COPIES OF TRANSPARENCIES PRESENTED AT THE CONTROLS' USERS FORUM

Chamonix, 25-28 April 1990

V. Chohan

(Coordinator : Sessions on Accelerator Operations at CERN)

A) GENERAL

B) AAC

C) CONCLUSIONS

24 avril 1990 Seminaire C U F - Novotel Chamonix 25 - 28 avril 1990

Programme

<u>Mercredi 25 a</u>	vril		
18 4 00	Art	ivée au Novotel	
10 1 00	R SI	nion de Rienvenue	
20 - 00			
20 1 00	Din		
<u>Jeudi 26 avril</u>			
dès 07 h 30	Pet	it Déjeuner	
	08 h 30	Introduction	
	08 h 40	Système de contrôle du CPS	W. Heinze
	09 h 10	Système de contrôle SPS/LEP	P. Charrue
	09 h 40	Data base in Control Systems	J. Poole
10 h 0 0	Pau	ise Café	
	10 h 30	<u>Opération des accélérateurs</u> • Général	V. Chohan
		- Linac	E. Tanke
		- PSB + CPS + LPI	B. Frammery
		- SPS	A. Faugier
		- <i>LEP</i>	R. Bailer
		. IFAR	D. Manelunki
			V. Chohan
		- Common erounds in PS controls	M Routhéon
		and Current work at human inter- face level	A. Pace
		 Special points and discussions 	
12 h 30	Déj	ieuner	
	14 h 00	Alimentations et Aimants	J. Pett
		Alimentations LEP	J. Pett
		Alimentations SPS	O. Berrig
		Alimentations CPS	G. Coudert
15 h 30	Pại	use café	

<u>Vendredi 27 Avril</u>

dès 07 h 30	Petit Déj	euner	
	08 h 30	Transfert de faisce aux et séparateurs Transfert PS Transfert, extraction SPSILEP	V. Mertens J. Boucheron V. Mertens
	09 h 10	Zones expérimentales	D. Manglunki
	09 h 40	Radiations	G. Rau
10 h 00	Pause ca	fé	
	10 h 30	Services généraux - Contrôles du groupe LEPICV - Contrôles du réseau électrique LEP - Principes, missions, programmes - Gestion des alarmes (Apollo) - Un utilisateur "industriel", pro- blèmes de communication et opération	P. Ciriani C. Bertuzzi A. Swift P. Ciriani R. Martini A. Scaramelli
12 h 30	Déjeunei		
	14 h 00	Vide	P. Strubin
	14 h 45	Cryogénie	A. Juillerat
15 h 30 l	Pause café		
	16 h 00	Instrumentation et physique machine Instrumentation CPS Instrumentation SPS/LEP Physique machine	R. Cappi G. Gelato A. Burns R. Cappi
17 h 30	Pause		

19 h 30 Soirée Savoyarde

	16 h 00	Radiofréquence - RF du CPS - RF du SPS - RF du LEP - Cavités du SPS/LEP	E. Ciapala J. Boucheron T. 'unnecar E. Ciapala G. Cavallari
	17 h 00	Timing et Synchronisation - Timing du CPS - PLS (Program Lines Sequencer) - Message Frame - Timing SPS/LEP - BST (Beam Synchronous Timing)	G. Beetham G. Daems J. Lewis R. Lauckner G. Beetham M. Rabany
18 h 00	Pause		
	18 h 30	Personal view of the evolution of Control Systems	R. Parker

19 h 30 Diner

Samedi 28 avril

dès 07 h 30	Petit dé	jeuner	
	08 h .30	Présentation du groupe de travail Architecture et DSC (DWG)	K.H. Kissler
	09 h 15	Présentation du groupe de travail Applications (AWG)	F. Perriollat
10 h 0 0	Pause c	afé	
	10 h 30	Premiers pas vers une synthèse	operations
	11 h 15	Discussions et propositions	1
	12 h 00	Résumé et conclusions Clôture du séminaire	
12 h 30	Déjeuner		
14 h 30	Retour v	vers Genève.	

SEMINAIRE CUF

Novotel - Chamonix 25 au 28 Avril 1990

OPERATION DES ACCELERATEURS

General

V. Chohan

USERS' FORUM ::::: POINT OF VIEW OF MACHINE OPERATIONS

(1) LOT OF THE VIEWPOINTS WILL BE BIASED BY PERSONAL

EXPERIENCE OF SPEAKERS WITH INDIVIDUAL MACHINES

(2) HOWEVER. THE AIM IS TO SEEK COMMON GROUNDS &/OR

COMMON DENOMINATOR ACROSS CERN AS FAR AS ACCLR.

OPERATIONS ARE CONCERNED.

FIRST THE DISCLAIMER: ANY CRITICISM SHOULD BE TAKEN IN THE SPIRIT OF DISCUSSION AND . IN THE SENSE OF CONSTRUCTIVE CRITICISM - PARTICULARLY BY ONES WHO FEEL CRITICIZED"

This meeting was organised at too short a notice !! We shall attempt to present some "synthesised" view points on Saturday after our OWN, (ie. OPTRATIONS) Brain storming meeting termorrow.

(1) GENERAL

V. CHOHAN

E. TANKE

A. FAUGIER

R. BAILEY

V. CHOHAN

D. MANGLUNKI

CHOHAN

5 ł.

10 hius Cech

(2) OPERATIONAL NEEDS / EXPERIENCE / HIGHLIGHTS ETC...

(A) LINAC (B) LPI (+ PS / PSB) B. FRAMMERY (D) SPS (E) LEP (F) LEAR (G) AAC

(3) PROPOSALS IN SEEKING COMMON GROUNDS IN PS CONTROLS & CURRENT WORK AT HUMAN INTERFACE LEVEL - M. BOUTHEON A. PACE

(4) SPECIAL POINTS

(5) DISCUSSION & CONCLUSIONS

WHAT IS ACCELERATOR OPERATIONS ?

The concerns a wide spectnum of accelerator operating Conditions & uses during & after Commissioning and the normal (so-called) operations. It includes the following activities :-> 1) START-UP (or SHUT-DOWN) 2) SETTING MACHINE OPERATING MODES 58->PS/RSF 11 -> AAC

3 MACHINE ADJUSTMENT" (SETTING-UP) FOR A GIVEN MODE

(1) Machine Experiment/Development

5 Routine Operation/ beam production

6 Trouble-shooting/fault Repair.

Some Definitions

- * Accelerator operations implies <u>MANIPULATION</u> of Beams and Beam -telated processes and <u>situations</u>.
- H BEAM IS THE FINAL CRITERION FOR ALL ACTIONS (Not specific toginphent)
- * Application Programs -> Defined as higher level tasks which utilise ALL the base-level Supervisory & ON/OFF Control software to finally Manipulate beams & beam-related processes and situations.

reminder: We are talking of only the last 2 phases of an Accelerator Life-cycle Mamely - Chnissioning of operations & Not - Design/Construction/Installation.

Giv & drink mater !!) IT IS PROBABLY THE EASIEST LEVEL ON WHICH A COMMON DENOMINATOR CAN BE & SHOULD BE SOUGHT WITHOUT TOO MILCH DIFFERENTY.

At this base-level, a lot of discussions / studies and implementations were carried out in the PS in the seventies. These resulted in Some Uniform PS standards which are now taken for granted in the PS by any New Equipment pulders/ or suppliers within the PS. (For Rample, LPI or ACOL projects etc.) However, it should be stated that having a "single supplier" (e.g. Power or Vacuum group) or single instrumentation expert (e.g., d.c. bean (ransformer) <u>DID</u> HELP !! (2 Bornd Kuiper's hanmer in fixing interface standards!!

LIST OF COMMON- DENOMINATORS

*** REMEMBER :: BEAM IS THE FINAL CRITERION FOR OPERATIONS AND. APPLICATION PROGRAMS ARE THE ONES THAT USE THE ENSEMBLE OF "LOW-LEVEL" EQUIPMENT/CONTROLS TO MANIPULATE BEAMS

(1) NEED FOR GLOBAL TOP-LEVEL MECHANISMS FOR :

- (A) MACHINE START-UP (AFTER SHUTDOWN OR POWER FAIL)
- (B) MACHINE STOP (SHUTDOWN OR ECONOMY MODES)
- (C) GLOBAL MODE SETTINGS, I.E. 1 OUT OF 11 IN AAC , (SINGLE PUSH BUTTON) 1 OUT OF 8 IN PS,(REAL.EXCLUSIVE "USERS"?) 1 OUT OF 3 IN SPS (UPDATE TO MASTERFILE?)
- (D) GENERAL ARCHIVE & RETRIEVAL OF ALL MACHINE PARAMETERS FOR ANY ONE SITUATION (MODE) OF MACHINE
- (E) ALARMS & WARNINGS SYSTEM WITH REASONABLE TURN-RCUND TIME FOR CORRECTING FALSE ALARM SITUATIONS (FLEXIBILITY) AND TOLERANCE SETTINGS (NOT A COMPUTER EXPERT TO CORRECT)
- (F) LOGGING OF GOOD SETTINGS/OPERATIONS

СНОНАМ азі (2) NEED FOR A "COMMAND" LANGUAGE FROM THE CONTROL ROOM INTERACTION MEDIUM: THIS ENABLES A FAST SETTING-UP OF A BEAM MANIPULATION SITUATION OR PROCESS FOR TESTS. BEAM EXPT./STUDIES AND TROUBLE-SHOOTING : EXAMPLES: ISAAC : IBN1800 / PDS1 ESAU : PS CONTINUOUS XFR デンマイ BASIC : LINAC

. <u>. . .</u> СНОНАМ аас

NODAL WAS <u>NOT</u> "INVENTED" AS A LANGUAGE FOR CONTROLLING ACCELERATORS BUT EVOLVED FROM "ISAAC" FOR EXACTLY THE PURPOSES MENTIONED !!

OBVIOUS <u>IMPLICATIONS</u>: (A) EASILY READABLE HIGH LEVEL COMMANDS/PROGRAMS WITH EQUIP. DETAILS HIDDEN AWAY I.E.. "OBVIOUS" CONCEPT OF SUBROUTINE CALLS. EQUIP/DATA MODULES ETC.

> (B) REDUCED INTERMEDIATE LEVELS IN HARDWARE. SOFTWARE AND "STRUCTURES" TO A MINIMUM

E.G.. NOT HEAVY "WORKING SETS" (PS) OR COMPLICATED (BUT FAST !) CALLS TO DATABASE RTNS. (FERMILAB)

(3) NEED FOR "OPERATORS" (= AS DEFINED EARLIER) TO WRITE APPLICATIONS (= AS DEFINED EARLIER) PROGRAMS

Question: Where / how do Calls in TCP/IP socket Lib. fit in Say for: <u>Guip</u> <u>Console</u> VME <-> N-120 or PC

NODAL : PS /SPS /AAC

- (4) NEED FOR TIMING SURVEILLANCE/ ACQUISITION <u>"WATCH-DOG"</u> -CERTAINLY FOR CIRCULAR MACHINES FEEDING EACH OTHER WITH SYNCHRONIZED R.F. TIMINGS !!
- (5) EASY SELECTION OF ANALOGUE & VIDEO SIGNALS FOR FAULT-FINDING I.E., COMPUTERIZED SETTINGS FOR 'SCOPES, TRIGGERS AND SIGNAL SELECTION - AT LEAST, IN REMOTE CONTROL ROOM AND/ OR DIGITIZED & SOFTWARE TREATED SIGNALS FOR SPECIAL CASES
- (6) NEED FOR A MEDIUM TO KEEP UPTO DATE "PROCEDURES" FOR BEAM OR PROCESS MANIPULATION. FOR EXAMPLE. WITH 11 MODES IN THE AA AND DIFFERENT SETTING-UP "SITUATIONS". ALL RELEVANT PROCEDURES ARE ON CERNVM AND ARE READ/CORRECTED/UPDATED BY USERS (NEEDS VM TERMINAL IN AA LOCAL CONTROL ROOM !!) (PAPER FILES OF OPERATIONAL PROC. IN PS ?? , PHOTOGRAPHS ? ...)
- (7) "FAST PLOT" (STYLE FERMILAB) : PLOT ANYTHING(S) VS.ANYTHING (NODAL ALLOWS THIS AT LINE TYPE OUTPUT LEVEL)

"CONTROVERSIAL" COMMON DENOMINATORS

(1) MINIMUM NUMBER OF INTERMEDIATE LEVELS OF SOFTWARE , HARDWARE AND STRUCTURES BETWEEN A USER AND WHAT HE SETS OUT TO DO; I.E.. KEEP SIMPLE THINGS SIMPLE - CORROLLARY : DO NOT IMPOSE COMPLEX HARDWARE/SOFTWARE OR MANIPULATION "STRUCTURES" ON SIMPLE PROCESSES (FINALLY. IT SIMPLIFIES APPLIC. PROGRAMS & DIAGNOSE FAULTS) E.G., FERMILAB DOES ALL WE DO IN LI/PSB/PS/AAC/SPS + UPTO TEVATRON WITHOUT RESERVATION OR HEAVY TOP LEVEL STRUCTURES

THIS CONFLICTS WITH "UNIFICATION" SINCE WE ARE ALL USED TO OUR OWN OPERATIONS' "RELIGIONS". SET WAYS AND METHODS AND . ARE ALLEGEDLY "OPTIMIZED" ALREADY !!

*** AT THE TOP LEVEL .MAYBE THE SIMPLEST WOULD BE TO ALLOW STRUCTURES AS SEEN & USED TODAY & CONVERGE BY "CONSENSUS" !! (NEED FOR FLEXIBILITY INSTEAD OF RIGIDITY DUE TO OVER-STRUCTURING)

(PROCESS MANIPULATION. DEFINITIONS. STRUCTURES. WORKING SETS. RESERVATION OVERHEADS ETC... DO WE HAVE A CONSENSUS CERNWIDE?)

SOLVE THE PROBLEM OF A TRUE . MUTUALLY EXCLUSIVE. " VIRTUAL" MACHINE (2) WITH REAL ORTHOGONALITY BETWEEN "MODES" ; HENCE RESOLVE COMMON Sec ISSUES OF P.P.M. /MODES ETC., IN PSB, PS AS WELL AS SPS & LHC IN ONE GO! HOPES TO (CONTROVERSIAL BECAUSE OF HISTORY, COSTS ETC) . IT WOULD XH IEVE BE EASIER TO BRING IN OTHER MACHINES (E.G., AAC, LEAR, LEP ...) THIS IN THIS STRUCTURE IF DONE IN CLEAR-CUT VERTICAL HIERARCHY < NO OVERLAPS AS IN PS EIGHT "USERS" OR VIRTUAL MACHINES > ANYWAY ? CLEAR "TIMING" OR SEQUENCE-LINE BOUNDARIES AND WOULD ENABLE A SEMBLANCE TO UNIFICATION AT THE TOP LEVEL FOR MACHINE OPERATIONS.

(MAY BE AAC & LEAR HAVE ALREADY ' DISAPPEARED ' BY THEN !!)

SOME GENERAL REMARKS

WE MAY AGREE ON MANY COMMON GROUNDS BUT. MANY QUESTIONS REMAIN . ESSENTIALLY AT THE IMPLEMENTATION LEVEL.

- <1> WHAT ARE WE AIMING AT AND. AT WHAT COSTS ??. I.E. DO WE ONLY WANT TO HIDE THE DIFFERENCES AT THE TOP LEVEL WHILE BIG DIFFERENCES REMAIN AT THE BOTTOM ? WHERE ARE THE DEMARCATION LINES ?
- <2> ONCE THE LIMITS ARE DEFINED, WHAT TIME SCALE ARE WE AIMING AT ??
 (1 YR , 5 YRS, 10 YRS ?? !)
- <3> AT THE LEVEL OF APPLICATIONS & PROCEDURES. ALL MACHINES ARE DIFFERENT AND THE SHIFT-OPERATOR HAS TO RESPECT THIS ANYWAY FOR HIS NEEDS -THEREFORE. ARE WE NOT UNDER-ESTIMATING THE REAL REQUIREMENTS AND OVER-ESTIMATING THE BENEFITS OF UNIFICATION ? !! OR.

ARE WE REALLY UNDER-ESTIMATING A SHIFT TECHNICIAN'S ABILITY TO HANDLE DIFFERENT MACHINES ? THERE IS NO RUNNING AWAY FROM THE FACT THAT THE SHIFT TECHNICIAN HAS TO HAVE ENOUGH KNOW-HOW ABOUT PROCESSES/ MACHINES HE IS SUPPOSED TO MANAGE:

(HOW IS IT ACHIEVED AT FERMILAB ?)

THEREFORE . THE ONLY SAVINGS IN STAFF WOULD COME FROM SMALLER CONTROLS GROUPS DUE TO UNIFIED HARDWARE & SOFTWARE & NOT FEWER SHIFT TECHNICIANS!!!

GNTROVERSIAL 1

COMMON GROUNDS AT A GLANCE

- (1) GLOBAL COMMANDS -STARTUP STOP
- (2) GLOBAL "MODE SETTINGS
- (3) ARCHIVES + RETRIEVAL
- (4) "GOOD" ALARMS SYS.
- (5) "COMMAND" LANGUAGE FOR CONTROL ROOM NEEDS
- (6) LOGGING OF PARAMETERS
- (7) "EASE OF USE" FOR USERS TO WRITE APPLIC. PRGMS.
- (8) COMPUTERISED PROCEDURES /DOCUMENTATION
- (9) TIMING SURVEILLANCE FOR RF SYNCH (" WATCHDOG")
- (10) CONTROLLEJ 'SCOPE/TRIG SETTINGS FOR ANALOG SIGNALS
- (11) DIGITIZED ANALOG SIGS.

LINAC	PSB	PS	LPT	5PS	LEP	LEAR	AAC
0	Ø	Ø	0	SEQNR	٥	0	0
X			PPM	SEQNCR	0	0	×
X		O (PLS)	Ð	0	0	$\boldsymbol{\times}$	
N.A.	0	0	×	Ο	0	\times	×
X	YES, PAINFUL	but Painful	×	0		PASCAL + ROUTINES	X
\times	0	0	×	ຽ	0	X	X
\times		()	×	0		X	X
0		O PSNET	No	Help	0	0	0
×			No	0			0
N.★			×	٥	0	0	
		0 Very Paintul	Yes (specif)	0	0	ъ	0

PARTIALLY AVAILABLE O

FULLY AVAILABLE : X

SEMINAIRE CUF

Novotel - Chamonix 25 au 28 Avril 1990

OPERATION DES ACCELERATEURS

AA

V. Chohan

A1 CHOHAN

The AAC Complex = AC & AA Rings ① Simple Tree structure : divided into Eusphert & studies/ops etc. (2) Machine Studies/Setting up Branch for each Ring 3 No RESERVATION A Machine Modes Superimposed at the HIGNEST LEVEL & are transportent after warde. {"True" orthogonality } We do this by different timing files which finally use same Preset counters {ie. d.c., "almost" single mode machines } 5) Very many "Global" Commands = proceedures - Sophisticated Applic. Acceptances Tunes Auto. Adjustment Coh. Osc. Programs. F Transfer - Obstruction See CERN/PS/89-57 (AR) ete, Search

Fig. 1. Antiproton Accumulator Complex

Fig. 2. Operational Modes in AAC

А2. ∛¢нон

-Hain

BEAM

REP

EASU

MATER

ЯC

L I KUNK J

Fig. 4. Stack core Tunes and Emittances

6 CHONHAN 281

00-0005THER 1 1939-88-25-22:27

	REQUIRED	MEASURED
CH (1855.09	2.2555	2.2553
j2∀7 kH z	2.2598	2.2598
TRIM	9	0 ուտ
£P∕₽	ย	0 E-3
сон.05С. Н	Ø	.4 mm
V V	9	ิ mm
COS COMP.L	9	0 deq

Coherent oscillations are adjusted with cooldown tunes. Accumulation tunes restored now.

RESULTI	NG VALUES	SAVED IN		
BENDING	1944.73 A			
TRIM	8.73 A	REFERENCE		
QD	1058.59 A	+ FILE		
QF	1464.62 A			
SEPTUM	3878.39 A	REFERENCE		
DVT8022	-1.46 A	+ FILE		
BTI8002	410.53 A			
EJ.KICKE	R 59.52 k ^v	V		
SYNC PH.	66.2 de	9 ETLE		
+ INJ.	1845.83kH:	z i i i i i i i i i i i i i i i i i i i		
INJ.EFFICIENCY 85 %				

The tunes have been adjusted to accumulation values on the stack orbit. These values are saved.

Fig. 5. Results from the Automatic Setting-up Program for AA

Fig. 6. Choices for Machine Experiment and Setting-up Programs

"SETTING UP"

A ADJUSTHEN	IT 1998-04	-17-17:29
пп	REGUIRED	MEASURED
QH 1855.09	2.2545	2.2543
QV∫ kHz	2.26	2.2600
TRIM	2	1 mm
DP/P	9	0 E-3
COH.OSC. H	9	.2 mm
V	0	0 mm
COS COMP.L	0	0 deg

SEPARATE PROGRAMS FOR AC 2 AA 2 Gpplicable for different Male Coherent oscillations are

- Rf Synch.

adjusted with cooldown tunes. Accumulation tunes restored now.

The tunes have been adjusted to accumulation values on the stack orbit. These values are saved.

RESULTI	NG VALUES	5	SAVED IN
BENDING	1944.15	A	
TRIM	8.65	Ĥ	REFERENCE
0.D	1057.75	Ĥ	+ FILE
QF	1464.57	Ĥ	
SEPTUM	3912.84	A	REFERENCE
DVT8022	-1.79	A	+ FILE
BTI8002	411.62	A	
EJ.KICKE	R 55.62	k٧	
SYNC PH.	81.6	deg	FILE
f INJ.	1845.92	κHz	1 ILE
INJ.EFFI	CIENCY	90	1.

AC ADJUSTMENT		T 1998-04	-17-18:20
		PERMITER !!	UCARDON

REPOIKED	MEASURED
5.455	5.4544
5.435	5.4355
3	3 mm
0	.9 mm
0	0 mm
0	.1 mm
0	1 deg
	5.455 5.435 3 0 0 0 0 0

RESULTING VALUES	SAVED IN
B-TRIM4 4.03 A	
BENDING 2285.64 A	
Q-TRIM1 -12.97 A	REFERENCE
Q-TRIM2 72.07 A	+ FILE
Q-TRIM3 -48.28 A	
Q-MAIN 1871.33 A	
SM-EJ 22838.1 A	REFERENCE
DYT701343 A	+ FILE
DVT7042 .46 A	
EJ.KICKER 4*64.2 k	1
SYNC PH9dec	FILE
DF/P56E-3	3 FILE
INJ.EFFICIENCY 92	1

Fach program:

() Kequests beam C Measures 4 adjusts TUNES at CENTRE FRER 3 Measures orbits (Adjusts Central field Trim etz.

Streets 5) Inj. Cohetent Oscillations In H, V & L Using Digitizers 5) Verify Energy Matching (AA & PS)

енона) ас

Fig. 8. Tunes Versus Momentum in AA Ring

А7 снонач аас

9

AS

CHOHAN aac

Timing problems using Digitised & Greated Signals fron the Control system. (Not 'scopes)

A j

CHERA

899

1000

1200

1400ns

600

Ø

200

400

Fig. 4. With Correct Ejection Kicker Activation

Last Ejected Bunch & Kicker at AA sigma22 Pickup 1989-09-20-11:30

Fig. 5. Ejection kicker did not fire: bunch still circulating

A1) CHOHAN

à à i

SEMINAIRE CUF

Novotel - Chamonix 25 au 28 Avril 1990

CONCLUSIONS

Synthèse OP

V. Chohan

- OPERATIONS SPECIFY AND ARE WILLING TO WRITE APPLICATION PROGRAMS USING HIGH-LEVEL TOOLS PROVIDED BY CONTROLS GROUP
 - 2 PROCESS- ORIENTED TOOLS
 - 3 ARCHIVING FACILITIES
 - 4 DIGITISED SIGNALS WHEREVER APPLKABLE
 - 6 BETTER RESPONSE TING
 - 6 WE ARE ACCELERATOR OPERATIONS -KEEP THIS IN MIND AS OPPOSED TO GENERAL SERVICES.
 - F KEEP IN MIND THAT THE "OPERATOR" IS THE ULTIMATE CLIENT.

WHERE DO WE GO FROM CHAMONIX? 5.G. = STUDY GROUP

1 S.G. to study/propose how to achieve a mutually exclusive "virtual" machine to satisfy all requirements of PSB/PS/SPS (LHC?) in pulse-to-philse Modulation. SPS claims to be achieving this anyway. Is it not time for PS to RETHINK the PLS concepts (& vicious overlaps of "Users", line usage etc.) This obviously affects Sequencing Concepts, * Tining System, timing hardware and timing demarcation lines. Should this not be the starting point for 166 Parker ? Once the Vertical hierarchy of machines is RECOGNISED, (Virtual or d.c. it may be easy to include all simpler machines in this shirtine.

A <u>cern-wide</u> Study Group & agree on Human Interaction level details of presentation/synaptics. This includes layout of new consoles composed of Work-stations (?) etc. - · as well as "time details of Red for "off" A Green for "ON!" etz etc. ..

BUT FIRST, THE BALL IS BACK IN THE COURT OF CONTROLS' GROUPS !

AT LEAST THEY SHOULD TELL US WHICH WAY WE ARE GOING & STANDARDISE THE INTERFACE TO OUR SOFTWARE.

> APOLLOS ? DEC STATIONS ? if so which flavour Rise PCS ?

HOH

A CERN-Wide Study Group to present a consensus on entry "structures" and usage from the top level to final application which differs in different machines. The mandate would be to IDENTIFY COMMON APPLICATIONS/USAGE IF POSSIBLE and a Uniform Way of presentation where possible !! The study Group might discover that there are very few common grounds like low-level Egpmul (Pover (vacuum --) and that FINAL application lises are distinationly difference. OK IT MAY PROPOSE MANY COMMON

GROUNDS 1

EXAMPLE ->

23

SEEMINGLY	Com	M an	I E	Tx A	MD		•6	à a
TUNE MEAS	URE	MEA	JTS	5			<u>or</u>	
DAt first sight, we all do it ! PSB/PS/AC/AA/SPS/LEP/EPA/LEAR								
2 Different Methods: (1) Kich beam & measure: Activate (2) Schotthy: PASSIVE								
(3) Bean Transfer function: ACTIVATE (BTF) from (1)								
Different Uses or Needs	Hardu Activa	are a tron	; F	assive	- •	Need Test	for Bea	- hs
or done every cycle, or done once aly (Do In;)								
J Final Apptations	: PSB	PS	SPS	EPA	LEP	Ac	AA	LEAR
(a) Chromatics by at single enory	1						_	1, 3
(b) Tures VS. Aperture (4%) (needs Test bean)						×	×	l
(c) Pure Tunes at single point						×	×	1, 3
(d) Think values in Stacked Deams, is, in core regions	<u>-</u>						×	
2) Turnes during Acceleration cy	rle X	×					/)
·) Tures for each bunch (of 12 for pp operations.)		×					

СНОНА

If the AIM was to TELL WE. Each other while we do and succeeded how proeferably over a Beer,

If the aim was to show [we our different needs/methods [succeeded]

NOW LE T'S SEE WHAT THE MANAGEMENT DECIDES !!