le 17 avril 1980

Calcul des soufflets à ondes soudées pour tiges de commande des écrans mobiles du système UHV de la machine AA à l'aide du programme Safe Shell

A. Poncet

Introduction

La machine AA comporte quelques 20 membranes à ondes soudées et à course linéaire pour assurer l'étanchéité entre les tiges mobiles de commande des écrans et la chambre à vide. Ces membranes, actuellement en inox 304 (voir figure 1), ont une course de 60 mm en compression et effectuent un aller et retour en 250 ms ou moins. Leur durée de vie doit être pratiquement infinie (> 10^7 cycles).

Un certain nombre de membranes prototypes ont été cyclées sur machines de test (voir tableau figure 2) et, mis à part les problèmes apparus à la suite d'un changement de provenance de la matière première, les résultats de tenue à la fatique sont encourageants.

Cependant, compte tenu du caractère critique qu'a la fiabilité des membranes pour la machine AA, et en l'absence de données actuelles à caractère plus statistique sur leur comportement à la fatique, il apparaît nécessaire de continuer leur développement.

Cette note donne quelques axes de développement mécaniques possibles, basés sur l'analyse des contraintes et déformations mécaniques résultant des sollicitations.

A. <u>Analyse des contraintes et déformations à l'aide du programme</u> SAFE-SHELL¹⁾ (éléments finis)

La figure 3 représente le dessin de l'outillage utilisé pour former les ondulations. Ces dimensions ont été prises pour établir le modèle à 66 éléments représenté sur la figure 4.

Les figures 4 et 5 donnent, pour une pression de 1 atmosphère et une compression de 60%, la distribution méridionale des contraintes de flexion <u>sur la surface intérieure</u> (exposée au vide) de l'ondulation, pour les deux cas de calcul suivants:

1) Ondulation d'épaisseur 0,13 mm

<u>courbe (a)</u> :	distribution méridionale de la <u>contrainte totale</u> de flexion sur la face intérieure
courbe (b):	distribution méridionale de la contrainte de flexion dûe à la pression
partie ombré	e: zone de variation cyclique de la contrainte méridionale de flexion sur la face intérieure en

2) <u>Ondulation composée d'une coupelle concave de 0,15 mm et d'une</u> <u>coupelle convexe d'épaisseur 0,13 mm</u> (cas fictif destiné à assurer une répartition plus uniforme des contraintes)

Les courbes (a') et (b') sont les courbes correspondantes aux cas (a) et (b) ci-dessus.

Les figures 6 et 7 donnent les valeurs des différentes contraintes méridiennes et circonférentielles ainsi que la contrainte équivalente de Von Mises.

La valeur maximale de la contrainte équivalente τ_{eq} se situe dans la zone pliée près de l'axe de l'ondulation et vaut

 \sim 52,6 kg/mm 2 (dans le pli intérieur)

Le code EJMA²⁾ appliqué à cette ondulation soumise aux mêmes sollicitations, mais sans la forme pliée, donne une valeur de contrainte équivalente de

 \sim 50 kg/mm² (dans la soudure).

La figure 8 représente la déformée de l'ondulation d'épaisseur 0,13 mm (p = 1 atm., compression 60%).

B. Rigidité d'une ondulation et première fréquence propre

La rigidité de l'ondulation donnée par Safe Shell pour la géométrie considérée est de

7,90 kg/mm.

La rigidité mesurée sur 1 élément de 10 ondulations chacune (M. Maurer) varie de (voir figure 9) 5 kg/mm à 7,2 kg/mm en fonction de la charge (lorsque la flèche est grande et les ondulations se touchent, la rigidité bien entendu augmente). La rigidité mesurée sur une membrane de 80 ondulations telle que celles utilisées dans la machine AA est de

8 kg/mm par ondulation,

valeur qui est très proche de celle calculée avec Safe Shell. Anders BLOM³⁾ a vérifié expérimentalement et par éléments finis la formule de calcul de la première fréquence propre (formule également utilisée par le code EJMA):

$$f_{\text{Hertz}} = \frac{1}{2} \sqrt{\frac{K}{M}}$$
 K = rigidité totale du soufflet en N/m
M = masse du soufflet en kg.

La figure 10 donne la première fréquence propre en fonction du nombre d'ondulations, la rigidité d'une ondulation variant de 5 kg/mm à 8 kg/mm et sa masse pour une épaisseur de 0,13 mm étant de 2,7 grammes.

C. Influence de la forme de l'onde et de la longueur libre du soufflet

Safe Shell a été utilisé afin de déterminer l'influence de la géométrie sur les contraintes et la rigidité du soufflet dans les cas suivants:

- a) déplacement du pli (a) de l'onde de 0,8 mm <u>vers l'intérieur</u> du soufflet, afin de diminuer les contraintes de flexion dans la partie plate, qui prend la plus grande partie de la flexion
 - + diminution de \approx 27% de la contrainte équivalente mais:
 - + diminution de \approx 15,2% de la rigidité de l'onde.
- b) déplacement du pli de l'onde (a) de 0,8 mm vers l'extérieur du soufflet (effet inverse du précédent)
 - + augmentation de 15% des contraintes équivalentes
 - + augmentation de 18,7% de la rigidité de l'onde.
- c) <u>Augmentation volontaire ou accidentelle de la longueur libre</u> du soufflet:

Pas de l'onde = 1,5 mm au lieu de 1 mm

+ augmentation de 5% de la rigidité et de la contrainte équivalente.

D. Discussion

L'analyse avec Safe Shell des contraintes et déformations fait ressortir les points suivants:

1) La valeur maximum de la contrainte méridienne de flexion sur la face intérieure de la coupelle concave de 53 kg/mm² est peut être pessimiste pour les raisons suivantes:

- + le modèle en éléments finis rigidifie toujours une structure
- + les grandes flèches imposées à l'ondulation par rapport à l'épaisseur nécessiterait peut être une analyse non linéaire en grands déplacements, ce qui aurait probablement pour effet d'augmenter les contraintes de membranes et diminuer les contraintes de flexion.

Quoiqu'il en soit, le soufflet est très contraint et fonctionne probablement en partie en zone de plasticité conventionnelle (> 0,2% de déformation), comme semblent également l'indiquer les constatations suivantes:

- a) un soufflet non préalablement écroui (c'est à dire sortant de traitement thermique) et comprimé une fois à 60% perd quelques millimètres de longueur libre (c'est à dire est écroui de quelques %).
- b) un soufflet avant d'être monté sur machine de test pour épreuve à 10⁶ manoeuvres est préalablement testé en étanchéité à spires jointives: il perd ainsi 10 à 15% de longueur libre, est donc écroui de 10 à 15%, et malgré cela, perd encore quelques % de longueur libre après 10⁶ cycles!

 Si quelques doutes sur l'intensité de contrainte réelle peuvent subsister, la distribution calculée des contraintes de flexion méridiennes est certainement réelle et montre que:

- + la flexion de l'élément est pratiquement entièrement absorbée par la partie plate;
- + la face concave de l'ondulation est plus contrainte que la face convexe.

De ces remarques deux axes de développement se dégagent:

- a) refaire un outillage pour élargir la partie plate, 0,5 mm vers l'intérieur et l'extérieur par exemple. La diminution des contraintes sera plus forte que la diminution de la rigidité.
- b) éventuellement fabriquer des soufflets prototypes à deux épaisseurs: élément concave de 0,13 mm et élément convexe de 0,10 mm par exemple.

3) Le calcul des premières fréquences propres en fonction du nombre d'ondulations montrent que pour une excitation à spectre dans la gamme 0,10 Hz il ne devrait pas y avoir de problèmes d'oscillations entretenues. Des essais de soufflets plus longs, 120 ondulations par exemple, devront être également entrepris.

4) Enfin, l'analyse des contraintes et déformations montre encore une fois à l'évidence que compte tenu du niveau de fatigue élevé de cette application, les précautions les plus serrées, aussi bien quand au choix de la matière de base (absence d'inclusions, état de surface parfait) que lors de la fabrication (état de surface de l'outil d'emboutissage, manipulations) doivent être adoptées.

- 1) Safe Shell CERN/ISR-GE/78-8.
- 2) Standards of the Expansion Joint Manufacturers Association EJMA 1975.
- ³⁾ Microplasma Welded Bellows for UHV Applications, SB/AC/ST/227.

0.10	~ .		IN	DIC	DA	TE	NOM		MODI	FICAT	ION					
A A	+ : -	÷1												Fic	nee 1	
× 10.80	-1.2	m +i		A	22.	30	167.	.2	pos.	1_	٦					
× 310	9'0 1	21		Sou	Idure	e éta	nche	au	ride Ui	41/-7		682	2,35			
> 120	c'0 +											ø30	; ; ====-;			
23	n 0 5 0	8'0 H										 				-
	10.2	0.0 H					<u>ل</u> م.				4	1. 			16.	
						l		_		F	<u>リ</u>	 , 1				
DIMENSION	USINAGE	MECANO-SOUDU			tion= <u>120</u>	= 60	-									
GEI	NER/	ALES			-1021	neé		20% 20%					ł		36	
	DESSIN, RUGOSITE, TOLERANCES	SELON NORMES ISO			lg. libre de fat	lg montée = 120 - lg. comprim		10 Comaression = (1 L	
		écrite. uthorisa										ø5	0.			
		vritten a														
· ·	<u>﴾</u>	rrciales sans auto urposes without y			He	ito	yag	e l	ultra-	-vic	le et	en	nballa	ge		-
· +	-	i comme iercial p										·			FOURNISSELIDO	
]	des fins r comm							POS. MATIÈRE			COTES	BRUTES	No SCEM		
		ilisé à . used fo	É	Méc	anisi	me s	shutte	er					ÉCHELLE SCALE	DESSINÉ	19_3_79	Colur
on européenne yle projection		in ne peut être uti wing may not be		Tige	e di So	e Co Ut	le Fle	t (2	tuvab	le)			1:1	CONTRÒLE REMPLACE REMPLACE RÉDUCTIO	S, Scoles PAR N	17.6.79
- Projectic First ang		Ce dess This dra		ERN	V C	ERN	TION EU DPEAN OI	ROPEEN	NE POUR L TION FOR TEL : TELEX:	A RECH NUCLE (022) GENE	HERCHE NUCLI AR RESEARCH 83 61 11 VE 2 36 98	EAIRE	A_22	2. 310	1_4	

TESTS SOUS VIDE DE MEMBRANES Ø 30 x 50

Figure 2

Début test	Fin test	Matière	EP	N. élém.	lg étend.	lg comp.	course	cycle sec	Nombre de cycle	
17.11.78	21.11.78	PHYNOX	variable 0.20-0.15 0.13-0.10	90	nm 100	mm 50	mm 50	4	400.000	fuite sur élém. 0,10
17.11.78	23.11.78		n .	90	100	50	50	4	1.000.000	fuite élém. 0,10
17.11.78	27.11.78	u	н.	90	100	50	50	4	2.300.000	cassure élém. 0,10
5.12.78	8.12.78	,0	variable 0.20-0.15 0.13	80	100	50	50	4	1.000.000	fuite élém. 0,13
8.12.78	20.12.78	14	н	80	100	50	50	4	3.000.000	fuite élém. 0,13
11.12.78	15.12.78	н	н	80	100	50	50	4	1.373.000	cassure élém. 0,13
20.12.78	16.6.79	304 USA	variable 0.20-0.15 0.13	80	100	50	50	4	48.000.000	suite 8 cycles sec.
•	30.6.79	11	н	80	100	50	50	8	10.000.000	suite 1g 120 4 cy's sec
	8.11.79	н	н	80	120	70	50	4	9.914.000	suite 1g 100 8 cy's sec
-	13.12.79	"	н	80	100	50	50	8	9.692.000	vide OK arrêt test
	13.12.79	н	· · · ·	80					77.606.000	cycles total
22.1.79	16.6.79	304 USA	variable 0-20-0.15 0.13	80	100	50	50	4	38.000.000	suite 8 cycles sec
	30.6.79	· II		80	100	50	50	8	10.000.000	suite lg. 120 4 cy sec
	18.12.79	11	н	80	120	70	50	4	9.914.000	suite lg 100 - 8 cy sec
	13.12.79	, u ^r	11	80	100	50	50	8	9.692.000	vide OK arrêt test
	13.12.79	u .	u	80					67.606.000	cycles total
14.11.79	15.11.79	304 G.B.	variable 0-20-0.15 0.13	80	100	50	50	4	217.488	fuite élém. 0,13
14.11.79	15.11.79	н	п	80	100	50	50	4	217.488	fuite élém. 0,13
14.11.79	15.11.79	304 G.B.	variable 0.20-0.15 0.13	80	100	50	50	4	2.665.000	suite 8 cycles sec
	20.12.79	I	u	80	100	50	50	8	15.335.000	vide OK arrêt test
	20.12.79		н	80					18.000.000	cycles total
21.11.79	22.11.79	304 G.B.	variable 0.20-0.15 0.13	80	100	50	50	4	115.000	fuite élém. 0,13
22.11.79	23.11.79	304 G.B.		80	100	50	50	4	104.000	fuite élém. 0,13
29.11.79	20.12.79	∫ 304.G.B. 304 USA	0.20-0.15	80	100	50	50	4	14.000.000	vide OK arrêt test
1.12.79	16.12.79	304 USA	0.13	80	100	40	60	8	11.600.000	suite 4 cycles sec
	17.01.80	н	н	80	100	40	60	4	1.400.000	suite 6 cycles sec
	11.03.80	н		80	100	40	60	6	27.500.000	vide OK arrêt test
	11.03.80	н	0	80	100	40	60		40.500.000	cycles total
1.12.79	16.12.79	304 USA	0.13	80	100	40	60	8	11.600.000	cassure fatique
10.01.80	10.01.80	{304 G.B.	0.20-0.15	100	120	70	60	6	500.000	fuite 0,13
11 01 00	11 02 02	204 USA	0.13	00	400	40	60	r.	20 500 000	-
11.01.80	11.03.80	304 USA	0.13	80	100	40	60	b	29.500.000	cassure tatigue
31.03.80		Calorsta	0.13 it Ø32x46	100	120	70	ъυ	4		10.4.80 (4.000.000)
17.03.80	17.03.80	AM 350 Calorsta	0.13 it Ø32x46	80	100	40	60	4	19.000	cassure 35eme élém.
17.03.80	19.03.80	AM 350	0.13	100	120	70	60	4	70.600	cassure 50eme élém.

	Ĩ 2 2 2 2 2 2 2 2 2 2 2 2 2	•
	₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽	
TEN ROD BELLON	L 101 L	- 26 - COTTINIO -
TURE AN SHUT	┺ ┺ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽	SCAN AT PAGE

Figure 6

las D'rauciarer.

.

Figure 7

SCAN AT PAGE .	ዿጞጚ፼_ዀፚ ቓቜ፝፞፞ዿዿ¥ቝቝቝ፼ፙፙጟፙዿጟኇኇዀፙፙፙኯኇዸዸዀኇፙፙጟዸዺጟዸዸዀዼፙፙጟዸዾኯ	ELEMENT	LOADING CONDIT:	TTTL AA SHUTT
24 - CONTIAND -	<u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>	MERIDIONAL FORCE	10M 1	ER ROD BELLON
		HOOP FORCE		
	₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽	MERIDIONAL MOMENT		
	ຩ຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺	HOOP MOMENT		****
	Lingagagagagagagagagagagagagagagagagagaga	SHEAR		

Déformée de une oudulation 30/50 sous p= latur et 60 % de compression ----hr: ÷ ŧ 1 i + + 1 . ++ -2 1 400 7 Figure 8 SHICALO

RIGIDITE PAR ONDULATION EN FONCTION DE LA FLECHE A Rigidité Kg/mm 9 - 8 Δ Ø 7 6-. 10 5. 4-Valeurs mesurées sur un élément de 10 oud ----3-& Valeur calcular avec Safe Shell --2 . 1 Valeur mesurée sur un Soufflet de 80 ordes 1 0,5 0,6 fled 0,3 0.7 0.1 0,4 0,2 m Figure 9 FABRICATION

Distribution:

E. JONES S. Hilver (PS) JC. Brunel C. Rufer (PS) Ch. Maurer (SB) T. Wikberg R. Samuel (SB) B. Florence (SB) B. DANIELL (SB) C. Hauviller (ISR) F. THIZY (SB)