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Abstract

We describe an extended version of the Nambu —Jona-Lasinio (NJL) model that includes
a description of confinement. It is necessary to incorporate some description of confinement in
order to discuss the properties of the sigma, rho and omega mesons in the NJL model. These
mesons, in addition to the pion, are the minimum needed to describe the salient features of the
nucleon-nucleon interaction. In previous work we considered the relation between the bosonized
NJL model and the one-boson-exchange (OBE) model of the nucleon-nucleon force. Most of
our attention was given to pion and sigma exchange. We provide a review of that work and
extend our discussion to a consideration of rho and omega exchange. We also present a more
detailed discussion of the bosonization procedure. Our results depend upon the strength of the
confining interaction. Once that is fixed, we obtain good values for the omega-nucleon coupling
constant, Gy, and for the tensor coupling constant, f, in the rho-nucleon interaction. (One
limitation of the present version of the model is that the ratio f,/g, = 3.70, instead of the
empirical value of f,/g, = 6.1.) If we consider nucleon-nucleon scattering for relatively small
momentum transfer, we obtain good results for the processes of sigma, pion, rho, and omega
exchange.  Remarkably, the description of pion exchange is very accurate up to
q2 ~ -2 GeV?. That is, the microscopic model reproduces the pion-exchange amplitude of
the boson-exchange model over a broad range of momentum transfer when we use a
pseudoscalar-isovector form factor of the nucleon obtained in a recent QCD lattice simulation.
In the other channels (o, p, w), the nucleon form factors we calculate are too "soft" to fit the
OBE amplitudes away from q2 = (. Further work is needed to obtain good fits to the
amplitudes for o, p, and w exchange for large momentum transfer, although the OBE amplitudes

are well reproduced in the case of scattering at small momentum transfer (| q2 | < 0.1 GeVz).
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1. Introduction
It is useful to review some aspects of the NJL model [1] and our extension of that model

to include a description of confinement [2-4]. The Lagrangian of our model is

- Gy _ - -
L@ = 308 -m))q+ =1q9F + (qivs 79)°]

G

LU 7* + @v57,79)"] .1

G, _
- Tw ((I'Y# Q)z + ff’)(;gnf(x) ’

where we see that there are three coupling constants to be fixed in addition to the current quark
mass m‘(]). £ cons ) introduces two constants, « and p, where « is essentially the string tension
and p is a parameter introduced to simplify our momentum-space calculations [4]. More
precisely, the confinement Lagrangian serves to introduce a potential between the quark and
antiquark of the form VC(r) = kre *" [2,3]. Typically, we expect values of k = 0.2 GeV?2.
(Also, we fix p at 0.050 GeV to soften the momentum-space singularities of VC.) We have
fixed mg and Gy in an earlier work [5]. The choice of Gy is also related to the choice of the
momentum-space cutoff needed in the NJL model. For example, for calculations made in a
Euclidean momentum space, we choose Ap = 1.0 GeV. (That choice corresponds to a
Minkowski-space cutoff for the magnitude of the various three-momenta in the loop integrals of
the model of A; = 0.702 GeV.) For example, if A = 1.0 GeV, mg = 5.5 MeV, and
Gg = 791 GeV ~2, we find the constituent quark mass to be m, = 262 MeV and the pion mass

m_ = 138 MeV. That choice of the parameters also yields satisfactory values for the pion

decay constant, f,, and the vacuum quark condensates <O |uu|0> and <O0| dd |0> [5].
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(In this work our notation is such that qq = uu +dd, which differs from the conventional
notation used in the discussion of QCD sum rules, where < 0]gq|0> iseither <O uu|0>
or <0|dd|0>.)

The analysis proceeds by introducing fundamental quark-loop integrals for the pion and

sigma channels 2,31,

2 L d'p |, AR _4q 1.2
Jp(q”) ’"c"fTrI an [WSSF [P 7] ivsSF [P 3 : (1.2)
and
4
Jg) = [ 4P Nl _a| . 1.3
T T R

[See Fig. 1.1 The corresponding T matrices are

G
Tp=-—— (1.4)
1 -GgJp(q7)
and
G
Tg=-—o . (1.5)
2
L -Gsls(q@?)

Here we have suppressed reference to the Dirac matrices and isospin operators that act in the
quark-antiquark channels. The pion mass is zero if mg = 0. Otherwise, the pion mass is

obtained from the relation



1 -Gglp(ml) =0 . (1.6)

The function J P(qz) is shown in Fig. 2, where we have put q2 = f.

When we turn to the sigma meson, we find the solution of 1 - GgJ S(maz ) =0 toliein
the qg continuum which starts at q2 = 4m;. That suggests that we need a model of
confinement [2]. The model we use is described in Figs. 1 and 3 and their captions [2,3].
There we see that gq rescattering via the confinement potential, V< leads to the replacement
of JS(qz) by fs(qz). Note that, while JS(qz) 1S complex for q2 > 4m3‘, fS(qz) is real. That
is, the confinement vertex of Fig. 3, which is introduced to define J S(qz), removes the
unphysical qq cut in Jg(g%). (See Fig. 1.)

It is also important to consider the amplitudes for g +q—=m +7. To take those
amplitudes into account we introduce X S(qz) shown in Fig. 1. Consideration of confinement
replaces K S(qz) by K s(q 2). The latter function has a (physical) cut for q2 > 4mi ; the gq cuts
for q2 > 4m3 are again removed by the confinement vertex functions. With the introduction

of ks(qz), the T matrix of Eq. (1.5) becomes
Gs

Tsq? = - — (1.7)
1 - GglJs(g )+ Kg(g9)]

which only has a physical cut starting at g2 = 4m;' , since J¢(q %) is real, as noted above.
While the theory without confinement leads to mf = 4m; + mf in the simplest

bosonization analysis [6], it is known that there is no low-mass sigma (m, = 540 MeV) to be

found in the data tables. To see how the introduction of confinement resolves that problem we

may refer to Fig. 4, where we show J s(@ for r = g% > 0. The values for t < 0 represent
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J5() calculated in a Euclidean momentum space with Ap = 1.0 GeV.  Note that,
Js(t) = J s for t < 0 and we do not distinguish between these functions in that region. For
r > 0, Jg) is calculated in Minkowski momentum space with A; = 0.702 GeV and
x = 0.20 GeV2. The dashed curve shows Jg(t) for + > 0. It is useful to consider a

horizontal line that could be drawn with ordinate equal to 1/Gyg, since the solution of

1 2
— =-Jc(m) =0 1.8
Cs s(mg) (1.8)
or
L_jgmD =0 1.9
G Istm) =0 (1.9)
yields the sigma mass. Note that we may generalize Eq. (1.9) to read
1 52 )
= -[F5m}) + Re KS(ma)} -0 . (1.10)
S

The solution of Eq. (1.9), or Eq. (1.10), yields m, = 900 MeV, which takes the sigma out
of the low-energy regime. In Fig. 5, we show J s(n) for r > 0 and for various values of k.
It may be seen that the larger values of « will move the sigma still higher in energy for fixed
Gy, as it to be expected when a repulsive potential of increasing strength is introduced. We
remark that use of Eq. (1.10) yields slightly higher values for m, since Re K S(qz) is negative
for q2 > 0.25 GeVz, while J S(qz) is everywhere positive. However, Re K S(qz) is
small in this case and may be neglected. (For example, for q2 = 0.8 GeV?,

Re Kg(g?) = -0.006 GeV2 while J4(¢%) = 0.12 GeV2, if x = 0.20 GeV?.)



II. Bosonization of the Extended NJL Model: Scalar-Isoscalar Mode

We will use a generalized version of the momentum-space bosonization scheme

introduced in Ref. [6]. There it is shown that one may write for the scalar-isoscalar channel,

2
Gs 854D

2.1)
1-GgJs@®  ¢*-ml(q?)

Explicit expressions are given for Jg ((12) and the momentum-dependent coupling constant and
mass in Ref. [6].
In our extended version of the NJL. model, we replace J¢(q 2 by J s(q 2) and also include

K S(qz) in the denominator of the T matrix in some cases. It is then useful to write J S(qz) as

” A
Jotqd =5, - 2

. 2.2)

where s,, 5, and 1, are constants. (This form may be used for spacelike values of qz, even

if we do not find a pole in jS(qz) for q2 > 0.) We now write

A 1
TS((Iz) = ——I—Az ) (2.3)
Gg -Js@9)
qz-rﬁ{l
-1
- - 95 ~n , 2.4)

Therefore, we may put



my o=y - —2 2.5)

L2 qz
2 N g
go’qq(q ) - 1 ’ (2‘6)
s ~5
which arises naturally in this formalism. Note that we will define g? aq = g(‘:‘ qq(O) , with
72
2
850 ®) = —}— - Q.7)
Gs™ -5y
With the various definitions given above, we have
2 2
TS((] 2y = igiq_‘ﬁ]_z) (2.8)
q--m,
We also see that
2
! _ 804¢® 2.9)
2 3

Gg' -Jg0)  m’
which is a useful relation for obtaining gz' 4q from knowledge of G and J(0).

The situation in the case of the scalar-isoscalar channel is quite subtle, since the choice
of parameters depends on the physical situation. For example, our studies have shown that, for
spacelike values of q2 near q2 = 0, the value of m, in Eq. (2.8) is 540 MeV and

& qq(O) = 2.58, in one case [5]. However, there is no pole in the T matrix for q2 = mf , with

m, = 540 MeV. For example, as we will see, for timelike (12 we find a pole at q2 = mZ‘,
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where m_, = 900 MeV, if « = 0.20 GeV2. One way to understand this point is to note that
J S(qz) and J S(qz) are quite similar for qz < 0, while these functions are quite different for
timelike qz. [See Fig. 4.] Note that the rapid rise of JS(qz) for q2 > 0 seen in Fig. 4 is due
to the presence of a gq cut starting at q2 = 4mq2 = 0.275 GeV?. Beyond that point
Js(q 2y is complex. On the other hand, J s(q 2y is everywhere real and a rapid rise in the value
of that function could signal the presence of a bound state in the (linear) confining potential.

As a specific example, relevant to the spacelike region, consider the parameters
m; = 0.520 GeV2, 5, = 0.0479 GeV> and s, = 0.0178 GeV*.  These values yield
m, = 0.540 GeV, gdqq(O) =2.58and J (@) = 0.0821 GeV?. This parametrization describes
the behavior of J S(qz) rather well for - 0.3 GeV? < q2 < 0; however, there is no pole at
mf = 0.520 GeV? in the timelike region. (See Fig. 7 of Ref. [8].)

Note that, if we include ks(qz) in our considerations and use « = 0.22 GeVZ, we find
J5(0) + K5(0) = 0.0917 GeV?. Therefore, using J(0) + K(0) instead of J(0) in Eq. (2.9),
we find gaqq(()) = 2.90, if we again use G4 = 7.91 GeV ™2 and m; = 0.540 GeV. This
modification serves to enhance the magnitude of the 7 matrix at g2 = 0 by about 27 percent
relative to the result obtained when we neglect K s(q 2). (We remark that an easy way to obtain
Re K s(q 2) is to calculate Im K s(q 2y and then obtain Re K s(q ) by use of a dispersion relation
219

The rather complex situation that exists in the case of the sigma meson is greatly
simplified when we consider the omega and rho mesons, since a single parametrization of the

form of Eq. (2.2) may be used both in the spacelike and the timelike regions.



III. Bosonization for the Omega Meson

It is useful to divide the omega propagator and 7 matrix into transverse and longitudinal

parts [3]. For example, we may write

2
[g“y—q“qyzlmw] - [g‘w-'(]p'ql;/qz] : (31)
q2 -m, q2 -m, qzm
One may also define the function J (w)(qz), related to a tensor J (‘(‘:) (qz). Here,
(w)(qz) = - {glﬂ’ (Iq(] ‘ J(w)(qz) ) 3.2)

where [3]

4
- i @? = (-DnngTr | (ZT])(4[iSF(q/2+k)I‘“(q, Wisp(-q2+b¥] . B3

In this case T*(q, k) contains the vertex for the confining field and

AV

o= ,Yv_qu/qZ (34)

Note that q#j(“w")(qz) = f(’f‘)';(qz)qy = 0 in accord with Eq. (3.2), since qﬂl“‘ = qu—}“ = 0 [3].
In Fig. 6 we show J () for x = 0.16 Gev2, k = 0.22 GeV2, and « = 0.28 GeVZ.
A vertical line drawn at ¢ = mi intersects each of these curves at a point. The ordinate of that

point then yields a value for 1/G,,, since the (transverse) 7 matrix may be written

T = - " -q*q"1qM T, @) )

with
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S S
1 7 2
el —J(w)(q )

w

T (@) = (3.6)

A particularly useful representation for J @@ 2) that has a simple physical interpretation

is given by

? 2
Jw@?) = vy - — (3.7
q--m,
In terms of these parameters, we have
2 _ .2 \p)
m,=m, - — (3.8)
Gw V]
and
72
2
Zuge@ = —=— . (3.9)
Gw Vi

For example, if « = 0.22 GeVz, we find that with G, = 7.86 GeV‘z,
v, = 0.0284 GeV2, v, = 0.0850 GeV* and m> = 1.476 GeV2, we obtain an accurate
representation of j(w)(q 2y for q2 > 0. This result may be understood by interpreting 7 as
the mass of a bound state in the linear confining potential. (Note that 772, is obtained in the
absence of the short-range attraction parametrized by G,.) The introduction of the short-range
interaction then moves the bound state down to m, = 0.783 GeV. As noted above, this
situation is much simpler than that in the scalar-isoscalar channel, since m,, of Eq. (3.8) is equal
to 0.783 GeV in both the timelike and spacelike domains of qz.

At this point in our discussion, we have f(w)(O) # 0. That result would lead to the

generation of a mass for the photon. To avoid that we may make a subtraction, replacing
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j(w)(qz) by j(w)(qz) —j(w)(O). It is readily seen that, if we simultaneously replace G, ! by

G-

w

unchanged by the subtraction.

1V. Bosonization for the Rho Meson

J(0), there is no change in the quark T matrix, so that the values of m,, and g, are

Here, the new feature relative to the previous section is the importance of a tensor that

describes the coupling of qq states to the two-pion continuum [3],

o oVt .
K(‘:)’(qz) - [gw"qq—;]- K(p)(qz) )

in addition to the tensor

A 1194 -
J¥ @ = - [g'” - ﬁq%] J i@

The (transverse) T matrix is of the form

- BV A
Y = - lg'" l%] @
q
with

1
Gp_l = [j(p)((l 2) + k(p)(q 2)]

T(p)((l ) =

Since mz is known, we find the appropriate value of G, by solving the equation

1 = 2 5 2
—(;— - [J(p)(mp) +ReK(p)(mp)] = 0
0
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Again, we may indicate how this solution appears in a graphical form. For example, in Fig.
7, with ¢t = qz, we show f(p)(qz) +Re Ii'(p)(qz) for various «. (Note that j(p)(qz) = j(w)(qz) )
Figure 8 shows Re K(;)(#) for various value of x. Since we have fixed « = 0.22 GeV? in our
study of the omega meson, we use that value here and find that G, = 7.12 GeV 2 yields a rho
meson with m, = 0.770 GeV.

In this case, we put

Jo @) +ReR (gD = r - 2 4.6
0@ 4 1Tz > (4.6)
q - -m,
so that
2 _ .2 2
mp = mp - — > 4.7
Gp - rl )
and
m? - g2
5 -
8pge@) = 2 (4.8)
Gp - rl
in analogy to what was done for the omega meson. Again, gZ'qq = gqu(O), with
2
2
8oqg® = —— . (4.9)
Gp - rl

A good fit to f(p)(qz) +Re Ie(p)(qz) for q2 = 0 is obtained if r; = 0.0304 GeV?,

ry = 0.0968 GeV* and 1. = 1.476 GeV2. (As noted above, G, = 7.12 GeV2))
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V. The Nucleon-Nucleon Interaction in the OBE and NJL Models

In Fig. 9a we represent meson exchange in the OBE model on the left-hand side of the
figure. There, the open circles are the form factors of the OBE model that are of the

(monopole) form

OBE AT - m] (5.1
FOPE@) = | 25 .
Al -

for a meson of mass m; and OBE cut-off A;. On the right-hand side of Fig. 9a we represent
the interaction in terms of the quark-quark interaction, 7. We do not consider all possible
diagrams, but isolate those diagrams that are of leading order in 1/n, counting [8]. The
interaction in that case may be expressed in terms of the functions, J (qz) and K (qz), for the

various mesons. For example, in Fig. 9b we show those interactions that lead to the use of ’

G
10 = - ——5 (5.2)
1 -Gglg(0)

in the case of sigma exchange. To keep in mind that we sum only the leading diagrams, we
denoted the quark-quark 7 matrix as f,, in Fig. 9c and in Eq. (5.2).
Pion Exchange

With reference to Fig. 9, we write a scattering amplitude for pion exchange in the OBE

model as

2 2 2] 2
OBE,. _ 8xnn | Ax-my 1 (5.3)
fT ([) - 4 2 2 b
AL -t t-m_



_ f:)BE(O) thE([) . 5.4

In Eq. (5.3) we have included the form factors of the OBE model that appear at each pion-

nucleon vertex. It is also useful to define

2

2 2 2 2
GTNN _ ExNN A‘r My (5.5)
47 47 A2 ’

T

with similar definitions for the sigma, rho and omega mesons. The amplitude corresponding to

f,o BE(t) in the NJL model is (see Fig. 9c),

NIL f;;)(f) RV (5.6)
o = 4—(Fo)
NJL NJL
=fr Ok O SR
Here, t;;) is the quark-quark scattering amplitude of the NJL model and F_(?) is a nucleon form

factor defined such that

Fu(p+q,)ivsu(p,9) <t |7lt> = <p+q,5',¢ |gQ)ivs @) p,5,t> ©-8)

It is useful to introduce a monopole form for the nucleon form factor,

F () = F0)| == (5.9
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and note that in a recent lattice simulation of QCD it was found thatA_ = 0.75 4+ 0.14 GeV
[9].

In a previous work [8] we saw that, with A, = 0.8 GeV, there was excellent agreement

. NJL OBE . . .

of the functions &~ () and A~ (1). [See Fig. 10.] Here, we also consider the magnitude
of the amplitude in addition to the q2 dependence, so that we have to provide a value for F(0).
In an earlier work, we found F,(0) = 4.78, when we calculated the form factor Fr(t) in a
covariant soliton model of the nucleon {10]. Near r = 0, we may put tg)(t) = gi qq/ (t - mi) ,

so that, in our model,

2 ~
NIL  Brgq LFLOF
47 2

My

0 = (5.10)

~676 GeV2 | (.10

where we have used 8xqq = 2.68 and FT(O) = 4.78, as found in our earlier work [5,10].
Noting that A_ = 1.3 GeV and gi an/4™ = 14.4 in typical OBE model calculations [7], we

have

OBE

fOH0) = - 727 GeV™2 (5.12)

which is only 8 percent greater than fiv JL(O) given in Eq. (5.11). Thus, we see that for pion
exchange we fit both the value of G_py (G7r NN = &x qu L0) = 12.8) and the q2 dependence
of the amplitude up to - q2 = 2 GeVZ%. We ascribe this success to the fact that we were able

to take a value for N, from the recent QCD calculation [9], since our calculation of Fr(t) gave
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a form factor that was too soft. For example, the quark wave function of Ref. [10] yields a

dipole form for the form factor,

F (1) = F,(0)

0.36

1 2
— ] , (5.13)

where F,(0) = 4.78 and ¢ is in GeV? units. For a monopole fit, the effective vertex parameter
would be about A, = 0.43 GeV, which may be compared to the result based upon the lattice
simulation of QCD that gave A, = 0.75 =+ 0.14 GeV [9]. (Recall that putting

A, = 0.80 GeV in our analysis gave an excellent fit to the q2 dependence of the OBE amplitudes,
as shown in Fig. 10.)

Sigma Exchange

To study sigma exchange we need the nucleon form factor, Fg(f), defined by the relation

FsOu(p+q, s u(p, )8, = <p+q,s',¢q0)q0)|p,s,t> . (5.14)

We may write

2 [42_ 2
fGOBE([) _ 8sNN o~ Mg 1 , (5.15)
4w Ai -t | t- mZ‘
= PO ©.16)
and
(9)
£V - Lag © (FsOI . (5.17)

47
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Now

2 A2 2)?
OBE _ 85NN s~ Mg 1 (5.18)
Js © = 47 2 2’
AG mU
2
. Do 1 (5.19)
4n mz-
while
gz
My = - Lo Lo (5.20)
47 m2
a
Thus, we would like to have
GUNN = gaquS(O) ’ (521)

where the phenomenological value of G, yy is in the range 9.31 < G,y = 9.73, if
A, = 2.0 GeV, and m, = 0.550 GeV [7]. In a recent work, we calculated F((0) and found
that Eq. (5.21) was well satisfied [11]. Therefore, in addition to obtaining a satisfactory value
for G, Ny, We also obtain a good value for G,y in our model. It is worth remarking that in
the earlier work mentioned above, we had F¢(0) = 1.94 [10]. However, vertex corrections
enhance that value by about 80 percent [11], so that Eq. (5.21) is satisfied wheng, ., = 2.58
(obtained in Ref. [5]) is used.

Omega Exchange

In the simplest approximation, the omega has as its source the isoscalar current

j*(x) = q(x)y*q(x), which is six times the isoscalar electromagnetic current. We define two
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form factors, F (q ) and F (w)(qz), which are proportional to the isoscalar electromagnetic

form factors of the nucleon

<P+ 5,0 | GO0 | Prs. 1> = 6,8(F+ T HIVFig(g?)

(5.22)
& FD@u(p, 5)
my
Note that F (w)(O) 3 and that F. (w)(qz) is quite small and may be dropped.
Then, in analogy to Egs. (5.15) and (5.17), we define
2 A2 - m2 2
waBE([) _ g:NN wz » 1 - (5.23)
T A -t t-m,
= 2P on% @ (5.24)
and
NIL f(“’)( ) ) (5.25)
Ly @) = 0 OF .
Now
2 A2 —m2 2
R 1 (5.26)
f P20y = —
4T A2 m2
w w

so that, if we set jf BE(O) equal to ijJL(O), we have
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2 AZ 2 2 2
8wNN w My - 9gwqq (5.27)
47" A2 47r )

w

This equation is used to define the theoretical value for g,y in terms of g, gq- 1N empirical
OBE potentials [7] one has g2yy/47 = 20.0, A, = 1.5 GeV and m,, = 0.783 GeV. The
bosonization scheme, in conjunction with Fig. 6 and Table 1, shows that, if we choose
x = 0.22 GeV2, we have g2, /47 = 1.19. Then use of Eq. [5.27] yields gopy/47 = 20.2.
Thus, Eq. (5.27) is well satisfied when « = 0.22 GeV? and is satisfied to about 10 percent
accuracy if « = 0.20 GeV?. (See Table 1.)

NJL

When we compare the q* dependence of fQ)OBE(t) and f,"7(¢), we find that, if we write

2
WMLy Ny f;‘;)(f) (5.28)
? )\i ! téz)(O)

we would need to put A, = 0.93 GeV to obtain a very good fit for -g% < 2 GeV? [8].

However, since the electromagnetic form factors of the nucleon are of the dipole form, for

example,

.12 ] (5.29)

1 -
(0.84)? ]

we again see that the effective value of A, for a monopole form factor in our model is about

600 MeV, rather than the 930 MeV needed to fit waBE(t) over a broad range of spacelike values

of qz.
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Rho Exchange
In the simplest model of the rho-nucleon vertex, the rho has as its source the isovector
current j*(x) = g(x) 7“7q(x), which may be related to the isovector electromagnetic current

Jb.@ = q@®) 7“%q(x). We again define two factors:

<p+q, s, TP s, > = <t |7 t>u(p+q, sV FO @D

by " B (5.30)
LEP @ u(p,s)

my

+

with Fl(‘l’)(O) =1 and Fé‘;)(O) = 3.70. Our strategy will be to assume that Ff‘g)(qz) and
Fz(‘l’)(qz) have similar dependence on g2, so that we may write Fz(f)(qz) =310F 1(‘1’)((] 2y, With
that in mind, we will concentrate on the first term on the right-hand side of Eq. (5.30). In this

approximation, our study of rho exchange is similar to our study of omega exchange.

We define
2
2 2 2

FOBE(y - _ 8onn | Ay —m, 1 (5.31)

? dx A2 -t [ - m2

ol
_ fPOBE(O) hpOBE([) , (5.32)
and
0

JL Lag © () 5.33
0 = EFQ o ©-33)
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- Mo e (5.34)

We may obtain a theoretical value for ngN/47r by equating the amplitudes for ¢ = 0,

2 2.2 2 9
8o NN o~ My, - 8pqq (5.35)
4 A2 ar
p

where we have used the fact that F 1(‘1’)(0) = 1. To obtain gZMV/47r we proceed as in the case
of the omega meson and use the formalism of Section IV. Since we have set k = 0.22 GeV?,
we need values of f(p)(t) + Ii'(p)(t) for that value of x. Those values are exhibited in Fig. 7.

Requiring that m, = 0.770 GeV, we obtain G, = 7.12 GeV 2 from Eq. (4.5), and then use

2
1 _ 8pqq

G, - ® + Ry m,

(5.36)

This procedure yields gjqq/47r = 1.05. Then, the use of Eq. (5.35), with A, = 1.3 GeV,
yields g2yy/47 = 2.48, or g,y = 5.58. Finally, we obtain f,yy = 3.70 g,y = 20.6,
which is quite close to the empirical value used in the OBE model. For example, in Ref. [7]

we see that gp2NN/41r = 0.99, or gpojgﬁ = 3.53. Since the ratio ﬁ%/gﬁgﬁ = 6.1, we have

j;% = 21.5, which is close to the value of f yy = 20.6 we have found for in our model

when x = 0.22 GeV?2.

It should be noted that G, # G, in our model, since I%(p)(qz) is finite andl%(w)(qz) =0
to a good approximation. Therefore, the success in obtaining good values for both
gi wn/ 47 and fy for the same value of « is in part due to the importance of Iz(p)(qz) in this
analysis. We also remark that ngN/ 4 < goz, nn/ 47 in the OBE model, since the first of these
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values is close to 1 and the second is 20. Therefore, the fact that we overestimate gpzNN/41r by
about a factor of 2.5 (while obtaining a good value for f, ) may not be a particularly serious

problem for our analysis.

VI. Discussion

It is generally understood that the longest range part of the nucleon-nucleon interaction
is due to the exchange of the lightest meson in each channel. These mesons are described in the
extended NJL model and we have seen that the bosonized model provides a good account of the
nucleon-nucleon interaction for small momentum transfer. We also have the surprising result
that the amplitude describing pion exchange is well described in our model over a broad range
of momentum transfer. [See Fig. 10.] However, we do not know why our results for pion
exchange at large - q2 are so much better than our description of ¢, p and w exchange at large
- qz. It may be that the quark-quark 7 matrix is more adequately represented at large - q2 in
the case of the pion because of the pion’s small mass. That is, higher-mass pseudoscalar mesons
may be relatively less important than higher-mass mesons are in the other channels (p, 0, w).
It is possible that the consideration of the exchange of more massive mesons, or the calculation
of more complex diagrams, will improve our results for the short-range aspects of the
interaction.

We remark that another approach to the calculation of the nucleon-nucleon interaction

is based upon baryon chiral perturbation theory [12]. That formalism does provide a good fit

to the data; however, about 26 parameters are needed, including numerous contact interactions.
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Such an analysis is presumably more fundamental than that based upon OBE models, which
require the specification of about 10 parameters [7].

We may note that our work has provided a theoretical value for m, = 540 MeV. Inthe
OBE model, m, is put equal to 550 MeV and the 7, p and w mesons are assigned their
experimental mass. We have also provided reasonably successful calculations of
8xNN> 8oNN> 8wnn and fonn- However, there are still a number of additional parameters
needed: A,, A, A,, A, and g ny. We have seen how the empirical value of A, may be
understood in our model, when we take A from a QCD-based calculation. Therefore, after
adopting our theoretical results, there are still about four or five parameters that need to be
specified when attempting to fit nucleon-nucleon scattering data using the OBE model.
However, our analysis provides a significant reduction in the number of free parameters of that

model.
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Table 1.

Bosonization parameters for the omega meson, if the meson mass is fixed at
m, = 0.783 GeV and « is varied. From OBE studies one has
gi an/ 47 = 20 when AgBE = 1.5 GeV [7]. (The theoretical value closest to the

empirical value is found for x = 0.22 GeV?.)

(GeV?)

0.16
0.18
0.20
0.22
0.24
0.26

0.28

2 2
Gy 8ugq g:;q @ | Temg) g:?,w
(GeV?) (GeV?3) (GeV?)
I N R
7.10 3.39 0.917 0.0877 0.141 15.6
7.37 3.55 1.00 0.0872 0.136 17.1
7.62 3.71 1.10 0.0866 0.131 18.6
7.86 3.86 1.19 0.0861 0.127 20.2
8.08 4.01 1.28 0.0856 0.124 21.8
8.29 4.16 1.38 0.0852 0.121 23.4
8.49 4.31 1.48 0.0847 0.118 25.2
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

»

P

Figure Captions

The basic quark-loop integral of the NJL model is shown.

The function J S(qz) is defined by introducing a vertex (cross-hatched
area) for the confining interaction vC. See Ref. [10] for a detailed
discussion of the construction of such vertex functions.

The function K S(qz) is defined by the diagram shown. (See Ref. [9].)
The function ks(qz) is defined by including a vertex function for the
confining interaction (cross-hatched region). (See Ref. [10].)

The function Jp(f) is shown. Here ¢ = qz. The calculation is made by
using a Euclidean momentum space with Ag = 1.0 GeV. Here
m, = 0.262 GeV and Gg = 7.91 GeV 2.

The diagram on the left is the basic quark loop integral of the NJL model.
The propagators are Sg(p) = (B -m, + i)', where m q is the constituent
quark mass. The additional diagrams show the introduction of a confining
potential, ve.

A vertex function for the confining interaction (cross-hatched area) is
given by the equation shown [10].

Here the various terms summed in the equation depicted in (b) are shown.
The dashed line and the solid line for ¢+ < O denote the values of
J¢(#) calculated in a Euclidean momentum space with Ay = 1.0 GeV.
The solid line for ¢ > O represents the result of a calculation of Jg@ in

Minkowski space. There, a three-dimensional cutoff of A; = 0.702 GeV
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Fig. 5.

Fig. 6.

Fig. 7.

is used for all the momentum vectors in the integral. We use
xk = 0.2 GeVZ, m, = 262 MeV, Gg =7.91 GeV™2. Note that the
inclusion of the confinement vertex function would hardly affect the result

for t+ < 0.

The values of J(¢) are shown for three values of «.

a) k = 0.2 GeV?,
b) x = 0.3 GeV?,
¢) k = 0.4 GeV?.

The dotted line represents 1/G¢ = 0.126 GeV? and the intersections with
the solid lines represent the solution of the equation 1/Gg - J S(mg') = 0.

The values of J () are shown for three values of «.

a) k = 0.16 GeV?,
b) x = 0.22 GeV?,
¢) k = 0.28 GeV?,

The dotted line represents the value of mj = (0.783 GeV)z. The
intersections of the dotted line with the solid lines yields 1/G,, for the
various values of k. (See Table 1.)

The values of f(p)(t) + Re Ie(p)(t) are shown for various «.

a) k = 0.16 GeV?,

b) k = 0.22 GeV?,

¢) k = 0.28 GeVZ.

The dotted line denotes the value of mg = (0.770 GeV)z. The
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Fig. 8.

Fig. 9.

Fig. 10.

(a)

(b)
(©)

intersection of the dotted line with the solid line yields the value of 1/G,,.
Note that J (p)(r) =J @) (From our study of omega exchange we have
fixed k = 0.22 GeVZ.)

Values of Re Ie(p)(t) are shown for several values of «.

a) x = 0.16 GeV?,
b) k = 0.22 GeV?,
¢) x = 0.28 GeV2.

The nucleon-nucleon interaction in the boson-exchange model is set equal
to an interaction that is defined in terms of the quark-quark T matrix.
Leading diagrams in 1/n, are considered as discussed in Ref. [8].

The T matrix ¢, expressed in terms of the integrals J (f) and K(r) for the

99’
various channels, is used instead of the more general quark-quark 7" matrix
of Fig. 9a to obtain the nucleon-nucleon interaction.

Values of h;VJL(t) are given by the solid line and h;) BE(t) is represented

by the dotted line. Here A, = 0.80 GeV and AS”" = 1.3 GeV. [See

Eqgs. (5.3), (5.6) and (5.8).]
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