CERN Accelerating science

002876999 001__ 2876999
002876999 005__ 20240430051149.0
002876999 0247_ $$2DOI$$9Elsevier B.V.$$a10.1016/j.physletb.2023.138238$$qpublication
002876999 0248_ $$aoai:cds.cern.ch:2876999$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002876999 037__ $$9arXiv$$aarXiv:2203.08663$$chep-ph
002876999 037__ $$9arXiv:reportnumber$$aUWThPh 2023-22
002876999 037__ $$aFERMILAB-PUB-22-170-V
002876999 035__ $$9arXiv$$aoai:arXiv.org:2203.08663
002876999 035__ $$9Inspire$$aoai:inspirehep.net:2053498$$d2024-04-29T17:51:28Z$$h2024-04-30T02:00:38Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002876999 035__ $$9Inspire$$a2053498
002876999 041__ $$aeng
002876999 100__ $$aBondarenko, [email protected][email protected]$$uIFPU, Trieste$$uSISSA, Trieste$$uINFN, Trieste$$vIFPU, Institute for Fundamental Physics of the Universe, via Beirut 2, I-34014 Trieste, Italy$$vSISSA, via Bonomea 265, I-34132 Trieste, Italy$$vINFN, Sezione di Trieste, SISSA, Via Bonomea 265, 34136, Trieste, Italy
002876999 245__ $$9Elsevier B.V.$$aNeutron stars as photon double-lenses: Constraining resonant conversion into ALPs
002876999 260__ $$c2023-10-11
002876999 269__ $$c2022-03-16
002876999 300__ $$a7 p
002876999 520__ $$9Elsevier B.V.$$aAxion-photon conversion is a prime mechanism to detect axion-like particles that share a coupling to the photon. We point out that in the vicinity of neutron stars with strong magnetic fields, magnetars, the effective photon mass receives comparable but opposite contributions from free electrons and the radiation field. This leads to an energy-dependent resonance condition for conversion that can be met for arbitrary light axions and leveraged when using systems with detected radio component. Using the magnetar SGR J1745-2900 as an exemplary source, we demonstrate that sensitivity to <math altimg="si1.svg"><mo stretchy="false">|</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>a</mi><mi>γ</mi></mrow></msub><mo stretchy="false">|</mo><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo><mn>12</mn></mrow></msup><mspace width="0.2em"/><mrow><mi mathvariant="normal">Ge</mi><msup><mrow><mi mathvariant="normal">V</mi></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> or better can be gained for <math altimg="si2.svg"><msub><mrow><mi>m</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≲</mo><msup><mrow><mn>10</mn></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo><mn>6</mn></mrow></msup><mspace width="0.2em"/><mrow><mi mathvariant="normal">eV</mi></mrow></math>, with the potential to improve current constraints on the axion-photon coupling by more than one order of magnitude over a broad mass range. With growing insights into the physical conditions of magnetospheres of magnetars, the method hosts the potential to become a serious competitor to future experiments such as ALPS-II and IAXO in the search for axion-like particles.
002876999 520__ $$9arXiv$$aAxion-photon conversion is a prime mechanism to detect axion-like particles that share a coupling to the photon. We point out that in the vicinity of neutron stars with strong magnetic fields, magnetars, the effective photon mass receives comparable but opposite contributions from free electrons and the radiation field. This leads to an energy-dependent resonance condition for conversion that can be met for arbitrary light axions and leveraged when using systems with detected radio component. Using the magnetar SGR J1745-2900 as an exemplary source, we demonstrate that sensitivity to $|g_{a\gamma}| \sim 10^{-12}\,\rm{GeV^{-1}}$ or better can be gained for $m_a \lesssim 10^{-6}\,\rm eV$, with the potential to improve current constraints on the axion-photon coupling by more than one order of magnitude over a broad mass range. With growing insights into the physical conditions of magnetospheres of magnetars, the method hosts the potential to become a serious competitor to future experiments such as ALPS-II and IAXO in the search for axion-like particles.
002876999 541__ $$aElsevier$$chepcrawl$$d2023-10-18T13:25:58.111556$$e6274115
002876999 540__ $$3publication$$aCC BY 4.0$$fSCOAP3$$uhttp://creativecommons.org/licenses/by/4.0/
002876999 540__ $$3preprint$$aCC BY 4.0$$uhttp://creativecommons.org/licenses/by/4.0/
002876999 542__ $$3publication$$d US government$$g2023
002876999 595_D $$a3$$d2022-03-23$$sabs
002876999 595_D $$a3$$d2022-03-28$$sprinted
002876999 65017 $$2arXiv$$aastro-ph.HE
002876999 65017 $$2SzGeCERN$$aAstrophysics and Astronomy
002876999 65017 $$2arXiv$$ahep-ph
002876999 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002876999 690C_ $$aCERN
002876999 690C_ $$aARTICLE
002876999 700__ $$aBoyarsky, [email protected]$$uLeiden U.$$vInstitute Lorentz, Leiden University, Niels Bohrweg 2, Leiden, NL-2333 CA, the Netherlands
002876999 700__ $$aPradler, [email protected][email protected]$$uCERN$$uVienna U.$$uVienna, OAW$$vInstitute of High Energy Physics, Austrian Academy of Sciences, Georg-Coch-Platz 2, 1010 Vienna, Austria$$vUniversity of Vienna, Faculty of Physics, Boltzmanngasse 5, A-1090 Vienna, Austria$$vCERN, Theoretical Physics Department, 1211 Geneva 23, Switzerland
002876999 700__ $$aSokolenko, [email protected]$$uFermilab$$uChicago U., KICP$$vTheoretical Astrophysics Department, Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA$$vKavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637, USA
002876999 773__ $$c138238$$mpublication$$pPhys. Lett. B$$v846$$y2023
002876999 8564_ $$uhttps://lss.fnal.gov/archive/2022/pub/fermilab-pub-22-170-v.pdf$$yFermilab Library Server
002876999 8564_ $$82487451$$s411264$$uhttps://cds.cern.ch/record/2876999/files/FERMILAB-PUB-22-170-V.pdf$$yFulltext
002876999 8564_ $$82487452$$s25797$$uhttps://cds.cern.ch/record/2876999/files/cont.png$$y00002 Sensitivity region on photon-ALP resonant conversion bounded by the solid (dashed) red line based on the assumption that a 20\% (5\%) spectral feature can be detected. Astrophysical constraints are cumulatively shown by the blue shaded region labeled ``high energy astrophysics'' (see~\cite{githublimits}) from magnetic white dwarfs (MWD)~\cite{Dessert:2022yqq} \revplb{and pulsar polar caps~\cite{Noordhuis:2022ljw}.} Laboratory limits from CAST~\cite{CAST:2017uph}, SHAFT~\cite{Gramolin:2020ict}, ABRACADABRA~\cite{Salemi:2021gck} and projections for ALPS-II~\cite{Ortiz:2020tgs}, IAXO(+)~\cite{2013ITAS...23T0604S}, DANCE~\cite{Michimura:2019qxr}, and ADBC~\cite{Liu:2018icu} are shown as labeled. Additional constraints that assume ALPs being DM are from haloscopes~\cite{PhysRevLett.59.839,HAYSTAC:2018rwy,ADMX:2019uok,HAYSTAC:2020kwv,Jeong:2020cwz,Lee:2020cfj,ADMX:2021nhd}, previous analyses using neutron stars~\cite{Foster:2020pgt,Darling:2020plz,Battye:2021yue}, \revplb{or axion stars~\cite{Escudero:2023vgv}}.
002876999 8564_ $$82487453$$s511456$$uhttps://cds.cern.ch/record/2876999/files/Publication.pdf$$yFulltext from Publisher
002876999 8564_ $$82487454$$s30143$$uhttps://cds.cern.ch/record/2876999/files/cont_r.png$$y00003 Dependence of sensitivity on the assumed location of radio-wave creation. In the main text it is assumed that it happens close to the surface. If the radio signal is instead created at a significant distance $r_\gamma = 2 r_0$ or $r_\gamma = 3 r_0$ from the NS surface (as labeled), the lower boundaries of the sensitivities change only very mildly. We also show an estimate for the change of the upper bound.
002876999 8564_ $$82487455$$s8904$$uhttps://cds.cern.ch/record/2876999/files/torne.png$$y00001 High-frequency radio spectrum of SGR J1745-2900 during two observational campaigns over several days in 2014~\cite{Torne:2015rha} and 2015~\cite{Torne:2016zid} together with reported fitted power laws that include additional data points below 10~GHz (not shown.) The solid lines show the effect of photon-axion conversion for $m_a\leq 10^{-8}$~eV and $g_{a\gamma} = 3\times 10^{-12}\,{\rm GeV}^{-1}$.
002876999 8564_ $$82487456$$s1024562$$uhttps://cds.cern.ch/record/2876999/files/2203.08663.pdf$$yFulltext
002876999 8564_ $$82487457$$s94807$$uhttps://cds.cern.ch/record/2876999/files/radioScheme.png$$y00004 Two principal options for \textcolor{red}{the location of the resonance surface with respect to the surface of the radio photon creation. The left panel corresponds to our main assumption $R_{\text{radio}}< R_{\text{res}}$, while on the right panel radio signal is created in the extended gray area.}
002876999 8564_ $$82487458$$s12231$$uhttps://cds.cern.ch/record/2876999/files/meffNS_GHz.png$$y00000 Real branch of the effective photon mass  as a function of photon frequency $\nu$ and  electron densities as labeled. The solid (dashed) red lines represent a neutron star environment with $B=10^{14}$~G ($10^{15}$~G). For comparison, the gray horizontal line shows a typical galaxy cluster central density~\cite{Sarazin:1986zz}. The  1$\sigma$-3$\sigma$ shaded bands are  inferred from the free electron distribution of the large scale structure at $z=0$~\cite{Garcia:2020qrp}.
002876999 960__ $$a13
002876999 980__ $$aARTICLE