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ABSTRACT

The perturbations from the sextupoles used for the 
chromaticity correction and the excitation of the extraction 
resonance in LEAR have been studied to the second power in 
the sextupole strength.



where a prime denotes differentiation with respect to s and the momentum devi­
ation δ is defined as

 
 (3)

where p is the momentum of the particle. Bx B and B are local components of 
the magnetic field and q is the charge of the particle.

The well known linear equations are obtained by using the field expansions

 [4]

(2)

where R(s] is a reference curve and σ(s) is the local radius of curvature. We 
define a local curvature h(s) by :

h(s) = 1/σ(s) [1]

For a circular accelerator we choose the closed orbit for a particle with 
momentum p as the reference curve. The equations for the transverse motion are 
then

1. INTRODUCTION

To describe the motion of a particle in an accelerator it is customary to use a 
local coordinate system of the following type :
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This leads to nonlinear coupled equations of motion. There are several ways to 
study the behaviour of the nonlinear motion. Either by tracking* (numerical 
simulation] or by direct analytical expressions. Such an analytical description 
can be found by a Fourier expansion of a Hamiltonian formulation, and keeping 
only the dominant terms. This lead o the resonance approach . Another way is 
to use canonical perturbation theory . .

2. PERTURBATIONS FROM SEXTUPOLES

The introduction of the sextupoles for the chromaticity correction drives 
nonlinear resonances. The nonlinearity of the equations of motion also 
introduces an amplitude dependent tune shift.

From the application of perturbation theory it is found that sextupoles drive, 
to first power in the sextupole strength, the amplitude resonances

- p

- P
0* + ZQ2 = p , p=0, + 1, ± 2,.. (7)

Qx - 2Qz = P 

where Q , Q are the betatron frequencies of the linear motion. To second power 
in the sextupole strength we also find

20x - P
<0x = p

~ P p-0, ±1,12,... fflj
<0z - P
20/ 20z = P
20x- 20z = P

where :

(6)

in eqs (2) and expanding in the coordinates and δ. If we only keep linear terms 
we find

2 
x" + (h - k]x - δh

15) 
z" + kz = 0

the appearence of δ in eqs (2) leads to chromatic effects. This is normally 
compensated for by the introduction of sextupoles which add terms in the field 
expansions eqs (4) of the type
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and similarly for the vertical plane. The action J and phase φ are constants 
of motion for the linear motion. It is the perturbation that make them vary with 
s. We define the perturbations of the action as :

J(s) = J0 [1 + (s) + à2j[sj) [10]

where Δ j is linear and Δ2 j quadratic in the sextupole strength. J0 is given by 
the initial amplitude.

Since the perturbations are oscillating functions of s we choose to study the 
average values. The perturbations tend to infinity at the resonances so we put a 
maximum limit to 1. Note that we are doing perturbative calculations so that the 
expressions are only expected to be a good approximation for perturbations 
smaller than 1.

We can then plot the average perturbations as functions of the horizontal and 
vertical tune. To compress both the horizontal- and vertical planes into one 
plot we plot the function :

(9)

These are obtained by adding or subtracting two of the resonances in (7]. Note 
that not all of the combinations appear.

To obtain the perturbations to first power in the sextupole strength one may use 
the resonance approach or canonical perturbation theory.

The amplitude dependent tune shifts, which are of second power in the sextupole 
strength, can be calculated by applying canonical perturbation theory to first 
order, since they are given by the transformed Hamiltonian.

These two approaches also give new invariants of the motion to the second power 
in the sextupole strength.

3. SECOND ORDER PERTURBATIONS FROM SEXTUPOLES

Canonical perturbation theory can, at least in principle, be extended to any 
order. This method has however a great disadvantage. The canonical trans­
formation from the new coordinates to the old is implicit.

This problem has been solved by using Lie transforms, to get explicit trans­
formation equations that can be developed recursively to any order .

However, to avoid the machinery of Lie transforms one can also apply time­
dependent perturbation theory (variation of constants). Since all the steps are 
explicit and recursive this can be done by using a symbolic algebraic 
manipulation system such as REDUCE. This has been done to the second power in 
the sextupole strength , , , and the result is obtained as FORTRAN functions 
for first- and second order perturbations of the action, phase and tune. The 
action J and the angle variable Ψ appear in the horizontal betatron motion as :
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ΔJ = Min {Max  (11)

where <> denotes average value.

The expression for the tune shifts contains only terms quadratic in the 
sextupole strength but are linear in J and J . They can therefore be written 
as :

 (12)

The tune shifts also exhibit resonant behaviour so that they tend to infinity at 
the first order resonances.

It turns out that to the second power in the sextupole strength : 
aXZ  = azx (13)

The expressions for the perturbations of the action J and the phase φ including 
the s-dependence, can be used for tracking the particles to the second power in 
the sextupole strength. The frequencies that appear in the betatron motion due 
to a resonance n Q + n Q = p is X X z z

(nx + 1)Qx + nz Qz , horizontal plane 

nx Qx + (nz + 1)Qz , vertical plane 

4. STUDY OF SEXTUPOLE CONFIGURATIONS IN LEAR

The aim here is to study the recent sextupole configuration to the second power 
in the sextupole strength whic been worked out by Μ. Chanel. Earlier work 
may be found in the references

The 18 sextupoles in LEAR are used for :

- chromaticity correction

- excitation of the extraction resonance 3QX = 7 

- compensation of the sextupolar resonanceQx + 2Qz = 8

in appendix A is shown a tune diagram including all resonances for which 
nx |+|nz |< 4. The normal working point is :

QX = 2. 305, Q = 2. 725
 2 (14)

ξx = 0 , ξz = 0

where ξ is the chromaticity. For extraction

Qx = 2.325, Q = 2. 725 
(15) 

ξx = 0.53, ξz = 0 



In appendix B two different cases are shown, Q + 2Q =8 not compensated and 
compensated for the normal working point (14) when the extraction resonance is 
not excited. Appendix C shows the similar cases for the extraction working point 
(15) when the extraction resonance is excited.

5. CONCLUSIONS

For the normal working point we find that without compensation Q + 2Q =8 is 
strongly excited. This probably affects the stability of the beam. When we apply 
the compensation it is found that the resonance nearly disappears. We also find 
a small excitation of 2Q + 2Q = 10 which however is negligible. We find that 
the tune shifts are strongly decreased by the compensation. From the tracking it 
is seen that the perturbation is reduced, especially in the vertical plane.

At the extraction working point we also observe the excitation of Q + 2Q =8. 
One can conclude that the excitation of the extraction resonance leads io an 
excitation of Q - 2Q = -3. The resonances 2Q + 2Q = 10 and 4Q = 11 are also 
excited. We expect tRe motion to be perturbed by Q + 2Q = 8, which is 
confirmed by the tracking. The tune shifts are big without compensation but 
strongly reduced by the compensation. From the tracking we conclude that in the 
compensated case there only remains a small perturbation. By looking at the 
spectra we find that it is mainly due to the excitation of - 2Qz = -3.

The final conclusion is therefore that a possible improvement would be to try 
and find an configuration for the excitation of the extraction resonance without 
exciting Qx - 2Qz = -3. Apart from this the configuration seems to be good.

It should be noted that we have neglected the dispersion effects in this 
analysis. The theory may however be extended to include this contribution.
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JX = 20 . 10 6
 -6

Jz = 10 . 10 (16)

with excitation of the extraction resonance by A7=6 (normalized excitation15). 
In appendix B,C are shown contour plots of the average perturbation to second 
order in the sextupole strength, eq. (11) and the tune shift coefficients in 
eq. (12).

We also show the motion in the normalized phase space^y tracking to the second 
order in the sextupole strength and by Fourier analysis of the betatron 
motion. The initial action has been put to
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Appendix A

TUNE DIAGRAM



Appendix B

PERTURBATIONS FOR THE NORMAL TUNE



Figure 2: Perturbations in the action, Q + 2Q = 8 not compensated.

a = 12.2 a = 262XX xz

a = 262 a = 93.0zx zz



Figure 3: Tracking at the normal working point, Q + 2Q = 8 not compensated



Figure 4: Perturbations in the action, Q + 2Q — 8 compensated.

a = 8.0 a = 13.7 XX xz

a = 13.7 a = -28.4 zx zz



Figure 5: Tracking at the normal working point, Q + 2Q = 8 compensated



Figure 6\ Perturbations in the action, Q + 2Q = 8 not compensated.

a = 31.2 a = 310XX xz

a = 310 a = 131zx zz

Appendix C

PERTURBATIONS AT EXTRACTION



Figure 7: Fracking at extraction, Q + 2Q = 8 not compensated



Figure 8: Perturbations in the action, Q + 2Q = 8 compensated.

a = 22.4 a = 0.25XX xz

a = 0.25 a = -17.2zx zz



Figure 9: Tracking at extraction, Q + 2Q = 8 compensated


