PS / ML / Tech. Note 88-07

AA / aa / June 20th, 1988

CALCULATIONS FOR A BRIDGE THERMALLY SHORT-CIRCUITING THE STOCHASTIC COOLING PICK-UPS FOR THE CERN ANTIPROTON COLLECTOR

Stochastic cooling requires wide-band and low-noise signal acquisition and processing. For this purpose, the CERN Antiproton Collector is equipped with six beam pick-up stations operating at cryogenic temperature (see figure 4). Each station consists of a high-vacuum vessel housing arrays of pick-up electrodes, actually cooled to about 100 K by radiation to a surrounding thermal shield, and two pre-amplifiers kept below 20 K. Refrigeration is provided by a pair of two-stage Gifford-McMahon helium cryogenerators, thermally linked to the pre-amplifiers and to the thermal shield. The cryogenerators also cool activated charcoal cryopanels, in order to

maintain a residual pressure in the vessel below 10^{-8} mbar. The choice of such cryogenic options is dictated by performance (steady-state and cool-down), simplicity of operation and maintenance, and high reliability.

In order to obtain better signals, it would be desirable to reach lower temperatures for the pick-up electrode beams.

A possible solution can be represented by simply short-circuiting the beams with the thermal screen by means of a metallic connection between them. This would transfer heat by means of conduction instead of radiation.

The thermal scheme could be represented by an electric circuit analogy:

The element D-E-F-G represents the pick-up electrode beam.

The elements A-E and B-F stay for the cantilever spring pivots suspending the beam. The elements C-D and G-H represent the metallic short-circuit. These last elements might consist of n parallel prebent and relieved silver-bearing oxygen-free copper (Cu-OFS) sheets. They are connected by welding or brazing to two Cu-OFHC plates of large thermal conductivity. These plates would then be fixed to the pick-up electrode beam and the thermal screen respectively.

The physical quantities I (current), V (voltage) and R (resistance) are equivalent to the thermal parameters according to the following:

V	⇒	Т	temperature
Ι	⇒	dQ/dt = Q	rate of heat transfer
R	⇒	L/A/kaveAB	thermal resistance

where

Q	=	exchanged heat
L	=	element length
S	=	element surface
k _{aveAB}	2	average thermal conductivity between temperatures A and B

The analogy is completed with the physical relationships between the previous quantities, i.e. law of heat conduction

Q' = $S * k_{aveAB} / L * \Delta T$ = $S / L * \int_{A}^{B} k dT$

equivalent to $0hm' s law, \Delta V = I * R$. Naturally we can now apply Kirchoff's law to nodes E and F:

point E	Ι ₁	=	$I_2 + I_3$
point F	I ₁	I	$I_2 - I_3$

therefore $I_3 = 0$

The model can be mathematically represented by the following equations

a)	Q'AE	=	Q' _{ED}
b)	Q' _{ED}	=	Q' _{DC}
c)	Q' _{AE}	=	$S_{AE} / L_{AE} * \int_{TE}^{TA} k dT$
d)	Q' _{ED}	=	$S_{ED} / L_{ED} * \int_{TD}^{TE} k dT$
e)	Q' _{DC}	=	$S_{DC} / L_{DC} * \int_{TC}^{TD} k dT$

We can calculate S_{AE} / L_{AE} by noting that: the cantilever spring pivots are made of stainless steel AISI 304, between 300 K and 100 K they actually deliver (CERN LEP-MA/85-29, CERN PS/85-47 (ML), table 2) 1.8 W each (Q'). For AISI 304, from CRYOGENIC DATA, D. H. J. Goodall, APT division, is

۲ <u>300</u>		۲ 300 r	100
) ₁₀₀ k dT	=]4 kdT-]4	k dT
	=	30.6 - 5.28	
	z	25.32 W cm ⁻¹	

$$\implies$$
 S_{AE} / L_{AE} = (1.8)/(25.32)
= 0.0711 cm

TA is room temperature, TA = 300 K.

 S_{ED} and L_{ED} are measurable directly from the pick-up electrode beam

To reduce the rigidity of the short-circuit it should be as wide and thin as possible. The minimum thickness available on sheet is 0.15mm. We assume as reasonable a 200 mm width. We can think of brazing the sheets to the inner part of the the pick-up electrodes, so that they describe a semicirconference at the most inner stroke point. The distances between beam and screen vary as

	point D	point E
min	4 5 mm	65 mm
max	75 mm	85 mm

The length required for the sheets is minimum when demanding to reach the 45 mm stroke plus the 80 mm of the beam, that is

The length required for the sheets is maximum instead when demanding to reach the 85 mm stroke plus the 80 mm of the beam, that is

LDC	=	π*(80+85)/2		
	=	259 mm	=	25.9 cm
S _{DC}	=	n (200) (0.15)		
	=	30 nmm^2	=	0.3 n cm ²

were n is the number of sheets in parallel.

Thermal conductivity for Cu-OFS can be retraced from data by CIDEC, Geneva, 1983

Т	k
73,1 5 K	1.25 cal/cm/s/K
90,15 K	1.13 cal/cm/s/K
173,15 K	1.04 cal/cm/s/K

Fitting with a parabolic curve, we have $k = sT^2 + tT + v$, where

 $a = 5.974486 \ 10^{-5};$ $b = -1.681514 \ 10^{-2};$ c = 2.160337.

TC can be assumed, from recent measurements (June 14th, 1988), around TC = 48 K.

Q', n, TD and TE are the unknowns of the problem

We can start the problem by assuming TD - TC = 6 K. Solving the above system of equations by iteration and assuming TE = 4K we find:

1st iteration

Q' = $S_{AE} / L_{AE} * \int_{4}^{300} k dT$ = (0.0711) (30.6) = 2.18 W

Q'	2	2.18 W
	=	$S_{DC} / L_{DC} * $ 48 k dT
	=	$S_{DC} / L_{DC} * k_{ave54-48} * \Delta T$
	=	(0.3 n) / (25.9) * (1.46 * 4.186) * (6) 0.424 n W
n	=	(2.18) / (0.424)
	=	5.1 sheets \rightarrow 6 sheets
		ſTE
Q'	=	$S_{ED} / L_{ED} * \int_{54} k dT$
TE	=	61 K
2nd iteration		
		300
Q'	=	$S_{AE}/L_{AE} * \int_{61} k dT$
	=	(0.0711) (28.5)
	=	2.02 W
Q'	=	2.02 W
	=	$S_{DC} / L_{DC} * $ 48 k dT
	=	$S_{DC} / L_{DC} * k_{ave54-48} * \Delta T$
	=	(0.3 n) / (25.9) * (1.46 * 4.186) * (6) 0.424 n W
n	=	(2.02 / (0.424)
	=	4.8 sheets \rightarrow 6 sheets
		ſTE
Q'	=	$S_{ED} / L_{ED} * \int_{54} k dT$
TE	=	61 K
If we now assu	ume TD ·	- TC = 10 K, and TE = 4K, we have:
<u>1st iteration</u>		
		r 300
Q'	*	$S_{AE}/L_{AE}*$ k dT
	=	(0.0711) (30.6)
	=	2.18 ₩
Q'	=	2.18 ₩ ſ 58
	=	$S_{DC} / L_{DC} * \int_{48} k dT$
	=	$S_{DC} / L_{DC} * k_{ave58-48} * \Delta T$
	=	(0.3 n) / (25.9) * (1.44 * 4.186) * (10) 0.698 n W
	-	

n	=	(2.18) / (0.698)
	=	3.1 sheets \rightarrow 4 sheets
		• TF
0,	=	Sen / Len * se k dT
•		
TE	=	65 K
2nd iteration		
		r 300
Q'	=	$S_{AE} / L_{AE} * \int_{65} k dT$
	=	(0.0711) (28.3)
	=	2.01 W
Q'	=	2.01 W
	=	S _{DC} / L _{DC} * J48 K dl
	=	$S_{DC} / L_{DC} + k_{ave58-48} + \Delta T$
	=	(0.3 n) / (25.9) * (1.44 * 4.186) * (10)
	Ŧ	U.698 n W
n	=	(2.01 / (0.698)
	=	2.9 sheets \rightarrow 4 sheets
		r TE
Q'	=	$S_{ED} / L_{ED} * \int_{58}^{58} k dT$
TE	=	64 K

Results:

	Q'	TA	TE	n	
TD-TC = 6 K	2.02 W	300 K	61 K	6	
TD-TC = 10 K	2.02 W	300 K	64 K	4	

The most stressed case is the one where the radius of curvature is minimum, therefore we take case of point D. To study the case we assume the following static representation

By Finite Element Method calculations (ANSYS^m-large displacements) we have, for the highest stessed points (A and D), a fatigue behaviour

σ _{max}	=	9.1	kg / mm^2
σ _{min}	=	0	kg / mm^2
σ _{ave}	=	4.55	kg / mm^2

For Cu-OFS, reversed bending test, with infinite number of cycles, the limit is $10.5 \text{ kg} / \text{mm}^2$, while for annihilated metal the tensile strength is $27 \text{ kg} / \text{mm}^2$, and proof stress, 0.2% offset is $18 \text{ kg} / \text{mm}^2$.

From these data, we can draw a Schimdt diagram giving a $\sigma_{max adm} = 15 \text{ kg} / \text{mm}^2$

A safety coefficient $\eta = \sigma_{max adm} / \sigma_{max} = 15 / 9.1 = 1.65$ is assured. The reaction forces (spring reaction) are 0.14 kg, and 6.9 kg mm. The additional weight brought by the proposed solution consist of

 $V(Cu-OFS) = (0.15)(200)(\pi^{*}125/2+2^{*}25)$

	=	7391 mm ³	=	$0.007391 \mathrm{dm}^3$
ρ	=	$8.94 \text{ kg} / \text{dm}^3$		
₩ (Cu-OFS)	= ~	4 * n * ρ * V + d: 1.5 kg	ifferent le	ngths
V (Cu-OFHC)	= =	(2) (150) (80) + 89400 mm ³	(2) (150) (2 =	218) 0.0894 dm ³
ρ	=	8.94 kg / dm ³		
W (Cu-OFHC)	= =	4*ρ*V 3.2 kg		

To be remembered that these masses can introduce changes in the dynamic behaviour of the system.

[$\int_{\tau_0}^{\tau_c} kd$	т		WATT OM	-1			
		COPPER		COPPE	R ALLOYS		ALUMINIUM	1	SS	CONSTANTA N
TEMP Degree Kelvin	Elect Tough Pitch	0.F.H.C.	Phos Deox	Be/Cu 98 Cu 2 Be	German Silver 60 Cu 25 Zn 15 Ni	Comm Pure 99 Al	Mn/Al (Approx N3) 98.5 Al 1.2 Mn plus traces	Mg/Al (Approx N5) 96 Al 3.5Mg plus traces	Average Types 303,304 316,347	
6	8.0	6.1	0.176	0.047	0.0196	1.38	0.275	0.103	0.0063	.024
8	19.1	14.5	0.437	0.113	0.0524	3.42	0.670	0.25	0.0159	.066
10	33.2	25.2	0.785	0.189	0.10	6.07	1.17	0.443	0.0293	.128
15	80.2	61.4	2.08	0.499	0.30	15.2	2.90	1.12	0.0816	.375
20	140	110	3.95	0.954	0.613	27.6	5.34	2.10	0.163	.753
25	208	168	6.35	1.55	1.02	42.4	8.50	3.38	0.277	1.24
30	278	228	9.25	2.29	1.53	59.2	12 3	4 90	0.424	1.91
35	345	285	12.6	7 16	2 11	77 7	12.5	4.90	0.424	2.44
10	106	200	12.0	3.10	2.11	11.5	10.7	0.08	0.607	2.44
40	400	338	10.4	4.15	2.15	96.2	21.7	7.70	0.024	3.12
50	508	426	25.3	6.50	4.15	134	33.0	12.4	1.35	4.57
60	587	496	35.5	9.30	5.68	170	45.5	17.9	1.98	6.12
70	651	554	46.8	12.5	7.28	202	58.9	24.2	2.70	7.75
76	686	586	53.9	14.6	8.26	220	67.2	28.2	3.17	8.75
80	707	606	58.9	16.0	8.93	232	72.8	30.9	3.49	9.43
90	756	654	72.0	19.9	10.60	258	87.1	38.2	4.36	11.1
100	802	700	85.8	24.0	12.3	284	102	45.9	5.28	12.8
120	891	788	115	33.0	15.7	330	132	62.7	7.26	16.2
140	976	874	146	43.2	19.2	376	162	81.1	9.39	19.7
160	1060	956	180	54.4	22.9	420	194	101	11.7	23.2
180	1140	1040	215	66.4	26.6	464	225	122	14.1	26.9
200	1220	1120	253	79.1	30.6	508	257	144	16.6	30.6
250	1420	1320	353	113	41.5	618	337	205	23.4	40.6
300	1620	1520	461	1150	53.2	728	417	271	30.6	51.6

The flow of heat through a solid of uniform cross section is given by $Q = \frac{A}{L} \int_{m}^{T_2} K dT$ where Q = rate of heat continue.

where Q = rate of heat conductionA = cross sectional area

K = thermal conductivity T_1 and T_2 are the temperatures at the ends of length L

The thermal conductivity integrals given in the tables are values of $\int_{T_{c}}^{T_{L}} KdT$ where T_{o} and T_{L} are temperatures along a heat flow path joining two reservoirs at $T_{o} = 4^{\circ}K$ and T_{L} at a length L from T_{o} . The $\int_{T_{o}}^{T_{L}} KdT$ heat flow through length L may then be determined from the difference in thermal conductivity integrals, i.e.

 $Q_{A}^{L} = \int_{T_{1}}^{T_{2}} KdT = \int_{T_{0}}^{T_{2}} KdT - \int_{T_{0}}^{T_{1}} Kdt \qquad \text{The units used are as follows:-} \\ Kdt \qquad Q (watts) L (cm) A (cm²) \\ K (watts/cm) T^{0}K.$

j j	Q.	N.N. 0.01	യ്ന ഗർ	ν. 0. Γ.	0 0 0 0	년 년 21 년 년	רא ויא סי סי
			(Ú	+ 1 + 1			+-1 +-1
	MOILISOA	AMPLI UP AMPLI LOW	AMPLI RGT AMPLI LFT	AMPLI RGT AMPLI LFT	АМРLI UP АМРLI LOW	AMPLI LFT AMPLI LFT	AMPLI UP AMPLI UP
	TEMP	47.0 47.0	4 4 4 0 4 0	44 44.1	4 4 8 8 0 0	4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	য় জ " " এ ব য য
	NOITI204	SCREEN IN SCREEN OUT	SCREEN IN SCREEN OUT				
		7063 HV.A	2002 MHU	UHM 3107	UVM 3207	11HM 4207	Zast WHO

1988-96-28-89:19:33

HC TAKS TEMPERATIRE STATUS (KELVIN)