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1. INTRODUCTION

In this note we aim to give an approximate value of the expected cooling time of ions by 
magnetized electrons. The formulae taken from Ref. [1] are, as usual, asymptotic, i.e. quite 
accurate when the ion emittances are much larger or much smaller than the electron emittances.

This study is mostly oriented towards the cooling time of lead ions (Pb53+) which are 
foreseen to be used at LEAR (Ref. [2]). In this case, due to the low energy, the asymptotic 
expressions will induce some errors in our expectations. Therefore, some approximations have 
to be made.

After some approximations and definitions, the expected cooling times will be computed 
using data, symbols, and parameters given in Section 2. Finally some possible improvements 
are discussed.

2. DATA, SYMBOLS, PARAMETERS

2.1 Data

q : Elementary charge, q [C] = 1.609 x 1019
c : Light velocity, c [m-s4] = 3 x 108
m : Electron mass, m [kg] = 9.109 x 10-31
mp : Proton mass, mp [kg] = 1.672 x 10-27

Co · Permittivity of vacuum, co [F-m4] = 8.854 x 1042, l/4πco = 8.987 x 109 [F4m]
re : Electron radius, re [m] = 2.817 x 1045
rp : Proton radius, rp [m] = 1.547 x 1048

2.2 Symbols

ε : Ion beam emittance
βh.v : Betatron amplitudes [m], these functions are considered constant in the cooling space 
βe : Electron beam rms divergence [rad]
Θ : Ion beam rms divergence [rad], Θ = √ε/βh v

B : Solenoid longitudinal magnetic field [T] 
η : Cooling length/Accelerator circumference 
β = v/c, where v is the electron or the cooled ion mean longitudinal velocity 
coc : Cyclotron frequency, ωΓ [s4 ] = qB/m 

n : Electron beam density [m4] 
ro · Electron beam radius [m]
/ : Electron beam intensity, / [A] = qnπro2βc
J : Electron beam current density, J [A m*2] = 
ωρι : Plasma frequency, ωρι [s-1] 
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Fig. 1- Definition of the divergence Θ

3.1.1 Electron divergence

The transverse energy kTel determines the electron transverse velocity since

2.3 Lead Ion and Cooler Parameters

Type of ions: Lead. A = 208, Z - 53
Ec : Electron kinetic energy, Ec = 2.32 keV

β = 0.095, V [m s-1] = 2.85 x 107, y = 1.0045
Proton equivalent momentum: p = yβ(mpc2)c = 89 MeV/c 

r0 [m] = 2.5 x 102
I [A] = 0.5, J [Am-2] = 2.54 x 102
n [nr3] = 5.584 x 1013

B [T] = 0.06, which is about twice larger than the nominal value
œc [s-1] = 1.06 x 1010, ωρl [s1] = 4.2 x 108
Electron beam rms transverse temperature: kTeL = 0.1 eV, (k = Boltzmann constant)

βh [m] = 1.9, βv [m] = 5.3, η = 0.02 
βe [mrad] = 3

3. SOME ESTIMATES AND DEFINITIONS

Some definitions to be used in the next paragraph will be enumerated. As mentioned 
before, data, symbols and parameters are those of the previous section from which the 
numerical applications (N.A.) are deduced.

3.1 Divergences

The beam divergence Θ of any particle is defined by the ratio (Fig. 1):

from which the electron and ion beam divergences can be deduced.
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Therefore, the initial proton divergences are of the same order as the electron beam 
divergence. The electron beam transverse divergence βe (or ve±/v) is thus an important 

parameter in our estimation of the cooling force or time.

With a non-magnetized electron beam, the cooling friction force, versus the relative ion 
velocity vz is represented in Fig. 2a. For v, » ve the friction force is proportional to 1/v,·2 while 
for V/ « vel it increases linearly with v,.

N.A.:

N.A.:

ε = 50×10-6, βh=l.9 => 0 = 5.12 [mrad] 

ε = 100×10-6. βh, = 10 => 0 = 3.162 [mrad]

3.1.2.2 Longitudinal plane

In this case, the relative energy spread is introduced and such as:

N.A.:

βe = 4.642 [mrad]

As usual the longitudinal divergence of the electrons is not considered, since, due to the 
dynamic contraction, the longitudinal spread is relatively small, even if one takes into account 
the energy coupling from the transverse to the longitudinal plane.

3.1.2 Ion divergence

3.1.2.1 Transverse plane

The ion divergence is given by the transverse rms emittance since

N.A.:

ve± (ms-1) = 1.326 x10s

Thus the electron transverse divergence is
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(la)

N.A.:

Bmin [T] = 2.86x10‘2

Taking B = 0.06 [T] the condition for magnetization is fulfilled.

4 . COOLING TIME OF Θ2

The differential equation followed by Ø2 (and therefore by the ion emittance) is taken 

from Ref. [1]. It is shown that for magnetized electrons

The condition for the electron beam magnetization implies that βepi < w1/3. This gives a 

lower boundary value to the longitudinal magnetic field:

Fig. 2 - Shape of the cooling force 5vs. the relative ion velocity v/. 
— : non-magnetized,------ : magnetized electron beam.

3.2 Condition for Magnetization

The parameters n, and (j)c already defined are used, and a so-called Larmor wave

length is defined as:

The cooling force with magnetized electron beams is represented in Fig. 2b. It is therefore 
expected, in such a case, that a drastic reduction of the cooling time for the ions having 
velocities equal to or lower than ve_L will take place.
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Remark: X is considered to be proportional to Z2 . Recent works [3] have shown that for small 
ion emittances Za should be considered, with a < 2 instead. Since we deal with 

relative large ion emittances, this phenomenon will not be taken into account in the 
present paper.

4.1 Numerical Application

From the data and number given before, we getX = 7.29 x 10-8. For simplicity, Øand βe 

will be expressed in mrad. The differential equation then becomes:

 (lb)

and

Lf =-1.286 + 31n(0)

= 2.12 + ln(0)

La=l.l-ln(0)

If parameters different from those given in Section 2 were to be used, the constants 
should be scaled as follows:

with
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Fig. 3 a - Plot of  = 5 mrad

Therefore a smoother expression is chosen which is more consistent with the physical 

process, as described in Fig. 3b. We proceed in the following way:

The function u(θ) = -(ΡFίθ) is plotted in Fig. 3a for βe = 5 mrad or, equivalently, 

= 0.116 eV. It shows a discontinuity for Θ = βe due to the fact that Fi(θe) * F2(θe)· 

This is explained by the lack of an exact theory when the ion divergence Θ is close to the 
electron beam divergence βe and when the electron beam is not fully magnetized. Indeed this 

discontinuity disappears for large values of the magnetic field (it is negligible for B = 1 T, see 
Annex 1) although the cooling time, as computed later on, is not drastically reduced. This is not 
the case in the classical theory (for non-magnetized electrons) where the cooling decrements are 
well defined. In any case, this discontinuity has no physical meaning and the above expression 
(lb) cannot be fully retained.

de)
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Fig. 3b - Explanation of the cooling force, or u(0) smoothing process

a) One computes first (Fig. 3b)

•

b) One considers now:

= 

with

H(0) = F1(θ)forθ>01

 

N.A.: Δ = 1.14 for βe - 5 mrad.

The function û (θ) = -θ2Η(θ) is plotted in Fig. 3c for βe = 5 mrad.

(2)

7



When using betatron amplitudes of the order of 10 m at the cooler level, Fig. 4b shows 
that the horizontal emittance is reduced from ε = 100 x 10·6 to ε = 5 x 10-6 in less than 
100 ms. Therefore, increasing the cooling length by a factor two, and taking into account a 
penalty factor of two, implies that under all given conditions, a cooling time of about 100 ms 
can be reasonably expected.
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ANNEX 1

1. Discontinuity between Fi(θe)and Fi(θe)

Using Eqs. (1) at 0= βe gives:

Since La(θe) = 0 is the discontinuity,

Considering now Lf in Eq. (1c) where only B differs from the initial value 0.06 T, then

It is a decreasing function of B which cancels when

N.A.:

It is the value corresponding to pmin = pf in Ref. [1], Eq. (11), and, therefore, the fast 

collision effects are negligible.

2. Asymptotic Cooling Time for Large 0

Considering now the case where θ > θc where according to the previous formulae

the derivative of
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N.A.: X - 72.9, 02(r=0) = 10, θ2 =0.5 gives t = 0.1 s, which must be compared to t = 0.065 s, 

found by a more accurate approach.

Therefore, a rough approximation of the time t to cool from 02(r=0) to θ2 with 

magnetized electron beams is:

from which the cooling time can be deduced:

Then

versus θ2 is about 0. Thus, for θ > θe (and large B values): 02Fi(0) = 1.3, independently of 

θ2. The differential equation (1) can be written in a simplified form:
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