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SUMMARY

The properties of resonant, periodic structures 
are studied using an equivalent circuit representation. A circuit 
consisting of a chain of coupled resonators is chosen. The complex 
propagation constant for an infinite chain of resonators is derived, 
and the field in a finite length of structure is then obtained by 
summing a traveling wave which undergoes multiple reflections between 
the planes forming the end boundaries of the structure.

The analysis is applied to study the effect of loss 
and detuning in high Q superconducting structures operating in the 

 and  modes. It is shown that, even for the  mode, the effect 

of loss on the amplitude and phase of the field is in general 

negligible for the superconducting case. The effect of a badly 
detuned cavity is more serious. A principle conclusion is that, 
using a single cavity tuner located near the center of a Structure, 
it is difficult to achieve a reasonable tuning range in a -mode 
structure which is more than about 5 wavelengths long, or in a  / 2- 
mode structure which is more than about 25 wavelengths long, without 

badly perturbing the field flatness.

The properties of the -mode resonance are 
discussed in some detail. The somewhat complex behavior of this mode 
results from the fact that dispersion diagram and the attenuation 
as a function of phase shift per period change rapidly near the band 
edges. The group velocity and energy velocity are found to differ by 
a factor of two at the  -mode resonance. It is shown, however, that 
the group velocity as defined by d/d becomes meaningless at 
this mode.

The principle expressions obtained in this report 

concerning the effect of loss and detuning on field flatness are, 
for convenience, collected together in Table I, Appendix D.
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shunt susceptances.
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Fig. 5 Diagram showing the vector addition of traveling wave 
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suppressed.
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I. INTRODUCTION

Two quite distinct methods have been used to investigate 
the properties of resonant periodic structures. In the first method, 
the normal modes of the resonant structure are considered. The field 
profile (accelerating or deflecting field on the axis of the structure 
as a function of axial position) is obtained by an appropriate super­
position of the normal mode fields. The normal mode approach has 
been quite thoroughly exploited in a number of papers and reports 
(see, for example, Refs. 1-4). An analysis of this type is well 
adapted to the use of perturbation theory to consider the case when 
tuning errors are present in the individual cavities along the 
structure.

A second quite different approach can also be useful in 
the analysis of resonant structures. Consider a wave which is coupled 
through a small aperture into a periodic structure, and which travels 
along the structure in both directions away from the excitation point. 
If two reflecting planes are now inserted at appropriate planes of 
symmetry within the structure, the initial traveling wave will bounce 
back and forth within the resulting cavity formed between the planes. 
The wave undergoes attenuation and phase shift as the total distance 
away from the excitation point increases, but if the length of the 
structure between the reflecting planes is chosen correctly, the 
traveling wave will return in phase after each reflection, and can build 

eventually to a large amplitude. If the properties of the structure for 
the propagation of a traveling wave are known, the resonant properties 
can be obtained by summing the traveling wave components at any point 
in the structure. This infinite sum must take into account both the 

amplitudes and phases of the individual component and also the fact 
that some of the wave leaks back out of the coupling aperture each time 

it passes by.

From the nature of this approach, the resonant properties 
of a structure are seen to depend directly on the traveling-wave 
properties. Since the traveling-wave properties of a wide variety of 
structures have been extensively studied, this existing body of 
information can be applied rather directly to the study of resonant 

cavities formed from shorted sections of such structures.
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The traveling-wave approach to the analysis of standing­
wave structures has not previously been exploited to the same extent 
as the normal mode approach, and yet the traveling-wave view point 
has two rather considerable advantages. First, information concerning 
the transient behavior of the field during the filling of the structure 
is obtained as readily as the steady-state behavior. The process by 
which the field builds up to the resonant value as the sum of the 
traveling-wave components is simple and easy to visualize at each step 
of the way . This leads to the second advantage. The method can lead 
to some quite subtle results with a very minimum of mathematical complexity. 
A disadvantage of the traveling-wave approach is that it is not as well 

adapted as normal mode theory to consider the case when there are many 
perturbations present in the structure, although, as we will see in 
Sec. VI, the case of a single detuned cavity can readily be taken into 

account.

One of the main purposes of this report will be to investigate 
the properties of the -mode resonance in periodic structures, basing 
the development on the traveling-wave point of view. The term  -mode 
resonance will be used throughout, although, as is well known by now, the 
actual phase shift per period for this mode is slightly less than  if 
loss is present in the structure. The traveling- wave viewpoint provides 
a rather different physical picture as to how and why this phase shift 
arises.

It is of interest to investigate the  -mode because the shunt 
impedance is higher, and the peak electric and magnetic fields at the 
surface of the structure are lower for a given accelerating or deflecting 
gradient, than is the case for other modes well within the passband.

(*) This method for obtaining information concerning the transient 

behavior of the fields in a resonant structure has recently 
been exploited by Knapp[5]. By displaying the results in the form of 
a motion picture, the build-up of the field by the vector addition 

of successive traveling-wave components is clearly seen,

(**) For the case of a deflecting structure, this statement is valid only 
for small disk aperture diameters. As the aperture diameter increases, 
the peak magnetic field in such a structure increases rapidly for the 
case of the -mode .



- 3 -

The question of peak fields is of particular importance 
in the case of a superconducting structure. In such a structure the 
maximum gradient will be limited either by flux penetration in a 
region of peak magnetic field, or by electron emission in a region 
of peak electric field. If 77-mode operation is possible, the advantages 
of a traveling-wave resonant ring (traveling-wave accelerator with 
feedback) are largely obtained, but the problems involved in the 
construction of such a complex device are avoided. The phase and 
amplitude of the fields along a structure operating in the 77-mode 
are, of course, more strongly affected by perturbations in the 
frequencies of the individual cavities making up the structure than 
is the case for, say, the 77/2 mode. However, for structures which are 
not too long (roughly if the length is less than about five wave lengths) 
we will show that the difference between - and /2- mode operation 
is not overwhelming. Operation at the 77-mode resonance may then be the 
best choice when all factors are considered.

The philosophy of the present report may be summarized by 
saying that, if we want to understand a standing-wave structure, we 
must first know the behavior of a wave traveling on a infinite length 
of the same structure. Toward this end it is helpful to have an 
equivalent circuit which can accurately represent the behavior of 
physically real periodic structures. The choice of an appropriate 
equivalent circuit is considered in the next section.
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II. EQUIVALENT CIRCUITS FOR PERIODIC STRUCTURES

The key to the analysis to be carried out in the following 
sections is provided by a knowledge of the complex dispersion relation 
for a traveling-wave structure. A detailed knowledge of the dispersion 
relation near the edges of the passband is particularly important, if 
we are to understand the behavior of the 0 and  modes in a resonant 
length of structure. There are a number of models which can give a 
theoretical account of the propagation characteristics for periodic 
structures. In this section we look briefly at several such models, 
examine their limitations, and chose the most suitable one for 

detailed analysis.

A uniform transmission line periodically loaded by lossless 
shunt susceptances, as shown in Fig. 1a, would seem to be a reasonable 

 representation of a periodic structure, Several authors[7,8] give 
the dispersion relation for such a network. The result is

 (1)

Here Yo is the characteristic admittance of the unloaded transmission 

line,  is the length of one period, y = ß - ja is the complex 
propagation constant for the loaded line, and Yo() is the known 
propagation censtant for the unloaded line (complex for a lossy line). 

The traveling-wave fields then vary as exp [j(t - Yz) ] . If the lossy 
case is considered, the real and imaginary parts of Eq. (1) provide two 
equations for al and ßl . By eliminating a between thèse two 
equations, the dispersion relation is obtained. It is easily shown that 
Eq. (l) gives rise to the usual passbands and stopbands, and it is 
seen that as B approaches zero y passes over smoothly into Yo , 

as it must for a smooth guide.

The preceding approach can be made more general by using 
a more complex network to represent the discontinuities. For example, 
the effect of loss in the discontinuities can be accounted for by 
using complex shunt admittances. However, more fundamental limitations 
are encountered as the degree of loading becomes heavier. First, 
if the unloaded transmission line is capable of propagating in more 
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than one mode, the obstacles can couple power from the dominant mode 
into higher-order propagating modes. Second, and more important, 
the spacing between obstacles must be large enough to eliminate any 
interaction between the local non-propagating modes excited in the 
neighborhood of the discontinuities. This latter condition is most 
certainly violated in the case of the heavy loading normally used in 
typical disk-loaded structures. In order to get around these

[9] 
difficulties, Feuchtwang  has given a generalized method for 
analyzing periodically loaded waveguides based on a representation 
by N periodically-coupled transmission lines. In this approach the 
section of uniform waveguide is represented by N uncoupled transmission 
lines which take into account the dominate mode and N-1 higher-order 
modes, which may be either propagating or non-propagating. The 
obstacles are represented by 2N-port networks. The case far two 
modal lines loaded and coupled by shunt susceptances is shown in 
Fig 1b. The diagonal elements of the matrix B represent loading 
in the two lines considered separately. The off-diagonal elements 
may be interpreted as providing the coupling between the two lines. 
As loading becomes heavier, the number of model lines needed to provide 
an accurate representation of the structure increases, and the mathematical 
difficulty involved in obtaining a detailed solution also obviously 
increases. For this reason the method is useful in practice only for 
values of N equal to two or perhaps three.

In the case of very heavy loading an alternative description 
is possible which again leads to a simple method of analysis. If the 
loading obstacles close off the waveguide completely, the regions 
between adjacent obstacles form resonant cavities. If the cavities have 
a reasonably high Q and are excited in only a single mode, it is 
well known that the behavior of each cavity is adequately represented 
by a parallel resonant circuit. If small coupling holes are now opened 
up between the cavities, a series of coupled resonant circuits, as 
shown in Fig. 1c, provides an accurate representation of the resulting 
loading transmission line. This equivalent circuit has been used 
previously in the normal mode type of analysis[1-4] , and it is also

the circuit which will be used in the following section to obtain the 
complex dispersion relation for an infinite traveling-wave structure. 
Some qualifying remarks need to be made, however, about this particular 
representation. If the coupling coefficient k (where kL is the 
mutual inductance between adjacent circuits) becomes too large, that is, 
if the holes between adjacent cavities become large, the basic 
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assumption underlying the circuit shown in Fig. 1c is violated, 
and the model can no longer be trusted to give an accurate representation 
of the fields in a physical structure. In a way analogous to the case 
of the lightly loaded line discussed previously, the circuit can be 
patched up by introducing additional parameters. In this case, as k 
gets larger, additional coupling coefficients which take into account 
next nearest neighbor coupling can be introduced. Again, however, 
the mathematical complexity involved in analyzing the circuit is 
greatly increased. The complexity becomes overwhelming if still 
higher-order coupling parameters are required.

In this report we consider only the case for which a single 
coupling coefficient is sufficient. Without a much more extensive 
analysis, it is not clear in what detailed way the present treatment 
will break down as k increases due to the fact that higher-order 
coupling has been ignored. In any case, the results obtained can be 
considered valid in the limit as k approaches zero, and we will 
assume that applications of the results are meaningful up to k’s 

on the order of 0.03.
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III. DISPERSION RELATION FOR A CHAIN OF COUPLED CAVITIES

The dispersion relation for the chain of coupled resonant 
circuits shown in Fig. 1c has been derived previously (see for example 
Refs. 1-4). In this section we will review the calculation and 
extend it to obtain, in particular, the complex dispersion relation 
near the edges of the passband.

The circuit equation for the network of Fig. 1c can be 
written

(2)

We assume that the current in the nth circuit can be represented by a 
wave traveling in the direction of larger n and is given by

(3)

Here  is the periodic length and y = ß  .

The factor e is understood whenever it is not written 

explicitly. Since y is complex , there will be both a phase shift 
by an amount ß and an attenuation by an amount exp (-a) for a 
wave traveling through one period. It is assumed that the in's are 
proportional to the field at some arbitrary point in a given cavity, and 
that this point is identical from one cavity to the next. If Eq. (3) 
is used in Eq. (2) to eliminate i . and i . we obtain7 n-1 n+1

(4)

We introduce Wq = 1/(2LC), and Q = 2w0L/R is defined as the 
unloaded Q . By substituting y = ß - a into Eq. (4), and setting 
the real and imaginary parts separately equal to zero, we obtain the 
following pair of equations,

(5)
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(6)

As a tends to zero, Eq. (5) reduces to the usual dispersion relation.
For small k this can be written

(7)

We note that the preceding relation indicates propagation in a forward­
wave structure; propagation in a backward-wave structure can be taken 
into account by changing the sign of k . From Eq. (6) we see that 
away from the edges of the passband the attenuation will be small 
if kQ »1 . For small k we have also that w % w0 ,and therefore

(8)

Near the edges of the passband, where ßt approaches zero 
or  , the effect of attenuation becomes important even if the product 

kQ is large. Equations (5) and (6) are then coupled together and the 
dispersion relation becomes somewhat more complicated. By eliminating 
a between Eqs. (5) and (6) we obtain for the general case

(9)

In this expression the sign in front of the brackets in the denominator 
is chosen to be plus for 0 < ß < /2 and minus for /2 < ßl <  

for forward-wave propagation. If Q becomes infinite Eq. (9) reverts 
to Eq. (7), as it should.

In order to examine Eq. (9) in the neighborhood of the 
zero or  modes, we let ßl = A and  =  -  for the two cases, 
where  is small. We then obtain in the limit as A approaches 
zero,
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From Eq. (6) the attenuation parameter becomes in these two limits,

sinh al - 1/k (ßl -> )
sinh al -> l/(kQ2A2) ->  (ßl - o)

The variation of frequency and attenuation as a function of ßl is 
shown in Fig. 2.
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IV. FIELD PROFILE FOR A CHAIN OF COUPLED CAVITIES

IV. 1 . Derivation of the Field Profile Function

Now that the phase shift and attenuation per period have been 
calculated for a wave traveling on an infinite periodic structure, we can 
proceed as discussed previously to derive the properties of a resonant 
section of such a structure. The method is illustrated by the diagram 
given in Fig. 3. A structure of length L = N is excited by a wave 
of amplitude Ao launched at z = 0 . For simplicity the points 
z = n are taken to be at the center of each cavity. Two shorting 
planes have been introduced at planes of symmetry passing through 
cavity centers, and the two end cavities are therefore half cavities. 

The first few reflections of an initial wave launched at z = 0 are 
also shown in the diagram. For the moment we assume in addition that 
the coupling to the structure is very weak and that power re-radiated 
back out the coupling apperature need not be taken into account. Both 
the forward and reverse waves take the form of geometric series which 
are easily summed to obtain

The total standing-wave field is obtained by adding S+ and S , 

and with a little rearranging we obtain

Recalling that the complex propagation constant is defined by

Y = ß-ja, the preceding expression can be written in the form 
S = ANF(n)ejt where

(10)
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(11)

The attenuation parameter,  = Na , has also been introduced.
We note that the above summation has been written as the product of the 
amplitude of the field in the Nth cavity, A , and a field profile 
function , F(n), which contains the dependence of the field on n . 
The field profile function at n = N reduces to F(n) = 1 . The two 
expressions given by Eqs. (10) and ( 11 ) contain a wealth of information. 

The analysis to follow in this section, and in section VI for the case of 
a detuned cavity, will consist primarily in an examination of these two 
expressions under a number of different conditions.

An examination of the amplitude function for the case where 
t is not a rapidly varying function of ßl (i.e., for modes away from 
the band edges) shows that resonances exist when Nßl , the total phase 
shift through the structure, is equal to an integral multiple of  . 
In order to explore the amplitude function in the neighborhood of these 

resonances we introduce the phase shift parameter  , defined by

(12)

where q is an integer such that 0 < q < N . By substituting (12) 
into (10) we obtain for the amplitude function,

(13)

We now assume a high Q structure such that r » 1 . By differen­

tiating Eq. (7), using (ßl) = -A , we obtain
(w/w) = - (kAsin/) . From Eq. (8) we have that
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r  N(kQsin/?£) 1 . By eliminating ßl between these two results we 
find (away from the edges of the passband),

In the immediate neighborhood of a resonance Q (tw/w )  1 . From 
the preceding expression we see that the condition t  1 then 
implies NA « 1 near a resonance. Under these conditions Eq. (13) 
can be written

(u)

Substituting the preceding relation for NA in Eq. (14), we have

(15)

(16)

Equation (15) is the standard expression giving the variation in the 
amplitude and phase of the response of a resonant cavity as a function 

of frequency near resonance. Equation (16) shows that the field 
amplitude at resonance is enhanced over the amplitude of the initial 
traveling wave by a factor 1/t .

The field profile function near resonance is obtained 
from Eqs. (11) and (12) as

(17)

where we have from Eq. (8) that
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(18)

Equation (17) shows that in general there will be both an amplitude change 
and a phase shift of the field along the length of the structure as the 
result of loss.

The preceding development was carried through ignoring the 
effect of finite coupling to an external generator, and without 
specifically taking into account the effect of power transfer to the 
beam in the case of an accelerating structure. The effect of coupling 
can be considered by a straight-forward extension of the analysis, and 

this is done in Appendix A. The conclusion is that the field profile 
function is not changed by taking coupling into account, although the 

amplitude function now specifically involves the cavity coupling 
coefficient. The calculation of the effect of beam loading presents more 
of a problem. To a first approximation, however, the power transfer 
to the beam is ßc times as great as the power dissipation in the walls 
for a superconducting accelerating structure operating at maximum 
efficiency, where ß is the coupling coefficient as measured with the 
beam off. Thus if we use Q  Qo/ßc in the expressions developed so 
far containing Q , the behavior of a beam loaded cavity should be 
reasonably well represented in the steady-state condition at resonance. 
An exact analysis would involve adding a current generator to each separate 
resonant circuit in the chain of resonant circuits given in Fig. 1c, in order 
to take into account the voltage induced by the beam in each cavity.

IV.2. Field Profile for the /2 Mode

Consider now the case of the tt/2 mode at resonance.
Letting q = N/2 and A = 0 in Eq. ( 17), we have, using also the value 
of al as 1/kQ obtained from Eq. (18) ,

Under the assumption that r = N(kQ)-1« 1, we have for the fields in the 
first and second cavities, assuming also that N is even,
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(19a)

(19b)

We have ignored the sign of the fields with resuect to the field in the 
thN cavity, given by cos(N/2) and sin[(N-1)/2] respectively. Since 

F(N) = 1 , the first of these expressions shows that the field droop 
along the structure, defined as F = F(0)-1 , is

(20)

By comparing Eqs. (19b) and (20) it is seen that the field droop in the 

presence of loss is a second-order effect compared to the field 
introduced into the nominally unexcited cavities.

Consider the application of these relations to a super­
conducting structure 3 ni long operating at a wave length of 10.5 cm, 
giving N = 114 . If Q = 5 x 107 (assuming the case of an accelerating 

structure when the Q is dominated by power transfer to the beam), 

and if k = 2 x 10 2, then we calculate that F(1) ~ 10 4 and 
SF ~ 5 x 10 9 . Both effects are negligible, and for the case of a 
separator structure where there is no beam loading to contend with, 
the corresponding perturbations in the field profile are smaller still. 
For a room temperature structure, however, the quantity N(kQ) 1 can 
easily be of the order of unity.

IV.3. Field Profile for the v-Mode

Many of the results in the preceding sections are not valid 
for the 0 or 7T modes because the attenuation changes very rapidly 
in the neighborhood of the passband edges (see Fig. 2b). In this 
section we will limit the discussion to the case of the w- mode, and 
will show that the maximum response as a function of phase shift A , 
where A = Tr-ßl , occurs not at A = 0 , but at a phase shift per 
cavity which is slightly less than it , The basic method of solution 
is to maximize the amplitude A^ as a function of A , after having 

also expressed the attenuation r as a function of A . To simplify
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the problem we assume again that both the attenuation and the phase 
shift are small that is, r  1 and NA << 1 . If these conditions 
are not met, the concept of a resonance is not very meaningful. Under 
these conditions Eq. (18) is valid, and we have for q = N ,

(21)

Substituting this relation in Eq. (14) we obtain

(22)

Talcing the absolute value of this expression we find that

The value of A which maximizes this relation is readily found to be

(23)

From Eq. (21 ) we see also that

(24)

This can be compared with the attenuation for the case of the /2 mode 
obtained from Eq. (8) as r = N(kQ) 1 . The relative values for the 
attenuation in the two modes is shown qualitatively in Fig. 2b.

The preceding derivation was based on the assumption that both 
t and NA are small compared to unity in the neighborhood of the it mode 

resonance. From Eqs. (23) and (24) these aseumptions are seen to he 
valid if



- 16 -

Using the fact that t as given by Eq. (21 ) must be small compared.
to unity, we have the following conditions on A in the neighborhood of 

the 77 mode resonance,

(25)

The amplitude of the tt mode resonance can now be calculated 
from Eq. (22) as

3y comparison with Eq. (16) we see that the phase of the 77-mode 
resonance is shifted by 45° with respect to the response for modes 
within the passband. In addition, the absolute value of A^w) is 
|än() | = (1/) (An/r) . The amplitude of the 77-mode response is 
therefore lower by a factor 1/ for a given excitation level at the 

coupling aperature. This difference in response between the 77-mode 
and other modes within the passband can be observed experimentally by 
a swept-frequency display of the modes of the structure.

The field profile for the 77-mode resonance can be 
investigated by letting q = N in Eq. (17) using also al = (kQ) 

and A = (kQ) . The result is

This can be approximated by

(26)

The field is seen to change in both phase and amplitude as n varies 
from 0 to N . The total phase shift 0 is obtained from the
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imaginary part of the above expression at n = 0 ,

(27)

This is identical to the result obtained using the normal mode analysis. 

By taking the absolute value of Eq. (26) at n - 0 we calculate the 

droop in the amplitude of the field as

(28)

Thus the field droop is seen to be a second-order effect compared to the 

phase shift.

Consider now the implication of these relations for some 
typical structures. A superconducting structure 3 m in length operating 
in the n mode near 2850 MHz has about 57 cavities. If k = 3 x 10 2 
and if the beam-loaded Q is 5 x 107 , then Eq. (27) predicts a total 
phase shift of 2 x 10 3 radians, which is quite tolerable. For the case 
of a separator structure, or at lower frequencies, the phase shift is even 
smaller. According to Eq. (28), the field droop is completely negligible. 
For a room temperature structure the situation is radically different. 
For Q - 104 and k = 10 2, the phase shift is on the order of unity for 
a structure only 10 cavities long.

From these examples it might appear ‘that v-mode operation is 
feasible for a superconducting structure several meters in length, even 
at S-band frequencies. We will see in Section VT , however, that the 
effect on the field profile produced by a perturbation (detuning a cavity) 
imposes a much stricter limitation on the length of a structure, expressed in 
number of cavities, than does the effect of loss as calculated in this 

section.
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V. _ THE DISPERSION RELATION AND MODE SPACING- NEAR THE 77- MODE 

RESONANCE

V.1. Dispersion Relation
We have shown that if (kQ) » IT, then a 77-mode 

resonance exists at a frequency such that the phase shift per period 
for a wave traveling on an infinite structure is A - (kQ) less 
than 77 • Next we investigate the behavior of the dispersion 
relation in the immediate vicinity of this resonance. If we expand 

Eq. (9) in the neighborhood of the 77-mode resonance using the fact that 
kQA » 1 , as given by Eq. (25), and that kQA2 ~ 1 , we obtain

(29)

The denominator of this expression is accurate to within 
a term of order k/Q . The frequency of the ir-mode resonance is, then, 
very closely the same as that expected in the case of a lossless 
structure.

V.2. Phase Shift and Frequency at the q = N-1 Resonance

The phase shift per period in the neighborhood of the 

mode closest to the it mode (q - N-1) is obtained from Eq. (12) as

If N is large, then /N << 1 and sinßl  A+77/N . Assuming as 
usual that al << 1 , Eq. (8) now gives
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After substituting this expression in Eq. (14) and optimizing the 
amplitude with respect to A , we find that the phase shift at 
resonance is not quite zero. This small residual phase shift, 
denoted by A^ , is the solution to

The residual phase shift will be small compared to the mode spacing, 
that is , r « tt/N . If we use this approximation together with 
the preceding expression for r , we obtain

Thus resonance occurs essentially at A = 0 , as compared to the 
case of the  mode, if  «  . If a similar derivation is 
carried through for the /2 mode, the result is that A = 0 . This 
is a direct consequence of the fact that t as a function of ßl 
has a minimum at ßl = /2.

The frequency of the q = N-1 mode is obtained by 
substituting ßl = (N-1 )/N in Eq. (7), again assuming 
/N « 1 , to obtain

(30)

V. 3 . Mode Spaci ng

The frequency difference between the tt mode and the next 
nearest mode for the case of large N is obtained directly from 
Eq. (30) as

(31)

It is of interest to compare this value for the mode spacing with 
the bandwidth at resonance, (/w)^ = 1/Q . The ratio of the two 

quantities is
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Using Eq. (24) for the attenuation at the  mode we have

If the concept of a resonance is to be meaningful, then t «  
ano. the bandwidth will necessarily be small compared to the mode 
spacing. For the case of the w/2 mode it is readily shown that

(32)

The ratio of bandwidth to mode spacing is

Again, the condition that the bandwidth should be small compared to 
the mode spacing is equivalent to the condition that the total one­
way attenuation along the structure should be small. If the cavity 
is heavily overcoupled, then Q ~ Qo/ß and the condition rß « 1 
must be met in order to insure that the bandwidth remains small 

compared to the mode spacing.
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VI. EFFECT OF A DETUNED CAVITY ON THE FIELD PROFILE

VI.1. Derivation of the Amplitude and Field Profile Functions

If there is more than one resonant structure in a super­
conducting linac or senarator system, it will be necessary to 

introduce tuning devices so that the resonant frequencies of the 
separate structures can be accurately matched to within a small fraction 
of the loaded Q bandwidth. One method for accomplishing this is 
to adjust the frequency of a single cavity in the structure by a tuner, 
which will also shift the resonant frequency of the structure as a whole. 
The tuning range for the complete structure will then be roughly 
1/N times the tuning range of the individual tuned cavity, where 
N is the number of excited cells in the structure. It is important 
to investigate the effect of this tuning process on the field profile; 
in particular we will be interested in comparing the effect for the 
w/2 and tt modes. It will also be of interest to compare the results 
with those obtained using the normal mode approach.

The effect of a tuner on the field profile will depend in 
general on the location of both the feed point and the tuner. For the 

purpose of the calculation to be made here, the simplest situation is 

to assume that both the feed point and tuner are located in an end 

cavity of the structure, although fron the method of analysis it is 
easy to see that if the feed point and tuner are located in a cavity 
close to the center of the structure, the resulting perturbation 
in the field, profile will be smaller. To begin with, however, let us 
consider the simpler situation as shown by the diagram in Fig. 4. 
Both the feed point and tuner are assumed to be located in the initial 
half-cavity (n=0). Assume also that the effect of the tuner is to 
lengthen the one-way phase shift through the cavity by an amount 
<p/2.

If the forward and reverse traveling waves are separately 
summed and then added, as in the earlier analysis, the total field 
obtained for the nth cavity is
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This is the same result as obtained earlier in Section IV,1 except 
for the phase factor  . By introducing the complex propagation 

constant y= ß~ we again write the above expression as the product 
of an amplitude function at n = N and a field profile function in the 
form S = A^ F(n) ejWt . The field profile function turns out to be 

the same as that obtained before in Eq. (11 ), and the amplitude function 
is now given by

(55]

From the amplitude function it is seen that resonances occur (away from 
the passband, edges) when 2N/3£+<p = 2q , or

(34)

where

The basic assumption implicit in this model is that all of 

the cavities except the one with the tuner are tuned to precisely the 
same frequency. Thus at resonance a phase shift -<p/2 is distributed 
equally among all the other cavities, giving a phase shift -q/2N 

per cavity.

VI.2, Effect of Detuning for the Case of the /2 Mode

The field profile for the /2 mode at resonance is now 
calculated by letting q = N/2 in Eq. (34) and substituting the result 
in Eq. (11). Let us compute the effect first for the lossless case. 
The result is

Assuming that Ao is small, we have for the fields at n - 0 and 

n = 1 , using also the fact that N is even,



- 23 -

In these expressions we have ignored the sign of the field, which 
is given by cos (Ntt/2) and sin[(N-1)(w/2)] for the two cases.
By differentiating Eq. (7) we can relate the phase shift Ao to a 
frequency shift Sw using the fact that 8(ßt) = - Ao ,

(35)

For the tt/2 mode we have Ao = -2 (Sw/w) k 1 and the preceding expressions 
for the fields in the first and second cavities give, again ignoring signs 
and introducing SF(O) = 1-F(0),

(36)

(37)

It is interesting to consider these relations in terms of the mode spacing 

in the neighborhood of the tt/2 mode, giving by Eq. (32) as (/w)^ = 
kv/2N . Thus if the frequency shift is to be kept small compared to the 

mode spacing, then necessarily F(O)«F(1). But the same condition also 
imposes the limit F(1) « 1 . The condition that the field in the 
unexcited cavities must remain small compared to the field in the excited 
cavities is equivalent to the condition that the change in frequency produced 
by detuning a cavity must be kept small compared to the mode spacing.

The principal result of detuning a cavity in a tt/2 mode structure 
is therefore to introduce field in the nominally unexcited cavities. The 
biggest effect is in the cavity next to the detuned cavity, and the effect 
decreases linearly in going toward the end of the structure. From the 
method of analysis it is readily seen that the effect of a detuned cavity 
will be less if the cavity is located near the center of the structure. 
From symmetry considerations the effective length of the structure is then 
only n/2 , so that Eq. (37) becomes, assuming large N ,
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(38)

Equation (38) differs by a factor 4/tt from the result obtained by 
SmithJ^ , who has applied first-order perturbation theory to the 

normal modes of the network shown in Fig. 1c.

It is easy to extend the calculation to the case of a 
lossy structure. The result is

If we again express Ao in terms of 8w , and assume N >> 1 , 
NA0 « 1 ,and N/(kQ) « 1 , we obtain

(39)

(W)

For 8w = 0 , these relations reduce to case of no detuning as given 
by Eqs. (19a) and (19b), while if Q approaches infinity we obtain 
the result of Eqs. (36) and (37) . The relative sizes of the terms 
in Eqs. (39) and (40) depend on whether the frequency shift involved 
is large or small compared to the bandwidth. Normally we will be 
concerned with the case in which (8w/w) >> 1/Q . Under this condition 

the first term in the brackets of each expression is seen to be 
dominant, and the effect of loss can be neglected.

These results can be applied to calculate the perturbation 
produced when we attempt to tune a superconducting structure by means
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of a tuner located, in a single cavity. Assume a structure 3 m in length 
operating at X = 10.5 cm (N = 114) - The structure can probably be 
tuned, at room temperature to an accuracy of perhaps one part in 105 . 
There may also be variations in relative contraction when different 
structures are cooled to liquid helium temperatures. If these variations 
are on the order of 0.3 % of the total frequency shift on cool-down, 
a frequency uncertainty on the order of one part in 105 is again 
indicated. To allow a margine of safety, chose a tuning range 
Sw/w = 3 x 10 5, Then from Eq. (38), assuming mid-structure tuning, 
we calculate that F(1) % 0.11 for k = 3 x 10 2 . Thus for this 
example the loss in the nominally unexcited cavity is about 1 % of the 
loss in an excited cavity. In addition there may be a multipactor 
problem at this field level, especially for the case of a biperiodic 
structure where the unexcited cavities are reduced in length. Tn 
summary, the problem of tuning a long superconducting structure is a 
serious one, and it may be difficult to accomplish with a single-cavity 
tuner.

VI.3. Effect of Detuning for the Case of the 77 -Mode

We must investigate the dependence of the field profile 
function on phase shift in the neighborhood of the 77 -mode resonance. 
Substituting ßt, = - in Eq. (11) for the case n = 0 , and 
using a % l , as obtained from Eq. (l8), we have

F(0) = cos(NA)cosh(N/kQA) -j sin(NA) sinh(N/kQA ) .

For convenience we introduce a new phase shift parameter x defined as

x = k0 2 . (41)

Thus if x = 1 , A = A where A is the phase shift per cavity 
calculated previously for the unperturbed 77-mode resonance. Now 
introduce the parameter x in the preceding expression for F(0) 
and then expand carefully including all terms to the order of 
N4/k2Q2 (assuming x is of the order of unity). We obtain
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For the case x = 1 this reduces, as it should, to Eq. (26) 
with n = 0 . The field droop and phase shift are obtained from 
the absolute value and imaginary part of the preceding expression,

(42)

(43)

We must next relate the phase shift parameter x to a frequency shift 
from the unperturbed 77-mode resonance. If we introduce the phase 

shift parameter, Eq. (41), into the dispersion relation in the 
neighborhood of the 77 mode, as given by Eq. (29) , we obtain

Using this expression in Eqs. (42) and (43) we have,

(44)

(45)
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For Sw = 0 , these expressions reduce to Eqs. (27) and J28) obtained 
previously for the unperturbed case. It is of interest to compare the 
terms in these relations under various limiting conditions. Let us 
assume that 8w is large compared to the bandwidth of the resonance, 
but small compared to the mode spacing. Recall al so that we are 

assuming r « 1 . Then from Eqs. (24) and (31) we have the following 
inequalities.

Using the second inequality, we see from Eq. (45) that the effect of 
detuning does not increase the phase shift along the structure 
appreciably over that already present because of loss. From Eq. (44) 
we see that the quadratic term in w is small compared to the 
linear term because of the first inequality above. The third term is 
small compared to the first term because of the first and third 

inequalities. Finally, the first term of Eq. (44) is large compared to 

the dominant term in Eq. (45). Thus when a detuned cavity is present, 
such that the detuning shifts the frequency more than a bandwidth, the 

perturbation of the field profile is a more significant effect than the 
phase shift due to finite attenuation. We have then for this case

as the principle result of the calculation. From the second inequality 
above we see also that F « 1 is equivalent to the requirement that 
the detuning be kept small compared to the mode spacing. Recall that for 
the /2 mode this same condition on allowable detuning resulted in 
F(1) « 1 . From the normal mode view point, distortion of the field 
profile arises because of the mixing of normal modes coupled together 
by the perturbation. The effect is expected to be proportional to the 
ratio ( Sw)/(8w)^g, with only a numerical constant in doubt.
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For the case when the detuned cavity is close to the 
mid-point of the structure, N can be replaced in the preceding 

relation by N/2 to give

(46)

This differs from the result obtained by Smith by a factor 8/2 .

The important result given by Eq. (46) is that the perturbation 

in the field profile varies as the square of the number of cavities for 

the case of the it -mode resonance. This is in contrast to the casecf 
the tt/2 mode, where the dependence of the perturbation on N was 
linear. It is interesting to compare the two cases for a structure of 
given length. If is the number of excited cavities (or the number 
of half-wave le ng ths) in the structure, then from Eqs. (38) and (46) we 
have

Thus for a structure with N = ^0 (L - 5X ) , the tt mode is worse than 
the tt/2 mode by only a factor of 2.5 • For relatively ''hort 
structures then, the advantages of the tt/2 mode are not over­

whelming with regard to sensitivity to tuning errors.

As an application of Eq. (46), consider a structure 10 
cavities long having k = 3 x 10 2o These are roughly the parameters 
chosen by Carne, et al., for a 77-mode superconducting deflecting 
structure under consideration at the Rutherford High Energy Laboratory. 
If the frequency is to be pulled by Sw/w = 3 x 10~5 by a tuner located 
in a central cavity, the field droop will be about 5 which seems 
quite acceptable.

As another example, choose a structure with L - 3m,

k = 3 x 10 2 and X = 10 cm. The droop will be of the order of unity 
for Sm/w = 4 x 10 6 . Thus 77-mode operation appears to be ruled oui 
for structures having the length and frequency contemplated for a 
superconducting separator at CERN.

As a final example we compute the field droop expected 

for N = 20 , k — 0 2 ? and Sw/(1) — 10 6 , The result is D - 2 % . 
This agrees with the result of a computer calculation carried out by
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Smith , using perturbation theory, for the same parameters. Y.’e also 
note from Smith’s calculation that the droop is indeed reduced by a 
factor of four if the tuner is moved from the end of the structure to 
the center.

VI .4. Concluding Remarks on the Effect of Loss and Detuning

In the preceding analysis several loose ends have been left 
hanging. These are gathered up in the Appendices. In Appendix A the 
effect of finite coupling to an external generator is considered. In 
Appendix B the calculation of the effect of loss and detuning is repeated 
for the case of a tt/2 mode structure terminated in full end cells. In 
this situation each cell in the structure is equally excited in the 
absence of loss or detuning. There is, however, no reduction in the 
sensitivity to the effect of a tuning error. The perturbation in the 
field of the cavity next to the detuned cavity is identical to that given 
by Eq. (38) for half end cell terminations. In Appendix C the effect 
of arbitrary tuner and feedpoint locations is considered. In Appendix D 

results are given for the effect of loss and detuning in the case of an 
arbitrary mode.

The simple traveling-wave analysis used in this report 
probably cannot be persued much further in the investigation of the 
effect of perturbations on the field profile. In particular, the case 
of a structure with random tuning errors in the individual cavities 
is undoubtedly better studied by a normal mode analysis such as that 
carried out by Smith such an analysis the mathematics becomes 
quite complex however and it is necessary to use a computer to obtain 
detailed solutions.
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VII. GROUP VELOCITY AND ENERGY VELOCITY AT THE  -MOD RESONANCE

VII. 1. Calculation of v and v----------------------- ----------------g E

The group velocity is given by definition as

In the neighborhood of the -mode resonance Eq. (29) can be 
differentiated to obtain v . The result is

g

At the 77 mode resonance kQA2 = 1 and the preceding relation gives

(47)

Well away from the 77-mode, Eq. (7) is valid and we obtain by 
differentiati on,

(48)

The group velocity at the tt/2 mode is therefore

Another useful relation valid at the tt/2 mode is

where v is the phase velocity. The ratio between v at the w and 
P g

77/2 modes is
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The velocity for energy propagation is obtained from power 
flow considerations. The energy velocity is defined by Vg = P/w , 
where w is the stored energy per unit length and P is the pcwer flow. 
The Q is defined as

The energy velocity then becomes v-g = w/(2aQ). Combining this expression 
with Eq. (8) for the case al « 1 we have

(49)

This is identical, in the limit of small k when w * w0, to the group 
velocity as given by Eq. (48) for modes away from the ends of the passband.
However, at the w-mode resonance sinßl  ^ = (kQ) and Eq. (49) becomes

(50)

By comparing Eq. (50) and Eq. (47) we see that there is a factor of two 
difference between v and v at the 77-mode resonance. In the next g E
section we will show that we should not necessarily expect agreement 
between v and v„ for this mode.g E

VII.2, Breakdown in the Meaning of v^ near the  -Mode Resonance

For the case of a lew-loss, dispersionless structure, 
dw/d/9 defines the velocity of propagation of a wave packet in. an 
unambiguous manner. It is then reasonable to identify the energy transport 
velocity, v-g , with the group velocity. However, if the structure has an 
attenuation v:hich is varyin- rapidly as a function of the propagation 
constant, that is if da/dß is sufficiently large, then the waves 
composin the packet will be attenuated at significantly different rates 
and the packet will distort rapidly. Likewise, if the group velocity 
is varying rapidly as a function of propagation constant, that is, 

if d2<y/d/?2 is sufficiently large, then waves within the packet will be 

traveling at significantly different velocities and again the packet will 
undergo rapid distortion. In either case, it is no longer clear how to



- 32 -

associate energy propagation with the motion of the packet.

Let us apply the first criterion for distortion, namely large 
do/dß , to the case of propagation at the v-mode resonance. Specifically, 
we expect a breakdown in the identity of v^ and v^, when the component 
of the packet with propagation constant ß + 8ß is attenuated by a factor 
e with respect to the component with propagation constant ß in moving 
through a distance SL, where 8ß is the range of wave numbers in the 
packet and SL is the spatial width of the packet. If a is the attenuation 
parameter at propagation constant ß , and if a + See is the attenuation 
parameter at ß + 8ß , then the ratio of attenuation for the two 

components in moving through a length SL is

The condition for which the packet distorts badly in moving through its 
own width is then

(51)

Far a wave packet with spatial extent SL , transform theory

states that the packet must be composed of waves with a range of wave 

numbers 8/3 such that

(52)

By combining Eqs. (51 ) and (52) we obtain as the condition for 
breakdown that

(55)

We can approximate this condition by dce/d/3 and apply it to the case 
of the vr-mode. From Eq. (21 ) we have c = (kQA) 1 and
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However, the condition for the -mode resonance is just that 
kQA2 = 1 , pnd therefore da/d/? = 1 .

Thus the breakdown condition as given by Eq. (53) is 
fulfilled at the 77-mode resonance. In the neighborhood of this 
resonance a wave packet diffuses as rapidly as it propagates, and 
the concept of group velocity as given by dw/d/? is meaningless. The 
factor of two difference between v and v„ for this case should notg E 
therefore be cause for concern.
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APPENDIX A

The Effect of Coupling to an External Generator

In Fig. 5 the traveling wave analysis is extended to the case 
of a structure coupled to an external generator. We assume that the 
coupling network is lossless, and that it reflects a fraction s of a 
unit incident wave. Planes A and C represent reference planes in the 
input transmission line and in the structure itself. Reference plane 
A is chosen such that the reflected wave is exactly 180° out of 
phase with the incident wave (i.e., it is at a voltage minimum). 
Reference plane C is chosen such that there is exactly a 180° phase 
shift between the incident wave at A and the transmitted wave at C . 
Plane C is also identical to the plane z = 0 in the previous analysis 
(see Fig. 3). As far as the present analysis is concerned, the coupling 
network can be a ’’black box’’ as long as these conditions defining the 
reference planes are met. The situation can, however, be described 
in more physical terms by considering the specific case of a small 
lossless inductive aperture located at plane B . A vector diagram 
showing the phase relations between the incident wave, E^ , the 
reflected wave, E , and the transmitted -nave, E, is given in Fig. 5 
for this case.

In calculating phase changes using this diagram the convention 
is used that motion, at a fixed time in the same direction as a wave is 
traveling, is represented by a clockwise rotation of the phase vector 
through the appropriate phase angle. Thus the relative phase shift 
between the incident and. reflected wave in. going from /' to B and back 
to A is 2?r-0 , which is seen from the vector diagram to be just the 
amount required to make E^ lie at an angle of 77 with respect to

E^ . The asymmetry in the location of plane B is due to the fact 
that we are considering the case of a wave with maximum magnetic field 
at A and maximum electric field at C • Stated another way, there 
is a 77 phase shift in the phase of the electric field for 
a wave reflected at plane A , but no phase shift upon reflection at 
plane C .

Consider first the reflection coefficient, P , in the input 

transmission line. The waves at plane A traveling back toward the 
generator are readily summed to obtain
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Let us examine this expression in the neighborhood of the qth 
resonance by letting ßl - qw-A . Under the assumptions also that 
t « 1 and s % 1 , the preceding expression becomes

(A. i )

where we have also introduced the definition of the normalized impedance^ 
Z , terminating the transmission line. The load impedance at plane A 
is given therefore by

f <->■.

In Sec. IV- it was shown that the phase shift A can be related 
(away from the band edges) to a frequency difference 8cd by

0.3)

Let us also define a coupling coefficient by

(A.4)

Introducing Eqs. (A.3) and (A.4) in (A.2) we obtain

This is seen to be the standard expression for the impedance of a 
resonant cavity terminating a transmission line. From Eqs. (A.1) and 

(A.4) we see that if the cavity is critically coupled, that is if 
ßQ - 1, then the reflected wave is zero at resonance.
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The field at any point within the structure is also obtained 
by adding together the sums of the forward. and reverse waves. r”he 
result can again be written in the form S - A^Ffn) The
field prof ils function is the same as that previous obtained 
in Eq. (1"1), while the amplitude function for the present case 
becomes

Using again the approximations r « 1 and s % I , this reduces to

Introducing Eqs. (A.3) and (A.4) in this expression we have

(A. 5)

where the loaded Q is defi ned as - Qo /C+Z?C) • This relation 
shows that the amplitude of the field has the expected variation 
as a func i ion of frequency near resonance, and the usual dependance 
on cavity coupling coefficient. We have also shown explicitly 
in Eq. (A.4) how ß depends on the reflection coefficient of the 
input iris °nd on the attenuation along the structure. Te see also 
that the field is enhanced by a factor l/r2 by resonance. The 
amplitude of synchronous wave, S is only cne-half of the 
amplitude of A^ .
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F(n) = -sin(N-n) it = 0 *

The field is identically zero in each cavity, and there is therefore 
no 7i mode for a structure with full end cells. There are not N+2 
resonances, as we would expect from Eq. (B.1), but only N.».1 
resonances. This is also just equal to the total number of cells in 
the structure.

Consider next Eq. (B.2) for the tt/2 mode in the limit of 
zero loss. We have

F(n) = (l/,/2) jcos[(N-n)7r/2]-sin[(N-n)7r/2] J .

The excitation of the cavities is seen to be uniform along the structure, 
varying as +1 , +1 , -1 , -1 , etc. and there are no unexcited cells. The 
field profile appears, in fact, to be identical with that of the it -mode.

Next let us consider the case of the tt/2 mode when loss is 
present. From Eq. (B.2) we obtain, again using a ~ 1/kQ and the fact 
that N must be odd to have a tt/2 mode,

We see that the field droop is a second order effect compared to a 
phase shift along 'the structure. This is similar to the case of the 
7r-mode in a structure terminated in half end cells, except in the 
present example the phase shift is linear in n . It is, in fact, 
of interest to compare power transfer for the two modes in more detail. 
It can be shown that the power transfer between the nth and (n+l)th 
cavities is proportional to ImjF(n)F*(n+1 ) j, where the asterisk 
denotes the complex conjugate. In the present case we have that 

F(0) ~ 1-jS0 and F(l) ~ 1+j5i , and the power transfer is therefore 
Poi ~ (30+Sf) ** 2N/kQ. A similar calculation for the case of the 

77-mode shows •that Poi ~ (So“Si). Thus power transfer is only propro- 
tional to the difference between the imaginary components while for the 

tt/2 mode it is seen to be proportional to the sum. The fact that for 
the 77-mode the power transfer is only proportional to the difference
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APPENDIX B

Analysis of a Structure Terminated, in Full End. Cells

In Fig. 6 a diagram is given showing a traveling wave
analysis for the case of a structure terminated in full end cells. By 
caiiparing this diagram with Fig. we see that the expressions obtained 
previously for the case of termination in half end cells will be valid 
if the following substitutions are made :

n n + l/2

N -» N + 1
N-n -> N-n + 1/2

The amplitude function becomes, upon making these substitutions in 
Eq. (10) .

Resonances are seen to occur when

(B.1)

The field profile function is given as F(n) = cos y£(N-sà+j!/,2*z- j 

uhich can be expanded as

Let us first examine this expression in the limit of zero loss 
for the 77 and 77/2 modes. Setting ßl - 77 we find
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between the phase shifts in neighboring cells leads directly to the 
n2 variation in phase shift. Although the field profile for the 77/2 mode 

with full end cells is apparently identical to the v-mode field profile, 
the way in which power transfer occurs is seen to be quite different.

The effect of detuning in the case of a structure with full
end cavities can be calculated by substituting ßl = (w /2)-A in
Eq. (B.2). The field in the first cavity for Na£ << 1 and NA << 1 
is

(B.3)

We again express the phase shift in terms of a frequency difference 

at the w/2 mode using Eq. (35) to obtain,

We see also that if Q (Sw/w) = kQA/2 is large, that is, if the 
detuning is large compared to the bandwidth, then A » 1/kQ and 
the imaginary part of Eq. (B.3) can be neglected. Thus we have

(B-4)

for the unflattening of the field resulting from a detuned end cavity. 
Equation (B .4) can be compared to Eq. (37) for the case of a structure 
terminated in half cells. The magnitude of the field error is the same, 
but in the present case it exists as a linear slope on the excitation 
of all the cells along the structure. In the former case (half end. 
cells) it will be recalled that the result was a linearly rising 
excitation of the nominally unexcited cells of the structure.
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APPENDIX C

The Effect of Detuning and Loss for an Arbitrary Location of Feed- 
Point and Tuner

In Sec. VI.1 the calculation concerning the effect of 
detuning was carried out for the case when both the tuner and the 
feedpoint are located in an end cavity. It was then argued, from 
a consideration of symmetry, that if both the tuner and feedpoint 
are moved to the center cavity, it is only necessary to replace N 
by n/2 in each expression.

The case in which tuner and feed point are located at 
opposite ends of the structure is also easy to calculate. If we 
use the method outlined in Fig. 4 but with the phase error cp/2 
located in the Nth cavity, the result for the field profile function 
is

(C.1)

where A = cp/2N . Far the w/2 mode in "the limit of zero loss
this becoues

(C.2)

This car be compared with the result obtained with a tuner located 
at n = 0 (see Sec. VI.2),

(0.3)

By comparing Eqs. (0.2) and (C.5) we see that n is replaced by
N-n in the error term of the second expression. The effect in both 
cases is to introduce a linearly rising field in the unexcited cavities, 
but with opposite slope. That i°, the field error is maximum in the 

unexcited cavity nearest the tuner, and falls linearly to zero in
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moving toward, the opposite end. of the structure. From Eq. (C.1) we 
see also that if the detuning error is zero, the field profile function 
reverts to that given by Eq. (11 ), and the field profile is then 
determined only by the location of the feedpoint, As discussed 
previously, the effects of loss and detuning on the field profile 
are comparable when (Sw/w) % 1/2Q , For a detuning which is 

small compared to the bandwidth, the location of the feedpoint plays 
the dominant role. If the detuning is large compared to the band­

width, only the location of the tuner is important.

We have calculated the results for tuner and feedpoint 
locations which are either at the center, at the same end, or at 
opposite ends of the structure. The results for an intermediate case 
can be estimated from the limiting cases discussed here.
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APPENDIX D

Effect of Loss and Detuning for other Modes, arid. Summary of Results

The various relations which express the effect of loss 
and detuning on the field profile are scattered throughout the 
text. It is useful to collect the~e relations together so that 
comparisons may be more readily made. In addition, the analysis 
has been carried out only for the tt/2 and it -modes. Other modes 
may also be of interest. The remits for the general case are 
easily obtained by using

in Eq. ( 17) for the field profile. A summary of results for the 
general case, for the w mode, and for the w/2 mode with both 

boundary conditions is given in Table 1 . Since we are normally 
interested in a given length of structure, rather than in the number 
of cavities, the results have been written explicitly in terms of L. 
All of the expressions given are valid for the case when both the tuner 
and the feedpoint are located in a central cavity. If an end cavity 
is used for either feeding or tuning, then L must be replaced by 
2L. In addition, the relations are valid in the limit when N is 
large. In the expressions listed for the general case, a parameter 
Ni has been introduced, where N< = 2w//?£ is the number of cavities 

per wavelength. Recall also that SF(O) gives the relative change in 
the field in the cavity containing the tuner or feedpoint, while 
SF(l) refers to the field in the adjacent nominally unexcited cavity 
for the case of the w/2 mode structure terminated in half end cells.
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TABLE I

Summary of Results on the Effect of Loss and Detuning

Losses dominant
2Q ( /) « 1

Detuning Dominant
2Q (/) » 1

/2 mode with half end cells

8F(0) =
SF(l) =

2(L/X) 2(l/kQ)2
2(L/X)(l/kQ)

SF(O) =
SF(1) =

8(L/X)2(l/k)2(6w/w)2
4(L/X )(l/k)(8a/oi)

tt/2 mode with full end cells

sf(o) = 2(L/X)a(l/kQ)2 SF(O) = 4(L/X)(l/k)(3m/w)
e (0) = 2(L/X)0/kQ) 9 (0)

77 mode

8F(0) = 1/3 (lA)40Aq)2 8P(0) = 2(l/X)2(1/k)(3w/w) 

e (0) = (L/X)2(l/kQ) 9 (0) = 0 

General case

SF(max)

3(max)

"I ~ (N,/2)(I/X)
J ~ kQ sinßl SF ( max) N, (I/X)(8^) 

k sin ßl

N, = 2tt/ ßt



Fig. 1a : Transmission line periodically loaded with 
shunt susceptances.

Fig. 1b : Two modal lines periodically coupled by shunt 
four-terminal networks.

Fig. 1c : Periodically loaded line represented by a chain 
of coupled resonant circuits.



Big. 2a : Dispersion diagram for a chain of coupled resonant 
circuits with loss.

Fig. 2b : Attenuation per period for a chain of coupled 
resonant circuits.



Fig. 3 : Diagram showing history of a traveling wave 
launched at z = 0 in a shorted section of 
periodic structure.



Fig. 4 : Diagram showing history of a traveling wave 
launched, at z = 0 in a shorted, section of 
periodic structure in which the first 
cavity is detuned.



Fig» 5 : Diagram showing the vector addition of traveling wave 
components for a structure with coupling to an external 
generator. The factor e^f has been suppressed.



Fig. 6 : Diagram showing history of a traveling wave 
launched at z =~£/2 in a shorted section of 
periodic structure terminated in full end cells.
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Summary: The properties of resonant, periodic structures are studied 
using an equivalent circuit representation. A circuit 

consisting of a chain of coupled resonators is chosen. The complex 
propagation constant for an infinite chain of resonators is derived, 
and the field in a finite length of structure is then obtained by 
summing a traveling wave which undergoes multiple reflections between 
the planes forming the end boundaries of the structure.

The analysis is applied to study the effect of loss and 
detuning in high Q superconducting structures operating in the v/2 and 
77 modes. It is shown that, even for the tt mode, the effect of loss on 
the amplitude and phase of the field is in general negligible for the 
superconducting case. The effect of a badly detuned cavity is more 
serious. A principle conclusion is that, using a single cavity tuner 
located near the center of a structure, it is difficult to achieve a 
reasonable tuning range in a 77-mode structure which is more than about 
5 wavelengths long, or in a 77/2-mode structure which is more than about 
25 wavelengths long, without badly perturbing the field flatness.

The properties of the 77-mode resonance are discussed in some 
detail. The somewhat complex behavior of this mode results from the 
fact that dispersion diagram and the attenuation as a function of phase 
shift per period change rapidly near the band edges. The group velocity 
and energy velocity are found to differ by a factor of two at the 77-mode 
resonance. It is shown, however, that the group velocity as defined by 
d&j/cL/3 becomes meaningless at this mode.

The principle expressions obtained in this report concerning 
the effect of loss and detuning on field flatness are, for convenience, 
collected together in Table I, Appendix D.
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