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1. INTRODUCTION

Electrons with small transverse velocities and small longitudinal velocity spread play 
a role in the electron cooling and in positive ion capture processes of electrons by cooled ions. It 
is not claimed that small transverse velocities are essential for transverse cooling purpose since, 
as for LEAR, magnetized electron cooling is less dependent of such a parameter [1].

In order to obtain small transverse velocities one can foresee to neutralize the electron 
beam [2,3] and/or to implement a longitudinal adiabatic beam radial expansion with the help of a 
longitudinal decreasing magnetic field [4,5]. These two possibilities will be briefly investigated 
in this paper.

Throughout this note it must be kept in mind that the transverse velocity ± is much 
smaller than the longitudinal velocity ϑs= βc.

2. SYMBOLS AND DATA

2.1 Physical Constants

e = 1.602 X 10-19 [C], elementary charge,
m = 9.409 X 10-31 [kg], electron mass,
c = 2.997 X 108 [ms-1 ], light velocity,
£q = 8.854 X 1012 [F.m-1 ], dielectric constant.

2.2 Cooler Parameters

le = electron current intensity [A],
B = guiding magnetic field [T],
a - electron beam radius [m],

ϑz= ϑs = βsc = electron longitudinal velocity [m-s-1],

ne = Ie/e(πa2 )ϑz = electron beam density [m ],

ni, = density of neutralization ions [m-3],
Zi = ion charge number,
η = Zini/ne = neutralization factor,
G)c = eB/ym = cyclotron frequency [s-1]
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2.3 First Part of Electron Cooling Set-up (Fig. 1)

Fig-1

2.4 System of Coordinates (Fig. 2)

a) b)

Fig. 2 - Three-dimensional (a) and transverse plane coordinates (b) (Cartesian and cylindrical)

2.5 Nominal Values (Indexed by 0)

Ie0 = 0.5 [A],
B7θ = 634 X 10-4 [T], 
a0 = 2.5 X 10-2 [m], 
ωc0= 1.113 X 10 13[rd.s-1 ], 
ne0 = 5.642 X 1013 [m-3 ],
Proton momentum : p0 = 88.6 x 106 eV/c, such that:
β0 = 0.094, γ0 = 1.0045, ϑs0 = βoc = 2.817 x 107 ms-1.
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2.6 Temperatures

By definition (kB = Boltzman constant = 1.38 x 10-23 JK-1 ):

Example : If we state that , where p stands for one of the 3 planes, then for an 
electron kBT implies ϑp = 1.326 x 105 ms-1

3 . RECALL ON TRANSVERSE VELOCITY

It is well known [2,4] that forces due to the electron-beam space charge will induce on an 
electron at radius r an azimuthal “drift velocity: ϑd” expressed by:

  (1)

where      is the radial electrical force. (In the following 

β2 <<1 will be neglected and it will be considered that γ = 1.)

Therefore, except in the case of full neutralization (η = 1) any electron at radius r has an 
azimuthal drift velocity given by Eq. (1), which velocity must be added to the natural transverse 
velocity  to obtain the total transverse velocity   . The variance of the transverse 
velocity is expressed by: [2]

The natural transverse velocity variance   is the sum of ,  the velocity variance
 

at the cathode output and the velocity variance   induced by imperfections of the cooling 
device mainly at the gun level

  is of the order of few tenth of an eV.

Remarks: (Refer to symbols given in Section 2)

1) Since ene(1-η) = I(1-η)/(πa2)ϑs,

 (3)

Therefore, for constant C1 and r, an increase of the electron-beam radius a by a factor 
together with a decrease of B by k will not change ϑd(r) since a2 B remains constant.
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2) Using the nominal values given in Section 2.5 we find that ϑd(r=a) = 2 x 105 ms-1 while 

the “natural” velocity is:
for kBT⊥0 = 0.1 eV ϑ⊥0 = 1.326 x 105 ms-1
for kBT⊥0 = 0.2 eV ϑ⊥0 = 1.87 x 105 ms-1

Natural and drift velocities are of the same order.

3) The drift velocity depends on the actual electron radius. Equality between ϑ⊥0 and ϑd(r) 
> 0 occurs at radius r1 given by:

(r1is supposed to be ≤a) 

such as for r1 < r < a the drift velocity is predominant (θd> 0⊥o) and conversally for 0 < 
r<r1

3. ADIABATIC BEAM EXPANSION

In this section the electron beam is supposed to be non-neutralized (η = 0). The magnetic 
field  decreases longitudinally (dBzJdz < 0) over a given interval 
where Bx and By are not equal to zero.

3.1 Adiabaticity

Fig- 3

It is well known that in very homogeneous 
magnetic fields the electron trajectory follows the 
magnetic field lines. The projection of the trajec
tory in the transverse plane (0,x,y) is a circle de
scribed with the cyclotron period tc = 2π/ωc. The 
longitudinal “cyclotron wavelength”, λc, is given 
by λc = ϑstc = 2πϑs/ωc.

The process is adiabatic if

In other words adiabaticity supposes that the electron describes many circles around the 
field line [Fig. 3] before the magnetic field changes significantly. As a consequence it is proven 
[6] that

 (4)

Of course, the total energy    remains constant. Moreover, if is reduced by a 
factor the longitudinal velocity ϑs is slightly increased by which can be approximated by:
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Now let us consider the effect of a decreasing magnetic field on an electron moving in a 
region without (Section 3.2) and with (Section 3.3) significant space-charge forces Fr.

3.2 Effects of a Decreasing Magnetic Field
in a Region of Negligible Space Charge (ne = 0)

Let us consider a magnetic field B(z) which decreases adiabatically by a factor k over a 
distance L such that (Fig. 4)

Pig 4

According to the invariants given in (4):

So: - the final radius is increased by √k,

- the final transverse velocity is decreased since:

 (4)

3.3 Influence of the Space Charge (ne ≅ 1013 m -3)

Equation (4) does not take into account space-charge effects. In reality the space-charge 
force responsible of the drift velocity must be considered since η = 0. For simplicity, let us 
consider an electron beam without “natural” transverse velocity, i.e.: ϑ⊥0 = 0.

Since BL = B(z=L) = Bç/k (see Fig. 5), the initial radius r0 becomes at z = L:

rL = r0√k
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The transverse drift velocity, as given by 
Eq. (3) is:

(5)

where is constant (since I and ϑs are practi
cally constant) and, according to Eq. (4), the 
product r2 (z)B(z) remains constant all along the 
electron trajectory. The drift velocity is constant 
whatever z is.

3.3.1. Important conclusion

In the frame of electron cooling let us 
consider an electron beam of given radius a, in
tensity Z, longitudinal velocity ϑz moving along 
a magnetic field line. One can consider:

Fig. 5

- Case 1: The use of a cathode with radius a under magnetic field B. The drift velocity all 
along the electron beam trajectory will always be (Eq. (3)):

 

- Case 2: The use of a cathode with radius a/√k under a magnetic field kB such as at the 
cathode level

Followed by an adiabatic expansion which brings the electron-beam radius from a/√k to a 
after the magnetic field has been decreased from kB to B.

For z ≥ L, i.e. at the level of the drift space, the drift velocity ϑd(case 1) = ϑd(case 2).

Beam expansion does not provide any reduction of the drift velocity

3.4 Reduction of the Total Transverse Velocity

The transverse velocity, without adiabatic magnetic field decrease, is expressed by:

where a is the actual beam radius.

With adiabatic expansion as defined before, for z ≥ L, we get:

since only the natural velocity is reduced by the adiabatic expansion.
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We can determine the radius at which the natural and drift velocity contributions are equal

When

kBT⊥0 = 0.1 eV r1 = 11.7 X 10-3 m 

kBT⊥0= 0.1 eV/9 r1 = 3.9 x 10-3 m

Examples for   and 0.1 eV/k = 0.1 eV/9 are given in Figs. 6a and b.

Fig. 6- a) kBT⊥0 = 0.1 eV, b) kBT⊥Q = (0.1/9) eV.
(1) Square of thermal velocity tfjθ. (2) 2 is the drift velocity.

(3) Square of transverse velocity: tf2 = + 2^.

Fig. 7 - Same as in Fig. 6, but with energies expressed in eV and k = 9
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4. EFFECTS OF NEUTRALISATION ON TRANSVERSE VELOCITY

In this paragraph the longitudinal magnetic 
field is constant.

Let an electron cross a neutralization 
electrode. We consider the idealized case where 
the neutralization factor η varies linearly through 
the electrode of length (pu such that (Fig. 8):

(6)

Fig. 8 From previous studies [7] it is known that 
for z ≤ 0 where the space charge is not 
compensated at all

ϑr(t) = ϑd sin(ωct) + ϑ⊥0cos(ωct)

ϑϕ(t) = ϑd ((1-cos(ωct)) + ϑ⊥0sin(ωct)

With the definition given in Eq. (6) it is shown [Appendix 1, Eq. 1] that for 0 ≤ z ≤ ℓpu 
we obtain

(7) 

with arg = ωc((ℓ/ϑs).

Of course, ϑ⊥(z ≥ ℓpu) = ϑ⊥(z = ℓpu) since the electron beam is then fully neutralized and 
no forces will modify the electron transverse velocities once the electrode is crossed.

Considering the case where   is neglected and the process is fully 

adiabatic, i.e. arg  = ωc((ℓ/ϑs) >> 1, then from Eq. (7):

ϑ⊥(ℓpu) = ϑd

Under these conditions the drift velocity is reduced by √2. Neutralization induces a 
relative small reduction of the transverse velocity amplitude.
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5. JOINT USE OF NEUTRALIZATION AND 
ADIABATIC MAGNETIC EXPANSION

One can foresee the following arrangement (Fig. 9):

- In region 1 the transverse velocity is: 

- In region 2 the beam is progressively 
neutralized, η(z=0) = 0, η(z=ℓpu) = 1. 

At z = ℓpu

- In region 3 the beam is submitted to an 
adiabatic magnetic expansion such as, 
for z≥Zf

Fig. 9

Region 1: Beam radius a = 1 cm

kBT⊤0 = 0.1 eV ⇒ 0J.O = 1326 x105 ms-1

ϑd= 2x 105 ms-1 at r = a, B = 9B0 = 0.57 T 

End of Region 2: Beam radius a = 1 cm

kT⊥0 = 0.1 eV ⇒ ϑ⊥0 = 1.326 X 105 ms-1

ϑd=2xl05 ms-1 at r = 0,B = 9B0 = 0.57T 

End of Region 3: B = Bo = 0.0634 [T], a = 3 cm 

The reduction of the transverse energy between Region 1 and the output of Region 3 is 
significant.
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6. CONCLUSIONS

For dense electron beams the use of adiabatic expansion, as a result of the longitudinal 
magnetic field decrease (by a factor k), provides an effective reduction of the transverse velocity 
of the electrons having a small radius only. Indeed, the “natural” transverse energy js 
decreased by k but the “drift” velocity due to the space charge remains unchanged. Therefore 
the transverse velocity of electrons having a large radius remains unchanged

The use of neutralization alone does not provide a significant reduction of the transverse 
velocity.

A more promising scheme consists in the use of an adiabatic magnetic expansion in a 
region where the electron beam is already neutralized. The reduction of the initial transverse 
velocity occurs at all radii of the electron beam.

As already mentioned in the introduction these conclusions concern only the transverse 
velocity and do not prejudge on its effects on any electron-cooling time. More precisely if, on 
the electron-cooling side the “magnetization effects” are experimentally proved, the conse
quences are different [8].

7. REFERENCES

[1] J. Bosser, I. Meshkov, G. Tranquille, Magnetized Electron Beam Cooling Time for 
Heavy Ions, PS/AR/Note 94-11, 1994.

[2] J. Bosser, D. Möhl, G. Tranquille, I. Meshkov, E. Syresin, V. Parkhomchuk, Neutrali
zation of the LEAR-ECOOL Electron Beam Space Charge, PS/AR/Note 93-08, 1993.

[3] F. Varenne, Neutralisation de la charge d'espace du faisceau d'électrons du re- 
froidisseur électronique de LEAR (Thèse de DEA), PS/AR/Note 96-02, 1996.

[4] H. Danared, Fast Electron Cooling with a Magnetically Expanded Electron Beam, 
NIM-A 335 (1993) 397-401.

[5] D. Habs, S. Pastuszka, D. Schwalm, A. Wolf, and S. Zwickler, Cold Electron Beam 
for Cooling and Collision Experiments Obtained by Adiabatic Expansion in a Mag
netic Field, Proc, of the Workshop on Beam Cooling and Related Topics, Montreux 
1993, CERN 94-03, 1994.

[6] J.D. Jackson, Classical Electrodynamics, 2nd edition, John Wiley & Sons, Inc..

[7] J. Bosser, I. Meshkov, V. Poljakov, I. Seleznev, E. Syresin, A. Smirnov, G.
Tranquille, and A. Zapunjaka, Project for a Variable Current Electron Gun for the 
LEAR Electron Cooler, CERN/PS 92-03 (AR), 1992.

[8] J. Bosser, Electron Cooling, CAS, Rhodes 1993, CERN 95-06, Vol. II.



11

APPENDIX 1

TRANSVERSE VELOCITIES WITH AND WITHOUT NEUTRALIZATION

1. AIM (Fig. 1)

We foresee to compute the evolution of the transverse velocity components and riφ 
     of an electron beam of intensity Ie moving at a longitudinal velocity

The electron beam of radius a moves 
from the left to the right side. Up to z = 0 
the neutralization η = Zni/ne = 0.

Then when the electron beam passes 
by the neutralization electrode of length 
ℓpu, the neutralization factor increases 
linearly. At the end of the neutralization 
electrode the electron beam enters the drift 
space where η = 1.

The neutralization factor increases 
linearly such that:

Fig. 1

The longitudinal magnetic field   is constant.

2. VELOCITIES IN REGION 1

From Eq. (10) of Ref. [1] and neglecting β2 
<< 1, the transverse electrical force acting on an 
electron at radius r is:

with η = 0 in the present case.

The azimuthal drift velocity ϑd induced by Fr 
and the longitudinal magnetic field B of the cooler is 
given by:
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If, for t = 0, the natural velocity is from Eqs (12) and (13) of Ref. [1] one gets:

Velocities are related to temperatures using the following equality:

For kBT= 1 eV:

2.1 TRANSVERSE VELOCITY

For simplicity ϑ⊥0 is neglected. Then from ϑr= Vd sin(ωct), = Vd(l-cos(ωct)) we 
obtain

ϑ⊥ oscillates between 0 and 2Vd (Fig. 2) with a 
period Tc such that

Since

The mean value of ϑd is

Fig. 2
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Including ϑ⊥0 the natural velocity (see Ref. [1], Eq. (13)):

3. VELOCITIES IN REGION 2

The electron beam enters at z = s = 0 with a radial velocity ϑr(z=0) = ϑr(0), ϑϕ(z=0) = 
ϑϕ (0) that are the values taken at any time before. Then with (see Appendix 2, formula 2) arg = 
ωc (0 ≤ Z ≤ Ipu), one gets:

(1)

3.1 Digression on Adiabaticity

For simplicity ϑr(0) and ϑϕ(0) are neglected. Let us consider the value of t at the end of 
the electrode; ℓ = ℓpu.

In the case where: arg = (ωc ℓpu) ϑs >>2π, the cyclotron 
wavelength is given by (Fig. 3): 

and

The conditionFig. 3

The electron executes many transverse oscillations on the way between the input and the 
output of the electrodes. It sees adiabatically the decrease of the transverse space-charge forces. 
Under such conditions (ϑr(0) = 0 = ϑϕ(0), (ωc ℓpu) ϑs  >> 2π) the equations simplify to:

ϑr(ℓpu) = ϑdsin(arg)

ϑϕ(ℓpu) = -ϑdcos(arg)

Remark: In region 3, Fr = 0 with full neutralization and the electrons continue the 
Larmor motion with ϑϕ = ϑd cos(ωct+φ0), ϑr = ϑd sin(ωct+φ0). For 

ωctcollision >> 1 (“magnetization”) this has no influence on the cooling time.
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Conclusion'. Between the input and the output of the neutralization electrode:

- The maximum amplitude of ϑ⊥ reduces from 2ϑd to &d,
- The mean amplitude of  ϑ⊥reduces from (4/π)ϑd to ϑd (or from ( 16/π2 )  to  ).

Our assumptions do concern the best case. Indeed, for 88.6 MeV/c, Ie = 0.5 A, r = a = 
2.5 X 10-2 m, B = 636 x 10-4 T, we find ϑd = 2 x 105 ms-1 while for a gun with temperature 
equivalent to 0.1 eV one has ϑ⊥= 1.32 x 105 m/s, which a priori cannot be neglected, as we 

did.



APPENDIX 2

NEUTRALIZATION ELECTRODE
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Let us consider the general equation (15) of Ref. [1]:

where [1]:

i.e. Fr(z=0) = eE0/m at the entrance of the electrode where the 
beam is not neutralized and Fr(z=ℓ) = 0 at the output, ℓ = z = ϑt 
where the beam is fully neutralized. The integration has to be 
taken from t = 0 to t = ℓ/ϑ. We consider also that r and so Eo are 
constant.

Integral part of ϑ⊥(s):

We omit eE0/m such that for t > 0

The term:

The integral term is:



finally

And, at t = ϑ/ℓ
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by definition eE0/mωc = Vd0, the nominal drift velocity.

(1)

Let us improve this expression:

We set ωc(ϑ/ℓ) = arg, such that the last equation reported in Eq. (1) gives

(2)

It can be checked that when arg → 0 or ℓ → 0, the initial conditions are fulfilled.

On the other hand, when arg >> 1 or ℓ → ℓpu, then

Neglecting the natural velocity (ϑr(0) = 0 = ϑ(0)), 

ϑ⊥(0) = ϑ⊥(ℓ) = ϑd


