrupoles downstream targ 000 2.2.2 Universal stip line 80 2.3.1 Improvement of tunnel roof shielding 50 2.4.2 Improvement of Aseptum coils 80 3. ANTIPROTON PRODUCTION 1100 3.1. New 36 mm Lithium-lens 700 3.1.1 Puised power supply (1.3 MA) 300 3.1.1 Puised power supply (1.3 MA) 300 3.2.1 Vacuum chamber in dogleg 100 3.2.1 Vacuum chamber in dogleg 100 3.3.2 Conducting target development 300 3.3.2 Conducting target development 300 3.3.2 Conducting target development 300 5.1.1 Band III power ampillers 410 5.1.2 Contr						1989 1990
1.1.1 9.5 MHZ Feedback system 150 2. MODIFICATIONS FOR REASONS OF RADIATION SAFETY 1360 2.1.1 Remote handling and spare service vehicle 450 2.1.2 Improvement of target area mechanisms 200 2.1.3 Radiation-hard quadrupoles downstream targ 100 2.2 Off-line Target Area 2.2 Off-line Target Area 2.2 Off-line Target Area 2.2.1 Mock-up 200 2.2.2 Universal strip line 80 2.3 Radiation Level 50 2.4 Access Control and Maintenance Aspects 280 2.4.1 Power supplies: polarity inversion and earthi 200 3.1.1 Protomement of Asseptum coils 80 3.1.2 Mechanical engineering and lens construction 300 3.1.2 Mechanical engineering and lens construction 300 3.3.1 Target analysis (ISPRA) 50 3.3.2 Large magnetic horn 100 3.3.1 Target analysis (ISPRA) 50 5.1.1 Band III power amplifier 300 4.1.1 RP (re-s and h=1), interlocks, amplifier 300 5.2.2 Noise Reduction (Cooling Rate 50 <					150	
2. MODIFICATIONS FOR REASONS OF RADIATION SAFETY 1360 2.1 Target Area 750 2.1.1 Remote handling and spare service vehicle 450 2.1.2 Improvement of target area mechanisms 200 2.1.3 Rediation-hard quadrupoles downstream targ 100 2.2.1 Mock-up 200 2.2.1 Mock-up 200 2.2.1 Mock-up 200 2.2.1 Improvement of turnel roof shielding 50 2.3.1 Improvement of turnel roof shielding 50 2.4.1 Power supplies: polarity inversion and earthi 200 3.1.1 Puised power supply (1.3 MA) 300 3.1.1 Puised power supply (1.3 MA) 300 3.1.1 Puised power supply (1.3 MA) 300 3.1.1 New 86 mm Lithum-lens 700 3.2.1 Improvement of p-bar Transfer Efficiency 100 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 1300 3.3.3 Large magnetic horn 120 4.1.1 RF (h-6 and h=1), interlocks, amplifier 300 5.1.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.2 New ceramic for cooling boards 100		1.1 RF-Feedback System in the PS		150		
2.1 Target Area 750 2.1.1 Remote handling and spare service vehicle 450 2.1.2 Improvement of target area mechanisms 200 2.1.3 Radiation-hard quadrupoles downstream targ 100 2.2 Oth-line Target Area 280 2.2 Uth-wesal strip line 80 280 2.3 Radiation Level 50 23 2.4 Inprovement of target area mechanisms 200 2.2.1 Mork-up 200 200 2.2.1 Mork-up 200 200 2.3 Radiation Level 50 20 2.4 Power supplies: polarity inversion and earthi 200 300 3.1.1 Pulsed power supply (1.3 MA) 300 300 300 3.2 Improvement to P-bar Transfer Efficiency 100 300 3.3 Research and Development 300 300 300 3.3.2 Conclusting target development 130 300 50 5.1 Bradmilysis (ISPRA) </td <td></td> <td>1.1.1 9.5 MHz Feedback system</td> <td>150</td> <td></td> <td></td> <td>150 (</td>		1.1.1 9.5 MHz Feedback system	150			150 (
2.1 Target Area 750 2.1.1 Remote handling and spare service vehicle 450 2.1.2 Improvement of target area mechanisms 200 2.1.3 Radiation-hard quadrupoles downstream targ 100 2.2 Oth-line Target Area 280 2.2 Uth-wesal strip line 80 280 2.3 Radiation Level 50 23 2.4 Inprovement of target area mechanisms 200 2.2.1 Mork-up 200 200 2.2.1 Mork-up 200 200 2.3 Radiation Level 50 20 2.4 Power supplies: polarity inversion and earthi 200 300 3.1.1 Pulsed power supply (1.3 MA) 300 300 300 3.2 Improvement to P-bar Transfer Efficiency 100 300 3.3 Research and Development 300 300 300 3.3.2 Conclusting target development 130 300 50 5.1 Bradmilysis (ISPRA) </td <td>2.</td> <td></td> <td>TY</td> <td></td> <td>1360</td> <td>.</td>	2.		TY		1360	.
2.1.1 Remote handling and spars service vehicle 450 2.1.2 Improvement of target area mechanisms 200 2.1.3 Rediation-hard quadrupoles downstream targ 100 2.2.1 Universal strip 280 2.2.1 Universal strip 280 2.2.1 Universal strip 50 2.2.2 Universal strip 50 2.3.1 Brower supply (15 MA) 50 2.4.2 Improvement of target area mechanisms 280 2.4.1 Improvement of A septum coils 80 3. ANTIPROTON PRODUCTION 1100 100 3.1.1 Power supply (1.3 MA) 300 3.1.1 Puechanical engineering and lens construction 300 3.1.1 Puechanical engineering and lens construction 300 3.2.1 Improvement to AC RF system 300 3.3.2 Conducting target development 300 3.3.3 Large manylesis (ISPRA) 50 5.1 Endower amplifier 500 5.2.2 Nalver amplifier development (GaAs) <td< td=""><td>_</td><td></td><td></td><td>750</td><td></td><td></td></td<>	_			750		
2.1.2 Improvement of target area mechanisms 200 2.2.1.3 Radiation-hard quadrupoles downstream targ 100 2.2.0 Irline Targetriens Test Stand 280 2.2.1 Mock-up 200 2.2.2 Urliersal strip.line 80 2.3.1 Improvement of tunnel roof shielding 50 2.4.1 Power supplies: polarity inversion and earthi 200 2.4.1 Power supplies: polarity inversion and earthi 200 3.4 Arctess Control and Maintenance Aspects 280 2.4.1 Power supplies: polarity inversion and earthi 200 3.1.1 Pulsed power supply (1.3 MA) 300 3.1.2 Mechanical engineering and lens construction 300 3.1.3 Cooling 100 3.2.1 Improvement of p-bar Transfer Efficiency 100 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 300 3.3.2 Conducting target development 300 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 300 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifier development (GaAs) 100 5.1.2 Power amplifier development (GaAs) 100		-	450			220 220
2.1.3 Radiation-hard guadrupoles downstream targ 100 2.2 Off-line Target/lens Test Stand 280 2.2.1 Mock-up 200 2.2.2 Universal strip line 80 2.3 Radiation Level 50 2.3.1 Improvement of tunnel roof shielding 50 2.4.1 Power supplie: polarity inversion and earthi 200 2.4.2 Improvement of A septum coils 80 3. ANTIPROTON PRODUCTION 1100 3.1.1 Pused power supply (1.3 MA) 300 3.1.1 Pused power supply (1.3 MA) 300 3.1.1 Yacuum chamber in dogleg 100 3.2.1 Machancal engineering and lens construction 300 3.1.1 Yacuum chamber in dogleg 100 3.3.1 Targe magnetic horn 120 4.1 Improvement of Colling Rate 560 5.1 Enhancement of Cooling Rate 560 5.2.1 Cryogenic system (20 K) 100 5.2.2 Controls of cooling heads 100 5.3.		÷ ,				
2.2 Off-line Target/lens Test Stand 280 2.2.1 Mock-up 200 2.2.1 Inversal strip line 80 2.3 Radiation Level 50 2.4 Access Control and Maintenance Aspects 280 2.4 Access Control and Maintenance Aspects 280 2.4 Access Control and Maintenance Aspects 280 2.4 Inprovement of Asgetum coils 80 3. ANTIPROTON PRODUCTION 1100 3. ANTIPROTON PRODUCTION 1100 3.1.1 Pulsed power supply (1.3 MA) 300 3.3.1 Scoling 100 3.2.1 Vacuum chamber in dogleg 100 3.3.2 Conducting target development 300 3.3.3 Large nagnetic horn 120 4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 5. STOCHASTIC COOLING 1160 5.1.1 Band III power amplifier 300 5.2.2 Controls of cooling Rate 560 5.3.1 Spares 100 5.3.1 Spares 100 5.3.1 Spares 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2.2.1 Mock-up 200 2.2.2 Universal strip line 80 2.3 Radiation Level 50 2.3.1 Improvement of nunel root shielding 50 2.4.2 Improvement of A septum colls 80 3.4.1 Power supplies: polarity inversion and earthi 200 2.4.2 Improvement of A septum colls 80 3.1.1 Pulsed power supply (1.3 MA) 300 3.1.2 Machanical engineering and lens construction 300 3.1.3 Cooling 100 3.2.1 Machanical engineering and lens construction 300 3.1.2 Machanical engineering and lens construction 300 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.3 Large magnetic horn 120 4.1.1 RF (h=6 and h=1), Interfocks, amplifier 300 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2.4 Neise Reduction (Cooling of Combiner Boards) 500 5.2.5 New cera	⊦		100			100 0
2.2.2 Universal strip line 80 2.3 Radiation Level 50 2.3.1 Improvement of tunnel roof shielding 50 2.4 Access Control and Maintenance Aspects 280 2.4.1 Power supplies: polarity inversion and earthi 200 3 2.4.1 Prower supplies: polarity inversion and earthi 200 3 3.4.1 Pulsed power supply (1.3 MA) 300 300 300 3.1.1 Pulsed power supply (1.3 MA) 300 300 300 300 3.1.2 Merovement of p-bar Transfer Efficiency 100 300 300 300 3.2.1 Narge analysis (ISPRA) 50 300 300 300 3.3.1 Target analysis (ISPRA) 50 300 50 50 3.3.2 Conducting target development 130 300 1160 50 5.1 Improvement of Cooling Rate 560 50 50 50 50 50 50 50 50 50 <		-		280		
2.3 Radiation Level 50 2.3.1 Improvement of tunnel roof shielding 50 2.4.2 Cases Control and Maintenance Aspects 280 2.4.1 Power supplies: polarity inversion and earthi 200 3.4.1 Power supplies: polarity inversion and earthi 200 3.4.ANTIPROTON PRODUCTION 1100 3.1.1 Pulsed power supply (1.3 MA) 300 3.1.2 Mechanical engineering and lens construction 300 3.1.1 Pulsed power supply (1.3 MA) 300 3.2.1 Macoum chamber in dogleg 100 3.2.1 Vacuum chamber in dogleg 100 3.3.2 Conducting target development 300 3.3.3 Large magnetic horn 120 4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 4.1.1 mprovement to AC RF system 300 5.1 Enhancement of Cooling Rate 560 5.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.2 Noires Reduction (Cooling boards 100 5.3.1 Spare parts for stochastic cooling systems 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 <td< td=""><td></td><td>•</td><td>200</td><td></td><td></td><td>100 100</td></td<>		•	200			100 100
2.3.1 Improvement of tunnel roof shielding 50 2.4 Access Control and Maintenance Aspects 2.80 2.4.1 Power supplies: polarity inversion and earthi 200 3 3. ANTIPROTON PRODUCTION 1100 40 4 3. ANTIPROTON PRODUCTION 1100 300 300 300 3.1.1 Pulsed power supply (1.3 MA) 300 300 300 300 3.1.2 Mchanical engineering and lens construction 300 300 300 300 3.1.2 Mchanical engineering and lens construction 300 300 300 300 3.2.1. Vacuum chamber in dogleg 100 300	L	2.2.2 Universal strip line	80			40 40
2.4 Access Control and Maintenance Aspects 280 2.4.1 Power supplies: polarity inversion and earthi 200 2.4.1 Power supplies: polarity inversion and earthi 200 3. ANTIPROTON PRODUCTION 1100 3.1.1 New 36 mm Lithium-lens 700 3.1.2 Mechanical engineering and lens construction 300 3.1.3 Cooling 100 3.2 Improvement of p-bar Transfer Efficiency 100 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 300 3.3.1 Target angletic horn 120 4.1 Improvement to AC RF system 300 4.1.1 RF (h=6 and h=1), interlocks, amplifier 300 5.1 Controls of cooling Rate 560 5.1 Enhancement of Cooling Rate 560 5.1.2 Power amplifier development (GAAs) 100 5.2.3 New ceramic for cooling boards 150 5.3 Spares 100 6.1 Vacuum Improvement to below 5E-12 Torr 300 6.1 Parget audrupoles for the AC-AA transfer Iii 150 6.4.1 Spares 300 6.4.1 Spare augetic hore 300 6.1 Vacuum Improvement to below 5E-12 Torr 300		2.3 Radiation Level		50		
2.4 Access Control and Maintenance Aspects 280 2.4.1 Power supplies: polarity inversion and earthi 200 2.4.1 Power supplies: polarity inversion and earthi 200 3. ANTIPROTON PRODUCTION 1100 3.1.1 New 36 mm Lithium-lens 700 3.1.2 Mechanical engineering and lens construction 300 3.1.3 Cooling 100 3.2 Improvement of p-bar Transfer Efficiency 100 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 300 3.3.1 Target angletic horn 120 4.1 Improvement to AC RF system 300 4.1.1 RF (h=6 and h=1), interlocks, amplifier 300 5.1 Controls of cooling Rate 560 5.1 Enhancement of Cooling Rate 560 5.1.2 Power amplifier development (GAAs) 100 5.2.3 New ceramic for cooling boards 150 5.3 Spares 100 6.1 Vacuum Improvement to below 5E-12 Torr 300 6.1 Parget audrupoles for the AC-AA transfer Iii 150 6.4.1 Spares 300 6.4.1 Spare augetic hore 300 6.1 Vacuum Improvement to below 5E-12 Torr 300		2.3.1 Improvement of tunnel roof shielding	50			20 30
2.4.1 Power supplies: polarity inversion and earthi 200 2.4.2 Improvement of AA septum colis 80 3.1. New 36 mm Lithium-lens 700 3.1.1 Pulsed power supply (1.3 MA) 300 3.1.2 Mechanical engineering and lens construction 300 3.1.3 Cooling 100 3.2 Improvement of p-bar Transfer Efficiency 100 3.3.1 Target analysis (iSPRA) 300 3.3.2 Conducting target development 130 3.3.3 Large magnetic horn 120 4.1 Improvement of AC RF system 300 4.1.1 RF (h=6 and h=1), interlocks, amplifier 300 5.1 Enhancement of Cooling Rate 560 5.1.2 New ceramic for cooling Rate 500 5.2.2 Noise Reduction (Cooling of Combiner Boards) 500 5.3 Spares 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 240 6.2 Beam Instrumentation 400 6.3.1 Low-level RF and dampers 300 6.4.1 Spare quadrupoles for the AC-AA transfer Iir 150 6.4.1 Spare quadrupoles for the AC-AA transfer Iir 150 6.4.1 Spare quadrupoles for the AC-AA transfer Iir 3	ſ			280		
2.4.2 Improvement of AA septum coils 80 40			200			100 100
3. ANTIPROTON PRODUCTION 1100 3.1. New 36 mm Lithium-lens 700 3.1.1 Pulsed power supply (13 MA) 300 3.1.2 Mechanical engineering and lens construction 300 3.1.2 Mechanical engineering and lens construction 300 3.2 Improvement of p-bar Transfer Efficiency 100 3.2.1 Vacuum chamber in dogleg 100 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 1300 3.3.3 Large magnetic horn 120 4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 4.1 Improvement to AC RF system 300 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifiers 410 5.1.2 Nower amplifier development (GAAs) 100 5.2.3 New ceramic for cooling boards 500 5.2.3 New ceramic for cooling boards 150 5.3 Spares 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 300						
3.1. New 36 mm Lithium-lens 700 3.1.1 Pulsed power supply (1.3 MA) 300 3.1.2 Mechanical engineering and lens construction 300 3.1.1 Pulsed power supply (1.3 MA) 300 3.1.1 Pulsed power supply (1.3 MA) 300 3.1.1 Automatical engineering and lens construction 300 3.1.1 Arget analysis (ISPRA) 50 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.3 Large magnetic horn 120 4. DEUNCHING IN ANTIPROTON COLLECTOR 300 4.1 Improvement to AC RF system 300 5.1 Enhancement of Cooling Rate 560 5.1.2 Power amplifiers 410 5.1.2 New ceramic for cooling neads 100 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3 Spares 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Acapers, Schottky analysis, PU amplifiers 400 6.2.1 Scrapers, Schottky analysis, PU amplifiers 400 6.3 RF System 300 6.4 Spares </td <td></td> <td></td> <td>80</td> <td></td> <td>4400</td> <td>40 40</td>			80		4400	40 40
3.1.1 Pulsed power supply (1.3 MA) 300 3.1.2 Mechanical engineering and lens construction 300 3.1.3 Cooling 100 3.2 Improvement of p-bar Transfer Efficiency 100 3.2.1 Vacuum chamber in dogleg 100 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 300 3.3.3 Large magnetic horn 120 4.1 Improvement to AC RF system 300 5.1 Enhancement of Cooling Rate 560 5.1 Enhancement of Cooling Rate 560 5.2.2 Nower amplifier development (GaAs) 100 5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.2.3 New ceramic for cooling boards 500 5.2.3 New ceramic for cooling boards 100 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Resystem 300 6.3 RF System 300 6.4 Spares 300 6.4 Spares 300 6.4 Spares 300 6.4 Spares 300					1100	
3.1.2 Mechanical engineering and lens construction 300 3.1.3 Cooling 100 3.2 Improvement of p-bar Transfer Efficiency 100 3.2.1. Vacuum chamber in dogleg 100 3.3.3 Research and Development 300 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.3 Large magnetic horn 120 4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 4.1 Improvement to AC RF system 300 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2.4 Controls of cooling heads 100 5.3.1 Spare parts for stochastic cooling systems 100 5.3.1 Spare parts for stochastic cooling systems 100 6.1 Vacuum Improvement to below SE-12 Torr 340 6.1 Vacuum Improvement to below SE-12 Torr 340 6.1 Apares 300 6.2.1 Scrapers, Schottky analysis, PU amplifiers 400 1190 6.3 RF System 300 6.4.1 Spare quadrupoles for the AC-AA transfer IIi 150				700		
3.1.3 Cooling 100 3.2 Improvement of p-bar Transfer Efficiency 100 3.2.1 Vacuum chamber in dogleg 100 3.3.1 Target analysis (ISPRA) 50 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.3 Large magnetic horn 120 4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 4.1 Improvement to AC RF system 300 5. STOCHASTIC COOLING 1160 5.1 Enhancement of cooling Rate 560 5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.2.1 Crogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3 Spares 100 5.1.1 Pumping system 100 5.2.2 Controls of cooling boards 150 5.3 Spares 100 6.1.2 Bakeout system 240 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3.2 Improvement of p-bar Transfer Efficiency 100 3.2.1. Vacuum chamber in dogleg 100 3.2.1. Vacuum chamber in dogleg 100 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.3 Large magnetic horn 120 4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 4.1 Improvement to AC RF system 300 5.1.1 Band III power amplifiers 300 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3.1 Spare parts for stochastic cooling systems 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.3.1 Low-level RF and dampers 300 6.4.4 Spares 300 6.4.5 spares 150 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling		3.1.2 Mechanical engineering and lens construction	300			300
3.2.1. Vacuum chamber in dogleg 100 3.3.1 Research and Development 300 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.3 Large magnetic horn 120 4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 4.1 Improvement to AC RF system 300 5.1 Enhancement of Cooling Rate 560 5.1 Enhancement of Cooling Rate 500 5.1.1 Band III power amplifier development (GaAs) 100 5.1.2 Power amplifier development (GaAs) 100 5.1.3 improvements of pickups and kickers 50 5.2.3 New ceramic for cooling boards 100 5.3 Spares 100 5.3 Spares 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.2 Beam Instrumentation 400 6.3.1 Low-level RF and dampers 300 6.4.1 Spare quadrupoles for the AC-AA transfer Ili 150 7.1 Installation and Testing 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reducti	E	3.1.3 Cooling	100			100
3.3 Research and Development 300 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.2 Conducting target development 130 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.2 Conducting target development 130 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 4.1 Improvement to AC RF system 300 4.1.1 RF (h=6 and h=1), interlocks, amplifier 300 5.1 Enhancement of Cooling Rate 560 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3 Spares 100 5.3 Spares 100 6.4 ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.2 Beam Instrumentation 400 <		3.2 Improvement of p-bar Transfer Efficiency		100		
3.3 Research and Development 300 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.2 Conducting target development 130 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.2 Conducting target development 130 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 4.1 Improvement to AC RF system 300 4.1.1 RF (h=6 and h=1), interlocks, amplifier 300 5.1 Enhancement of Cooling Rate 560 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3 Spares 100 5.3 Spares 100 6.4 ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.2 Beam Instrumentation 400 <		3.2.1. Vacuum chamber in dogleg	100			50 50
3.3.1 Target analysis (ISPRA) 50 3.3.2 Conducting target development 130 3.3.3 Large magnetic horn 120 4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 4.1 Improvement to AC RF system 300 4.1.1 RF (h=6 and h=1), interlocks, amplifier 300 5. STOCHASTIC COOLING 1160 5. I.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2.2 Noise Reduction (Cooling heads 100 5.3.1 Spare parts for stochastic cooling systems 100 5.3.1 Spare parts for stochastic cooling systems 100 6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.4 Spare quadrupoles for the AC-AA transfer Iir 150 6.4.5 Spare s 100 6.4.1 Spare quadrupoles for the AC-AA transfer Iir 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: increase of cooling rate 140	1			300		
3.3.2 Conducting target development 130 3.3.3 Large magnetic horn 120 4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 4.11 Improvement to AC RF system 300 5. STOCHASTIC COOLING 1160 5. STOCHASTIC COOLING 1160 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifier development (GaAs) 100 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3.1 Spare parts for stochastic cooling systems 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.2 Bakeout system 240 6.2 Beam Instrumentation 400 6.3.1 Low-level RF and dampers 300 6.4.1 Spare quadrupoles for the AC-AA transfer Iir 150 7.1 Installation and Testing 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140		•	50			50
3.3.3 Large magnetic horn 120 4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 4.1 Improvement to AC RF system 300 4.1.1 RF (h=6 and h=1), interlocks, amplifier 300 5. STOCHASTIC COOLING 1160 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GAS) 100 5.1.3 Improvements of pickups and kickers 50 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling beads 100 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.1.2 Bakeout system 240 6.2.1 Scrapers, Schottky analysis, PU amplifiers 400 6.3 RF System 300 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling						
4. DEBUNCHING IN ANTIPROTON COLLECTOR 300 4.1 Improvement to AC RF system 300 4.1.1 RF (h=6 and h=1), interlocks, amplifier 300 5. STOCHASTIC COOLING 1160 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifier 410 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2 Noise Reduction (Cooling neads 100 5.2.2 Controls of cooling heads 100 5.3 Spares 100 5.3 Spares 100 6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.2.1 Scrapers, Schottky analysis, PU amplifiers 400 6.2.1 Scrapers, Schottky analysis, PU amplifiers 300 6.3.1 Low-level RF and dampers 300 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140						
4.1 Improvement to AC RF system 300 4.1.1 RF (h=6 and h=1), interlocks, amplifier 300 5. STOCHASTIC COOLING 1160 5. STOCHASTIC COOLING 1160 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling beads 100 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.1.2 Bakeout system 240 6.2.3 RF System 300 6.4 Spares 150 6.4 Spares 150 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140			120			50 70
4.1.1 RF (h=6 and h=1), interlocks, amplifier 300 5. STOCHASTIC COOLING 1160 5. STOCHASTIC COOLING 1160 5. STOCHASTIC COOLING 1160 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3.1 Spare parts for stochastic cooling systems 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.1.2 Bakeout system 240 6.2 Beam Instrumentation 400 6.3.1 Low-level RF and dampers 300 6.4.1 Spare quadrupoles for the AC-AA transfer lit 150 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140					300	· · · · · · · · · · · · · · · · · · ·
5. STOCHASTIC COOLING 1160 5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3 Spares 100 5.3 Spares 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Pumping system 100 6.3 R Fystem 300 6.3 R Fystem 300 6.3 R Fystem 300 6.4 Spares 150 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140				300		
5.1 Enhancement of Cooling Rate 560 5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3 Spares 100 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.2.1 Scrapers, Schottky analysis, PU amplifiers 400 6.3 RF System 300 6.4 Spares 150 7. INDUSTRIAL SUPPORT 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: noise reduction 160			300			100 200
5.1.1 Band III power amplifiers 410 5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.2.3 New ceramic for cooling boards 150 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.2 Beam Instrumentation 400 6.3 RF System 300 6.4 Spares 150 7.1 Installation and Testing 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140	5.	STOCHASTIC COOLING			1160	
5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.3 RF System 100 6.3 RF System 300 6.4 Spares 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140		5.1 Enhancement of Cooling Rate		560		
5.1.2 Power amplifier development (GaAs) 100 5.1.3 Improvements of pickups and kickers 50 5.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.3 RF System 100 6.3 RF System 300 6.4 Spares 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140		5.1.1 Band III power amplifiers	410			410 (
5.1.3 Improvements of pickups and kickers 50 5.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.2.3 New ceramic for cooling boards 150 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.1.2 Bakeout system 240 6.2 Beam Instrumentation 400 6.3 RF System 300 6.4 Spares 150 6.4 Spares 150 6.4 Spares 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140		, , , , , , , , , , , , , , , , , , ,	100			
5.2 Noise Reduction (Cooling of Combiner Boards) 500 5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.2.3 New ceramic for cooling boards 150 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6.4.1 Pumping system 100 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140						
5.2.1 Cryogenic systems (30 K) 250 5.2.2 Controls of cooling heads 100 5.2.3 New ceramic for cooling boards 150 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.2 Bakeout system 100 6.2 Beam Instrumentation 400 6.2.1 Scrapers, Schottky analysis, PU amplifiers 300 6.3 RF System 300 6.4 Spares 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140	ł			500		
5.2.2 Controls of cooling heads 100 5.2.3 New ceramic for cooling boards 150 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.1.2 Bakeout system 240 6.2 Beam Instrumentation 400 6.3 RF System 300 6.4 Spares 150 6.4 Spares 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140				500		<u> </u>
5.2.3 New ceramic for cooling boards 150 5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.1.2 Bakeout system 0 6.2 Beam Instrumentation 400 6.3 RF System 300 6.4 Spares 150 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140						
5.3 Spares 100 5.3.1 Spare parts for stochastic cooling systems 100 5.3.1 Spare parts for stochastic cooling systems 100 6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.1.2 Bakeout system 240 6.2 Beam Instrumentation 400 6.3 RF System 300 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140		•				
5.3.1 Spare parts for stochastic cooling systems 100 6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.1.2 Bakeout system 240 6.2 Beam Instrumentation 400 6.3 RF System 300 6.4 Spares 150 6.4 Spares 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140	1	5.2.3 New ceramic for cooling boards	150			0 15
6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.1.2 Bakeout system 240 6.2 Beam Instrumentation 400 6.3 RF System 300 6.4 Spares 150 6.4 Spares 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140	- 1	5.3 Spares		100		
6. ANTIPROTON ACCUMULATOR 1190 6.1 Vacuum Improvement to below 5E-12 Torr 340 6.1.1 Pumping system 100 6.1.2 Bakeout system 240 6.2 Beam Instrumentation 400 6.3 RF System 300 6.4 Spares 150 6.4 Spares 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140		5.3.1 Spare parts for stochastic cooling systems	100			50 50
6.1 Vacuum Improvement to below 5E-12 Torr3406.1.1 Pumping system1006.1.2 Bakeout system2406.2 Beam Instrumentation4006.2.1 Scrapers, Schottky analysis, PU amplifiers4006.3 RF System3006.3 RF System3006.4 Spares1506.4.1 Spare quadrupoles for the AC-AA transfer lir1507. INDUSTRIAL SUPPORT3007.1 Installation and Testing3007.1.1 Stochastic cooling: noise reduction1607.1.2 Stochastic cooling: increase of cooling rate140	6.				1190	
6.1.1 Pumping system 100 6.1.2 Bakeout system 240 6.2 Beam Instrumentation 400 6.2.1 Scrapers, Schottky analysis, PU amplifiers 400 6.3 RF System 300 6.3.1 Low-level RF and dampers 300 6.4 Spares 150 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140				340		
6.1.2 Bakeout system2406.2 Beam Instrumentation4006.2.1 Scrapers, Schottky analysis, PU amplifiers4006.3 RF System3006.3 RF System3006.4 Spares1506.4 Spares1507. INDUSTRIAL SUPPORT3007.1 Installation and Testing3007.1.1 Stochastic cooling: noise reduction1607.1.2 Stochastic cooling: increase of cooling rate140			100	<u> </u>		0 10
6.2 Beam Instrumentation 400 6.2.1 Scrapers, Schottky analysis, PU amplifiers 400 6.2.1 Scrapers, Schottky analysis, PU amplifiers 400 6.3 RF System 300 6.3.1 Low-level RF and dampers 300 6.4 Spares 150 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140						
6.2.1 Scrapers, Schottky analysis, PU amplifiers 400 6.3 RF System 300 6.3.1 Low-level RF and dampers 300 6.4 Spares 150 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140	⊦		240			<u> </u>
6.3 RF System 300 6.3.1 Low-level RF and dampers 300 6.4 Spares 150 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140				400		
6.3.1 Low-level RF and dampers 300 6.4 Spares 150 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140	ł		400			100 300
6.4 Spares 150 6.4.1 Spare quadrupoles for the AC-AA transfer lir 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140		•		300		
6.4.1 Spare quadrupoles for the AC-AA transfer line 150 7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140	l		300			150 150
7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140	ſ	6.4 Spares		150		
7. INDUSTRIAL SUPPORT 300 7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140		6.4.1 Spare quadrupoles for the AC-AA transfer lin	150			0 150
7.1 Installation and Testing 300 7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140	7.				300	
7.1.1 Stochastic cooling: noise reduction 160 7.1.2 Stochastic cooling: increase of cooling rate 140				300	· · · ·	
7.1.2 Stochastic cooling: increase of cooling rate 140 70 7	- 1		160			160
			140			
		7.1.2 Stochastic cooling, increase of cooling rate				