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The global symmetries of a D-dimensional quantum field theory (QFT) can, in many cases, be captured
in terms of a (Dþ 1)-dimensional symmetry topological field theory (SymTFT). In this work we construct
a (Dþ 1)-dimensional theory which governs the symmetries of QFTs with multiple sectors which have
connected correlators that admit a decoupling limit. The associated symmetry field theory decomposes into
a SymTree, namely a treelike structure of SymTFTs fused along possibly nontopological junctions. In
string-realized multisector QFTs, these junctions are smoothed out in the extradimensional geometry, as we
demonstrate in examples. We further use this perspective to study the fate of higher-form symmetries in the
context of holographic large M averaging where the topological sectors of different large M replicas
become dressed by additional extended operators associated with the SymTree.
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I. INTRODUCTION

Global symmetries play an important role in constraining
the dynamics of quantum field theories (QFTs). It has
recently been shown that global symmetries are also
associated with deep topological structures [1]. This
has led to many generalizations, which now encompass
the standard textbook 0-form symmetries, as well as
various higher-form, higher-group, and higher categorical
structures.1

For aD-dimensional QFT,2 this topological structure can
often be captured in terms of a (Dþ 1)-dimensional

topological field theory, often referred to as a symmetry
topological field theory (SymTFT).3 In this framework, the
structure of the D-dimensional QFT is specified by fixing
appropriate boundary conditions in the SymTFT; we have a
nontopological physical boundary condition specifying a
choice of relative QFT, as well as a topological boundary
condition which fixes the global form of the QFT. This
approach is quite powerful, and immediately provides a
framework for extracting higher-categorical symmetries as
captured by topological fusion rules of the SymTFT.
While the existence of this SymTFT can be formulated
in purely bottom-up terms, it is helpful to note that for
QFTs with a top-down (i.e., stringy) realization, the
SymTFT naturally appears via a topological reduction of
the associated extradimensional noncompact geometry [20]
(see also [21–24]). This is especially helpful in the context
of intrinsically strongly coupled QFTs, e.g., D > 4 con-
formal fixed points.4

But QFTs can exhibit a range of possible phenomena and
it is natural to ask whether the current paradigm of
SymTFTs is flexible enough to accommodate all these
possibilities. In this work we study the structure of
SymTFTs for QFTs with multiple “decoupled” sectors in
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1For some recent reviews, see e.g., [2–6].
2We assume throughout that our QFT is Lorentz invariant

when formulated on RD−1;1.

3See e.g., [7–19].
4See [25,26] for recent reviews.
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which all connected correlators involving nontopological
operators admit a decoupling limit. In practice, this means
we have parameters/mass scales such that for connected
correlators between different sectors,

hO1O2iconn → 0; ð1Þ

in a suitable decoupling limit. We refer to these as multi-
sector QFTs. In our terminology, each sector is itself a
nontrivial interacting relative QFT.
Even though the different sectors have decoupled local

dynamics, their global form can still be nontrivially coupled
topologically.5 For example, the global form of the gauge
group in a multisector model can impose nontrivial con-
straints on the spectrum of Wilson lines.
To frame the discussion, an example which we repeat-

edly return to is that of a UV suNþM gauge theory which
undergoes adjoint Higgsing to suN × suM × uð1Þ gauge
theory in the IR. While there is no issue in defining Wilson
lines in the parent suNþM theory, the construction of
Wilson lines for just the suN or suM gauge theory sector
meets with immediate subtleties such as the proper treat-
ment of 1-form symmetries in a given sector.
In general, we can construct the corresponding SymTFT

for each individual sector, and then construct a junction
with a SymTFT which captures the symmetries of the
parent UV theory. Our main claim is that this procedure can
indeed be carried out, but there is in general no guarantee
that the theory living at the junction is topological. Carrying
this out for multiple SymTFTs fused by junctions, we arrive
at a treelike structure.
We refer to this tree as a “SymTree”. ASymTree consists of

branches,whichmerge at junctions. Each branch is associated
with a SymTFT, and each junction specifies gluing /
compatibility conditions for these bulk TFTs. The junctions
themselves need not be topological, and often support addi-
tional degrees of freedom. This also leads to a natural
categorical structure where collections of SymTFTs are the
objects and the junctions serve as morphisms. Rearrange-
ments of the branches of a SymTree amount to compatibility
conditions for the morphisms, i.e., homotopy equivalences.6

To establish this, we begin with the (Dþ 1)-dimensional
SymTFT for the full multisector QFT. Treating the topo-
logical couplings between sectors as supported in D
dimensions, we can pull these into the bulk. This results
in junctions of SymTFTs for the different relative QFTs.
Heavy defects defined in one relative theory are dressed by
extended operators in the bulk SymTFTs, which can split/
attach to other relative QFT sectors by passing through the
junctions. Similarly, symmetry operators attached to the

topological boundary of the full SymTFT can be pushed
through the junctions, resulting in symmetry operators
which are dressed by defects possibly attached to the
junction, and can also be shared between multiple sectors.
SymTrees have a direct geometric interpretation in string

theory. To begin, recall that string-realized QFTs decoupled
from gravity naturally arise from local geometries with
various singularities. In stringy terms, a multisector QFT
simply amounts to having a noncompact geometry with
more than one such singularity. Near each singularity we
get a collection of local operators, and heavy states which
stretch across the different sectors are integrated out,
leaving their imprint in the low-energy effective field
theory via higher dimension operators suppressed by a
scale Λ. Taking Λ very large and possibly tuning other
moduli then results in seemingly decoupled QFT sectors.7

While this provides a way to partially sequester the
contributions from different sectors, there are still residual
topological couplings which persist, even into the deep
infrared. Extending the picture of Ref. [20] to cover this
case, we observe that for a D-dimensional QFT, we can
indeed locally construct a (Dþ 1)-dimensional SymTFT
by extending in the “radial direction” emanating out from a
given singularity. But with multiple QFT sectors, this radial
direction inevitably fuses with other locally defined
SymTFTs. The resulting structure is thus really a junction
of individual SymTFTs which fuse along a possibly non-
topological D-dimensional interface. While the (Dþ 1)-
dimensional description is somewhat singular, it is clear
that this is smoothed out in the extra-dimensional geometry
of string theory. From this perspective, the stringy con-
struction (when available) leads to a systematic method for
constructing a SymTree. Any ambiguities in reading off the
SymTree amount to dualities/homotopy moves which
rearrange the branches of the SymTree.
The string theory characterization of heavy defects and

topological symmetry operators exactly fits with these
general considerations. Much as in [29] (see also [30–32]),
heavy defects arise from branes wrapped on noncompact
cycles which extend from a given QFT sector out to
“infinity” (i.e., where we impose the topological boundary
conditions), which are then partially screened by branes
wrapped on collapsing cycles. On the other hand, sym-
metry operators arise from branes wrapped “at infinity”
[33–35] (see also [36–41]). Pushing these branes in from
infinity so that they are shared across multiple QFT sectors

5This is somewhat distinct from the case of coupling a QFT to
a TFT studied in [27], but we explain the relation to the present
work in Appendix A.

6In principle there can be anomalies/obstructions in carrying
out such moves.

7This further tuning of moduli is sometimes necessary to truly
decouple the sectors. For example, another contribution which
often does not decouple are kinetic mixing terms between U(1)
gauge fields [28]. These arise from integrating out charged states
which could in principle be very heavy. This leads to a more
“obvious” nondecoupling effect, but one which is somewhat
orthogonal to the considerations of the present work. This
contribution can also be switched off via suitable tuning of
moduli.
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exactly matches with the bottom-up description in terms of
junctions of SymTFTs.
One of the general lessons from this sort of analysis is

that trying to characterize all categorical symmetry struc-
tures in terms of a single bulk SymTFT can obscure some
important features (though of course they are still present).
For example, there have been recent proposals that many
categorical structures are captured by a suitable fusion
(D − 1) Category (see e.g., [42–45]). Our present consid-
erations illustrate that both the objects, as well as mor-
phisms of the correct symmetry category for a general QFT
will inevitably be somewhat broader.8

We illustrate these general features with examples, many of
which also admit a top-down construction. As an illustrative
example, we consider 7D gauge theories engineered from
M-theory on an ADE singularity. In this case, the local
geometry takes the form C2=Γ for Γ a finite subgroup of
SU(2). There is an ADE classification of such singularities,
and this fixes the Lie algebra type of the corresponding gauge
theory, i.e., the relative QFT. The global form of the gauge
group is fixed by a choice of boundary conditions “at infinity”
on the generalized lens space S3=Γ in the asymptotic conical
geometry. Complex structure deformations of the singularity
correspond to adjoint Higgsing of the singularity, and can
result in multiple QFT sectors where all connected correlators
for local operators in different sectors decouple below the
Higgsing scale. Even so, there can still be topological
couplings between these sectors which correlate the structure
of heavy defects and topological symmetry operators.
Focusing on the local radial profile for these geometries,
we uncover a junction of symmetry TFTs with a nontopo-
logical interface theory, supported on the junction, setting
boundary conditions for the TFTs.
This basic geometric example generalizes in a number of

ways. For example, we can produce similar SymTree
structures for 6D superconformal field theories (SCFTs),
as well as their compactifications to lower-dimensional
systems. Similar considerations also apply in QFTs engi-
neered via D-branes probing singularities. For example, we
can also realize 4DN ¼ 4 Super Yang-Mills theory with an
A-type gauge group via spacetime filling D3-branes sitting
at a common point of C3. Partitioning up these
D3-branes to multiple stacks, we observe that these sectors
decouple in the deep IR, but that there are also massive
strings which are integrated out in taking this limit. The
associated bulk SymTree exhibits the same structure of
SymTFTs fused along a nontopological junction. One can
also apply the same reasoning in hybrid situations where we
have branes probing singularities; we can deform the
singularities and at the same time also separate the stacks
of D-branes in the extra dimensions, much as in [46].

The unifying theme in all of these examples is that we
start with a single “parent theory” and then consider a flow
in the moduli space of vacua to a multi-sector QFT. The
SymTree encodes a topological treelike structure associated
with this flow.
In addition to these examples, we also present examples

where the multisector model is not obtained from a flow in
moduli space. Such multisector models are ubiquitous in
string compactifications which typically have other seques-
tered sectors anyway. From a bottom-up perspective, these
sectors can be viewed as always being at infinite distance in
moduli space.
In all of these cases, we can use the “branes at infinity”

perspective to construct heavy defects as well as topo-
logical symmetry operators. Moving these objects into the
bulk and passing them to another sector explicitly illus-
trates that defects of one theory inevitably need to be
dressed by additional operators.
We anticipate that these considerations can be used to

study the structure of a wide variety of multisector QFTs.
Indeed, while our examples mainly focus on supersym-
metric multisector QFTs, the structure of a SymTree is
largely complementary data. Along these lines we also give
an example of a nonsupersymmetric Yang-Mills theory
coupled to a complex adjoint-valued scalar which has
precisely the same sort of SymTree as found in the
supersymmetric setting.
As another application, we use this perspective to study

largeM ensemble averaging in the context of the AdS=CFT
correspondence [47]. At a practical level, this is expected
for any “self-averaging” observable which is smooth in the
value of Newton’s constant.9 On the other hand, phenom-
ena such as the confinement/deconfinement transition are
observable in semi-classical gravity, but are also quite
sensitive to the specific higher-form symmetries of the
boundary theory [21,48]. One would presumably still like
to assert that even with largeM averaging, the Wilson lines
of SUðMÞ gauge theory serve as an order parameter for
confinement / deconfinement. Reconciling these two points
of view, we can consider a collection of large M replicas
with extended operators dressed by additional extended
operators. Dressing the Wilson lines of an individual
replica by operators shared across all the sectors yields a
general procedure for producing an order parameter which
is still sensitive to the higher-form symmetries of the
original large M gauge theory with no averaging. This
sort of construction also lifts to a top-down proposal for
implementing disorder averaging [46].10

8At the very least, the presence of nontopological interfaces
suggests that the collection of k-morphisms must be enriched.

9We review some aspects of self-averaging observables
in Appendix E.

10We caution that while this top-down procedure is designed to
produce the same answers “in the IR”, it will inevitably depart
from the single throat large M answer at short distances/high
energies. See also Ref. [49] for other aspects of generalized
symmetries in disorder averaged systems.
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The rest of this paper is organized as follows. In Sec. II
we analyze in general terms the symmetry field theory
associated with a multisector QFT. In particular, we explain
how junctions of SymTFTs arise in this setting. In Sec. III
we show how this treelike structure is smoothed out in the
extra dimensions of string constructions. Section IV
presents an illustrative example of SymTrees for 7D
Super Yang-Mills theory. We present additional examples
constructed via vacuum moduli space flows in Sec. V, and
in Sec. VI we construct examples where each sector is at
infinite distance in moduli space from its counterpart.
Section VII presents a nonsupersymmetric example of
SymTrees for Yang-Mills theory coupled to a complex
adjoint-valued scalar. In Sec. VIII we use this structure to
study higher-form symmetries in large M ensemble aver-
aging. Section IX contains our conclusions and future
directions. In Appendix Awe study the SymTree of a gauge
theory coupled to a TFT. Appendix B gives additional
details on a top-down derivation of single derivative terms
of a SymTFT. In Appendixes C and D we present more
details on some of the (co)homology calculations used in
the main body. Appendix E reviews some additional details
on ensemble averaging in holography.

II. SYMTREES

In this paper we shall be interested in the structure
of D-dimensional multisector QFTs, and a (Dþ 1)-
dimensional bulk theory which governs its symmetries.
While our considerations are motivated by string-theoretic
constructions, they can be stated in purely field theoretic
terms, and so in this section we opt to give a bottom-up
characterization of these structures. We defer a top-down
string-theoretic approach to Sec. III.11

To begin, we recall that the symmetries of a (relative)
D-dimensional QFT can be encapsulated in terms of a
corresponding (Dþ 1)-dimensional symmetry topological
field theory (SymTFT) [16–19]. In this symmetry TFT, the
global form of the QFT is specified by suitable boundary
conditions. More precisely, we have a state / physical
boundary condition jBphysi, or simply Bphys, as well as a
topological boundary condition hBtopj, or simply Btop,
which amounts to a choice of Dirichlet boundary con-
ditions for some of the fields of the SymTFT and Neumann
boundary conditions for others. The partition function of
the absolute QFT is then given by evaluation of the overlap
of states,

ZBtop;Bphys
¼ hBtopjBphysi; ð2Þ

in the obvious notation.

Heavy defects and topological symmetry operators can
be introduced in this framework in a straightforward
manner. First of all, we can consider symmetry operators
localized near the topological boundary condition. We can,
of course, move this operator into the (Dþ 1)-dimensional
bulk and over to the physical boundary. These symmetry
operators acts on the heavy defects of the QFT.
In the SymTFT, these heavy defects lift to defects which
fill out one more direction in the bulk, and stretch from Btop

to Bphys (see Fig. 1). Observe that symmetry operators and
physical operators now link both in the D-dimensional
physical boundary, as well as in the (Dþ 1)-
dimensional bulk.
Our interest here will be in QFTs with multiple sectors.

Our definition of this is to begin with distinct relative
theories T 1 and T 2. These theories might be coupled via
operator mixing terms. We demand, however, that there is a
limit of various mass scales and/or parameters in which
they decouple,

hO1O2iconn → 0: ð3Þ

A typical situation is operator mixing via higher-dimension
operators. In the limit where the suppression scale Λ → ∞,
this mixing term vanishes. While our definition also allows
for possible mixing by marginal operators (e.g., as would
occur in models with kinetic mixing) the essential points
are already covered by cases with just higher-dimension
operator mixing.
In any case, when the conditions leading to line (3) are

satisfied we refer to this as a multisector QFT. Clearly, we
can extend this to include any number of theories T i. We
then introduce another relative theory J (for “junction”)
which has only topological couplings to the original
relative theories and thus mixes the different sectors via
terms which do not fully decouple.
For each such sector T i, we can therefore speak of a

symmetry TFT Si which lives in Dþ 1 dimensions, and

has a physical boundary condition BðiÞ
phys specifying a

relative QFT. For each such SymTFT, we can also speak

FIG. 1. Standard SymTFT setup. Topological symmetry oper-
ators (green, U) link heavy defect operators (gray, D) in the
(Dþ 1)-dimensional slab. The defects stretch from the topologi-
cal boundary (blue, Btop) to the physical boundary (red, Bphys).

11There are many excellent resources for learning more about
string theory. See, e.g., Ref. [50].
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of the associated boundary conditions BðiÞ
top which fixes an

absolute theory. The boundary conditions BðiÞ
phys;B

ðiÞ
top are

separated in the (Dþ 1)-dimensional space and supported
individually on copies of spacetime. Collapsing slabs to D
dimensions these are then stacked.
We now glue the theories together. We start with the

original decoupled theories, T 1 and T 2, and assume these
admit descriptions by actions S1 and S2, respectively. Then
introduce the junction theory J 12, again assumed to have
an associated action SJ 12

. In these cases the topological
couplings captured by the SymTree are given by an overall
D-dimensional action

Sfull ¼ S1 þ S2 þ SJ 12
þ STmix; ð4Þ

where STmix describes topological mixing terms.12 The full
SymTree then further supplements Sfull by specifying the
path-integral. We refer to the relative theory associated with
the action Sfull as T full.
For non-Lagrangian theories the SymTree should be

considered as the definition of the topological couplings
we consider. More precisely, T full is schematically pre-
sented as

T 1

TFTT 1 ;J 12 J 12

TFTJ 12 ;T 2 T 2 ð5Þ

with TFTs TFTT 1;J 12
and TFTJ 12;T 2

in one higher dimen-
sion, which have edge mode theories as indicated by the
subscripts. In the end, the original sectors T 1 and T 2 now
interact via topological terms, as well as with an inter-
mediate gluing theory J 12. Clearly this same structure
extends to QFTs with many sectors, and so we can label the
original decoupled sectors as T i, with i∈ I an index. From
this, we can fuse together multiple decoupled sectors by
picking a subset J ⊂ I, with an associated J J of gluing
theories and a topological field theory TFTJ which couples
the different sectors together. We refer to the full (relative)
D-dimensional theory obtained in this way as T full. Let us
note that this sort of structure naturally appears in a number
of contexts, for example in adjoint Higgsing of a gauge
theory where the IR theory separates into sectors which are
decoupled (up to topological terms). It is also quite
common in stringy realizations of QFTs where there is a
clear notion of geometric localization of operators, includ-
ing geometrically delocalized sectors (the J ’s) which are
shared across multiple sectors. We turn to examples of this
sort in later sections.

Now, on general grounds, theD-dimensional theory T full
has its own SymTFT, which we refer to as Sfull. That being
said, there is clearly more fine-grained structure available
from decomposing the boundary D-dimensional theory
into its constituent parts, where each individual sector has
its own SymTFT. Indeed, for a given sector T i, we have an
associated SymTFT Si and in the discussion above we
make the identification,

Si ¼ TFTJ J;T i
: ð6Þ

Here, J J refers to a junction theory which couples together
some collection of theories as obtained from a subset J ⊂ I.
The process of coupling the T i sectors together can be
visualized in terms of a treelike structure ϒ; along each
terminating branch, we have a SymTFT Si as associated
with the theory T i. In this theory, we have a physical

boundary condition BðiÞ
phys. At the other end of Si, we can

fuse it to a collection of other SymTFTs. The fusion in
question involves a collection of theories indexed by J ⊂ I.
At this junction, we have the D-dimensional theory, and
emanating out from it, we have the other SymTFTs
(see Fig. 2).
Clearly, there are many ways to construct such a

junction, and each of them leads to a different treelike
structure (see Fig. 3). That being said, for each choice of
tree, we get a notion of a (Dþ 1)-dimensional bulk. Away
from all of these junctions, we can also speak of the
topological boundary for Sfull. Indeed, pushing all of the
junctions into the physical boundary conditions results in
the SymTree reducing to a single slab filled by Sfull. We
denote the boundary condition, obtained by stacking all
junctions and physical boundary conditions of the multi-

sector QFT, by BðretractÞ
phys .

For a depiction of “retracting” a SymTree, see Fig. 4. The

physical boundary condition after retracting, BðretractÞ
phys , is

equivalent to the D-dimensional theory given by

FIG. 2. We depict a trivalent junction J of symmetry TFTs.
The junctions supports the D-dimensional theory GJ ⊗ TFTJ.
Color conventions: Junctions are purple.

12This is distinct from the procedure of coupling a QFT to a
TFT discussed in Ref. [27]. In that case, the TFT is coupled in a
way such that overall no degrees of freedom are added and only a
change in polarization is achieved. We comment on the relation to
our construction further in Appendix A.
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dimensionally reducing S1 ⊗ S2 along the interval with
boundary conditions on one end given by the junction J ,

and on the other end by Bð1Þ
phys ⊗ Bð2Þ

phys.
We also have a operation related to retraction, which we

will refer to as “unzipping”. Whenever the multisector

QFT emerges via limits of various mass scales and/or
parameters, as discussed around (3), we are also handed the
initial, single sector, parent QFT with associated boundary

BðfullÞ
phys . Taking the discussed limits BðfullÞ

phys reduces to B
ðretractÞ
phys ,

i.e., the difference between these boundary conditions are
precisely the states which decouple in the limit. Here we
can immediately anticipate a convenient feature of the
SymTree; it often happens that the decoupled states emerge
as defects in the effective description, i.e., the spectrum of
defects enhances. These are then manifest in the SymTree
as we momentarily discuss. Retractions of SymTrees are
always allowed, these are a field theory manipulation.
There are of course other degenerations in which some
other subset of the edges of the SymTree are contracted. For
a trivalent SymTree we show the possible configurations in
Fig. 5. We will also see examples in top-down approaches
where, using the string theory construction, we are able to
embed a given multisector QFT into a moduli space which
has loci described by a single sector QFT. In this case,
moving between the different moduli, we can also “zip up”

the Symtree mapping BðiÞ
phys and the junctions to BðfullÞ

phys .
Summarizing, the local subsectors T i contribute relative

theories [16]. Practically, this means that they each deter-

mine physical boundary conditions BðiÞ
phys of a symmetry

topological field theory [18,51]. We have argued that
topological nondecoupling between a collection of such
relative theories amounts to interactions between their
symmetry theories, which we formalize via junctions.
Such junctions arise at the fusion of symmetry theories.
These boundary conditions are not necessarily purely
topological, rather they can be partially topological and
partially physical. As such, the junctions may themselves
support relative theories. Overall this results in a SymTree
of symmetry theories with internal junctions and external
boundaries (see Fig. 3). The data entering a SymTree
includes,

FIG. 3. Junctions can be assembled into trees (a). The tree ϒ
can be visualized as a horizontal cross section. Junctions can have
arbitrary valency (b).

(a) (b) (c)

FIG. 4. (a)–(c) Depiction of retracting a SymTree to produce the corresponding SymTFT Sfull for the multisector QFTwith topological
couplings between the different sectors. In terms of the SymTree, this amounts to pulling in the different branches into the physical
boundaries.
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Btop∶ Topological ði:e: gappedÞ boundary conditions;

BðiÞ
phys∶ Physical boundary conditions for relative theory T i;

J ∶ Junction with partially topological and partially physical boundary conditions;

ϒ∶ Tree built from SymTFTs and their junctions: ð7Þ

Evaluation of the partition function for the SymTree
theory depends on all this data, which we write as

ZðBtop; fBðiÞ
physg;ϒÞ. Instead of trees one could of course

consider arbitrary graphs, however, we find trees to arise in
examples throughout and therefore restrict to these.
It is natural to ask what happens if we rearrange the

branches of the tree, i.e., via an “associator move”. As an
example, consider the trees in Fig. 6. In passing from one
theory to the next, we get a possibly nontopological
junction, and we are stacking and unstacking it with other
junctions. This results in a new tree (and implicitly a new
set of junctions) ϒ0. For each such tree, there is a well-
defined (Dþ 1)-dimensional bulk. There can in principle
be an anomaly in performing this maneuver, and this just
amounts to the evaluation of the partition function for the
fused theory at the junction,

ZðBtop; fBðiÞ
physg;ϒÞ ¼ expðiαϒ;ϒ0 ÞZðBtop; fBðiÞ

physg;ϒ0Þ;
ð8Þ

where the factor expðiαϒ;ϒ0 Þ is a possible “anomaly”
associated with the branch rearrangement.13In the cases
we study in this paper, we typically have αϒ;ϒ0 ¼ 0,
but in principle it can be nonzero.14

Implicit here is a categorical structure which accom-
panies our SymTree. While we defer a full analysis of this
to future work, let us sketch some of its structure. Since we
are able to fuse more than two SymTFTs into a single
SymTFT, and since such manipulations take place in the

(a)

(c) (d) (e)

(b)

FIG. 5. Subfigures (b), (c), (d), and (e) show various degenerations of (a) achieved by contracting one or more of the three symmetry
theory slabs. Here Bhyb denotes a hybrid boundary condition which occurs whenever the branch of the SymTree connecting to Btop is
contracted. Hybrid boundary are generically not purely topological. When a physical boundary condition is fused with a junction a new
junction J 0 emerges.

13A priori, it could happen that the discrepancy between the
two theories is captured by more than just a complex phase. In
such cases, we anticipate that the “anomaly” is captured by the
associator α of the (Dþ 1)-category whose objects are SymTFTs,
where α is a natural collection of isomorphisms,

α1;2;3∶ S1 ⊗ ðS2 ⊗ S3Þ⟶≅ ðS1 ⊗ S2Þ ⊗ S3: ð9Þ
14For example, in stringy models with a bulk flavor brane or

other gapless QFT it is quite likely that the obstruction class is
nontrivial.
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category of (Dþ 1)-dimensional TFTs, we have a (Dþ 1)-
functor category between BordDþ1 and a suitably defined
(Dþ 1)-category C. This naturally suggests a multifusion
(Dþ 1)-category whose objects are SymTFTs. In this
language, the zipping and retracting procedures
can also be phrased naturally. First, notice that any
boundary condition Bphys can be thought of as an element
in HomðSfull; 1Dþ1Þ where 1Dþ1 is the trivial (Dþ 1)-
theory. We have seen that the retraction of two branches

with boundary conditions Bð1Þ
phys and Bð2Þ

phys to some BðretractÞ
full

always exists by dimensionally reducing S1 and S2. This
means we have a product ⊗retract: HomðSfull; 1Dþ1Þ×
HomðSfull; 1Dþ1Þ → HomðSfull; 1Dþ1Þ. Meanwhile, the
process of zipping additionally relies on a map

F∶HomðSfull;1Þ→HomðSfull;1Þ where Bfull ¼ FðBðretractÞ
full Þ

has additional degrees of freedom which is specified by the
string construction. We leave a full exploration of this
structure to future work.15

We now proceed to analyze the dressing of defects, and
then turn to the dressing of symmetry operators. We turn to
the stringy characterization of SymTrees in Sec. III.

A. Heavy defect operators

We begin by studying the heavy defects for a junction of
SymTFTs, i.e., heavy the defects of our SymTree. The
simplest nontrivial case is a trivalent junction J between
the symmetry TFTs of the theories T 1, T 2 and T full. We

impose physical boundary conditions BðiÞ
phys for the Si

theories for i ¼ 1, 2, and topological boundary conditions
Btop for theory Sfull (see Fig. 2).
The topological boundary conditions determine which

defects can end at the associated boundary, and sets the
global form of the full multisector QFT. Consider a defect
ending at Btop and stretch it across Sfull to the junction J .
From here, three possibilities can occur:
(1) The defect ends on the junction giving a defect of the

junction theory. There is a single spacetime defect
and it is not a defect of the relative theories T i [see
Fig. 7(a)];

(2) The defect can not end on the junction and continues

on to the boundary BðiÞ
phys resulting overall in a defect

of the junction theory and one of the relative theory.
There are now two spacetime defects. We say the

defect of the relative theory BðiÞ
phys is dressed by the

junction defect [see Fig. 7(c)];
(3) The defect does not end on the junction and frac-

tionates into two defects which end on the two
physical boundaries. We obtain a defect in the

junction theory and the two relative theories BðiÞ
phys.

The latter pair is dressed by the junction defect. [see
Fig. 7(e)];

In addition to these three cases we also have the case,
(4) The defect stretches from Bð1Þ

phys to Bð2Þ
phys or vice

versa, passing through the junction and not attaching
to the topological boundary [see Fig. 7(d)].

In principle there could also exist defects which just stretch
between the junction and the physical boundaries, see
Fig. 7(b).
We have implicitly assumed that all spacetime defects

are stacked, i.e., they have identical spacetime support. Let
us now separate these defects. Consider for instance the
setup of case 2, here we separate the junction defect from
the physical defect. This results in a portion of the
associated defect in the symmetry theory to run parallel
to spacetime. We can localize this portion within the
junction. In spacetime this portion realizes a topological
operator, in one higher dimension, stretching between the
separated spacetime defects (see Fig. 8).
Similar remarks hold for the other cases. Whenever we

separate spacetime defects a spacetime topological defect
in one higher dimension emerges bounded by the initial

FIG. 6. We depict two SymTrees related by an associator move
ϒ ↔ ϒ0. There is an anomaly whenever fusion of trivalent
junctions produces distinct tetravalent junctions. Generalizations
are immediate. This can be accompanied by a nonzero obstruc-
tion class/anomaly αϒ;ϒ0, although the examples considered in
this paper have no such obstruction.

15Let us comment that it has recently been proposed that a
suitable fusion (D − 1)-category captures the categorical sym-
metry of a D-dimensional QFT (see e.g., [42–45]). One can in
principle still speak of the fusion (D − 1)-category for the full
theory T full, but here we have observed the appearance of some
additional structure as associated with a fusionD-category for the
SymTFTs themselves.
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defects. With this we can now introduce a notion of genuine

defects for the relative theories BðiÞ
phys. We call defects

genuine if they run between the topological boundary
condition and a single physical boundary and nongenuine
otherwise. Genuine defects are constructed from defects of
a single physical boundary via dressings. This definition is
such that the defects depicted in Fig. 7(d) are nongenuine.

If we separate the defects of Bð1Þ
phys and Bð2Þ

phys in spacetime
there will always be a topological operator running between
these no matter the dressing. On the other hand, for
example, the defect in Fig. 7(c) is genuine.

B. Topological symmetry operators

We now study topological symmetry operators for our
SymTree. To illustrate the main points, it again suffices to
consider the trivalent junction comprised of SymTFTs Sfull,
S1 and S2. We assume that away from the junction we have

imposed a topological boundary condition Btop for Sfull,

and physical boundary conditions BðiÞ
phys for the relative

theories T i.
We begin by considering a symmetry operator located at

the topological boundary condition for Sfull. Our aim will
be to understand the structure of this symmetry operator as
we move it from the boundary Btop through the junction,
and eventually on to either of the physical boundaries.16

With this our starting point is the configuration depicted in
Fig. 9(a). As in our analysis of defect operators, we
emphasize three generic possibilities:

(a)

(c) (d)

(e)

(b)

FIG. 7. (a)–(e) Sketch of possible defect configurations for a trivalent junction of symmetry TFTs. The red and purple dots denote the
spacetime defects, the brown line marks the defect within the SymTree. The purple junction defect is said to dress the red boundary
defects.

16This subset of bulk operators of the SymTree is identified
with the symmetry operators of a multisector QFT with string
construction. In such settings topological symmetry operators can
only be constructed in the asymptotic boundary which becomes
Btop in the SymTree.
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(1) The boundary conditions for Sfull set by the junction
J are such that the topological symmetry operator
can not be deformed across the junction.

(2) The topological symmetry operator can be deformed
across the junction to a topological symmetry
operator in the slab with TFT Si [see Fig. 9(b)].
The deformation across the junction comes at the
cost of a dressing, i.e., an additional topological
symmetry operator localized in the junction. This
pair of symmetry operators can further be connected
by a topological operator in one higher dimension.

(3) The topological symmetry operator can be deformed
across the junction to a collection of topological
symmetry operator in the slabs S1 and S2 [see
Fig. 9(d)]. Again, there may be a dressing and
additional higher-dimensional topological operators.

Clearly there exist further configurations. For one we
can, starting from (a), deform only a portion of the
symmetry operators into/across the junction. This can give
the configurations (c), (e), (d) in Fig. 9. We can also
consider different starting points instead of (a), e.g., any of
the configuration depicted in Fig. 9 or configurations
similar to (a) with a collection of operators UðiÞ contained
in the slabs attaching to physical boundaries. Given this
large collection of symmetry operators the key point is that
they are subject to an equivalence. Two configurations are
equivalent precisely when they can be deformed into
each other.
From this, the action of the symmetry operators, defor-

mation equivalent to configuration Fig. 9(a), on heavy
defects is now clear. For such operators the action on
defects is given by considering the distinguished

(a)

(b)

(c)

FIG. 8. We sketch a deformation of the defect configuration depicted in (a). In (a) the purple and red defect are coincident in spacetime,
as shown on the left-hand side in (c). In (b) we displace these along a spacetime direction x⊥ and deforming the resulting defect
configuration into a horizontal and vertical piece we find a topological operator bounded by the initial pair of defects, as depicted on the
right-hand side in (c).
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representative purely contained in the slab of the symmetry
theory Sfull. It acts in standard fashion via linking on the
part of the defect which extends into that slab. The
computation therefore fully restricts to Sfull.
Similar to the spacetime deformation depicted in Fig. 8

we can separate the various components contributing to
symmetry operators, e.g., as depicted in Fig. 9. In the
spacetime we have topological operators in one higher
dimension which bound the individual components.

III. TOP-DOWN APPROACH TO SYMTREES

In the previous section we presented a bottom-up
analysis of multisector QFTs and the SymTree which

governs their symmetries. We now proceed from the top
down, showing that for multisector QFTs with a stringy
realization, this treelike structure directly descends from
extradimensional geometry. Throughout, we shall work on
spacetimes of the form RD−1;1 × X where X is taken to be a
noncompact background which preserves some amount of
supersymmetry in the D-dimensional spacetime.17

With this in mind, we will be interested in either a
10D (e.g., type IIA and IIB backgrounds) or 11D (i.e.,
M-theory) starting point in which we have QFTs which are

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Sketch of different topological symmetry operator configurations for a trivalent junction of symmetry TFTs. We consider the
initial configuration depicted in (a). Deforming it (partially) across/into the junction gives various equivalent configurations of
topological operators presented in subfigures (b)–(f). The dashed lines indicate topological operators in one higher dimension. We
denote nongenuine operators at their boundaries as V;Vð1Þ;Vð2Þ, also represented by green dots. The purple dots again depict dressings.
Both the dressings and the higher-dimensional operators can be trivial.

17The supersymmetry condition is more so that we have
tractable examples to discuss rather than any intrinsic limitation.
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localized at singularities. We refer to this higher-
dimensional bulk theory as BLK. In the extradimensional
geometry such singularities can either arise from a singular
metric profile (as in geometric engineering) or from branes
probing the local geometry (which might also have metric
curvature singularities). In principle these singularities need
not be isolated; when gravity is decoupled there can be
additional branes/singularities supported on noncompact
cycles. For ease of exposition we shall mainly focus on
cases where we do not have such “flavor branes” but the
analysis we present naturally extends to these cases as well.
We denote the singularities of X by Sing ¼ ⊔i∈ ISingi
where i∈ I labels connected pairwise disjoint components
of Sing. We take Sing to have finitely many compact
components and no noncompact components. In this case,
there is a one to one correspondence,

BðiÞ
phys ↔ Singi; ð10Þ

between relative QFTs and singular components. We shall
often depict these geometries by putting “∞” at the top of a
figure, and the individual singularities/throats near the
bottom. One should view this as a fattening up of the
SymTree, but in which we have rotated the picture by
90 degrees so that the topological boundary conditions are
now at the top. We do this in part to emphasize the
top-down nature of the construction, but also because it is
easier to read off the relevant physical data in this
presentation. See Fig. 10 for a depiction of such a top-
down geometry.
To illustrate how one reads off the symmetry TFT

associated with such a geometry, suppose first that we
have a single isolated singularity, and that our background
X has the form of a conical singularity Coneð∂XÞ where ∂X
refers to the conformal boundary of X, and the relative QFT
is localized at the tip of the cone. As a point of notation, we
shall introduce a radial coordinate r and refer to r ¼ 0 as
the tip of the cone (where the QFT lives) and r ¼ ∞ as the
asymptotic boundary. From this starting point, we can
consider branes which extend from ∂X to the tip of the

cone, giving rise to heavy defects [29–32]. Branes purely
wrapped in ∂X give rise to symmetry operators, i.e.,
topological defects [33–35]. The global form of the relative
QFT is specified by a choice of boundary conditions at ∂X
for the bulk supergravity fields. By inspection, the radial
direction of the conical geometry suggestively resembles
the extra dimension of a symmetry TFT.
Indeed, in Ref. [20] (see also [21,22]) it was noted that

one can start from the topological terms of the bulk
supergravity theory BLK and dimensionally reduce along
the linking geometry ∂X which might also be threaded by
various supergravity fluxes (sourced by the branes at the tip
of the cone), which we denote as F. This results in a
(Dþ 1)-dimensional TFT which captures some of the
interactions terms of the SymTFT which we label as
Sð∂X;FÞ, in the obvious notation.18 This construction
beautifully shows how SymTFTs arise from an extra-
dimensional starting point. Moreover, the boundary states
hBtopj and jBphysi are clearly manifest as the boundary
conditions of the conical geometry at r ¼ ∞ and r ¼ 0,
respectively.
Multisector QFTs naturally arise in backgrounds where

X supports multiple singularities. In what follows, we again
assume that X is asymptotically conical, i.e., we assume
that there exists a coordinate 0 ≤ r ≤ ∞ such that near
r ¼ ∞, we have a conical geometry Coneð∂XÞ. The differ-
ent sectors are sequestered from each other because branes
stretching between different singularities have a mass scale
set by the size of this distance. In the corresponding
effective field theory, this serves as a suppression scale
for higher-dimension operators. Even so, there can still be
nontrivial topological couplings between sectors, as cap-
tured by defects and symmetry operators.
The SymTFT for this multisector QFT arises from a

similar procedure to that given in [20]. In principle, we
simply need to perform a dimensional reduction on the
linking geometry ∂X, and read off the corresponding
(Dþ 1)-dimensional SymTFT. Observe, however, that
in this case the “radial direction” only makes sense near
r ¼ ∞. Indeed, as we proceed to the interior of the
geometry we find additional structure as captured by
the individual sectors of the model. Proceeding deep into
the interior (i.e., for r sufficiently small) we now allow
for the geometry to fragment into other local conical
geometries, each with their own localized singularity
supporting a relative QFT. Indexing the collection of such
localized singularities as Singi and their associated relative
theories as T i, we have a local radial coordinate ri which
points out from its corresponding singularity. For each such
local patch we can again speak of a background Xi and

FIG. 10. Sketch of double throat internal geometry with two
sets of localized degrees of freedom (red). Horizontal slices of
constant radius are initially disjoint and then combine resulting in
a connected asymptotic boundary.

18Some of the terms of this SymTFT can be recovered by
requiring appropriate braiding rules for extended operators in the
associated SymTFT. These braiding rules follow from bulk
kinetic terms, as shown in Appendix B.
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boundary ∂Xi. Consequently, we see that the “full”
SymTFT Sð∂X;FÞ is given by reduction on ∂X, and the
SymTFT for each sector is instead captured by
Sð∂Xi; FiÞ≡ Si, in the obvious notation. Each such Si

admits physical boundary conditions jBðiÞ
physi at ri ¼ 0 (i.e.,

where the relative QFT lives), as well as topological

boundary conditions hBðiÞ
topj.

By inspection, we see that the resulting background X
resembles a tree. On the other hand, the SymTree picture
has now been “fattened up” in the extra dimensions, so that
sharp edges associated with junctions are now smoothed
out / delocalized. We can project down to a tree again by
integrating the topological terms of the bulk theory BLK
over the linking geometry which is piecewise of the form
∂Xi, but additional care is needed in the fusion of multiple
linking geometries, as well as the flux profiles. We return to
this shortly, but for now it should be clear that the SymTree
has an interpretation in the stringy extradimensional
geometry.
The construction of heavy defects and topological sym-

metry operators proceeds much as in the case of a single
singularity. Symmetry operators result from (flux-)branes
wrapped on asymptotic cycles in ∂X. These are at infinite
distance from the QFT degrees of freedom which we
assume to be localized in the bulk and hence result in
operators interacting only topologically with the QFT.
See [33–35,39] for further details and [36,38,40,41,52]
for applications. As such they engineer topological

operators in the QFT.19 The novelty here is that as the
heavy defects descend to different sectors of our system,
they can fractionate and become dressed by operators of the
smoothed out junctions, as well as defects of other sectors.
Note also that a topological operator of the full system can,
in an individual throat, end up being dressed by other
defects, rendering it “nongenuine”. See Fig. 11 for a
depiction of how heavy defects and symmetry operators
descend to individual sectors of the system.
With this we can turn to the question of which

operators constructed in Fig. 11 are genuine and non-
genuine. For example, consider the brane configuration in
Fig. 11(a). Deforming the locus along which a defect
attaches to Sing in spacetime, as shown in Fig. 12,
we find the component of the string/brane stretching
between the local models gives rise to a topological
operator. From the perspective of an individual throat
the initial defect is nongenuine. Similar comments apply
to other configurations displayed in Fig. 11. Note that this
discussion exactly parallels our “bottom-up” analysis
in Sec. II.

(a) (b) (c)

(d) (e) (f)

FIG. 11. Top row: Defects of a double throat geometry X with two local sectors. Strings/branes either run between singularities (a) or
between a singularity and the asymptotic boundary (b) or between multiple singularities and the asymptotic boundary (c). Bottom row:
Symmetry operators of a double throat geometry. The symmetry operators of the full theory are strings/branes wrapped in the asymptotic
boundary (d). These admit deformations into a single local model (e) or deformations into multiple local models (f) joined by a possibly
trivial string/brane configuration.

19Reading off the precise form of the generalized symmetries
directly from the string background depends on the details of the
geometry and fluxes. In the absence of fluxes, it is captured by a
relative homology group, but when fluxes are present a suitable
generalization of twisted K-theory must be used. For further
discussion on the latter point, see Appendix A of Ref. [39].
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A. Projection to a SymTree

Having spelled out the general strategy for extracting the
SymTree of a multisector model directly from X, we now
provide an algorithmic procedure for reading off this data.
The discussion splits up into the contribution from the
geometry of X, and if present, additional contributions from
fluxes threading ∂X as well as the individual branches ∂Xi.
With this in mind, we first begin by explaining in more
detail how the different “boundary geometries” ∂Xi fuse
together to form the SymTree, focusing in particular on the
singular homology of these spaces and how they consis-
tently glue together. To read off the SymTFT we will also
extract the associated differential cohomology (following
[20,53]), but one might entertain a generalization such as
differential K-theory. The contribution from fluxes follows
a similar procedure: we find that along each segment of the
resulting SymTree, we have a piecewise constant contri-
bution from flux, but that this “jumps” across the junctions
of the SymTree. This sort of jumping phenomena is
indicative of additional degrees of freedom localized at
the junction, precisely as expected on general grounds.
Reduction of the bulk theory BLK topological terms then
results in our SymTree theory.

1. Filtrations and trees

We now turn to the treelike structure obtained by
“projecting down” onto the radial direction of X. Recall
that X has singularities Sing ¼ ⊔i∈ ISingi with finite index
set I. Generically there is no unique treelike structure given
X. Rather, a particular treeϒ is only specified once we have
determined how to sweep out X via radial shells, as

specified by a filtration FX. Much as in other stringy
realizations of QFTs, ambiguities in reading off a specific
SymTree from geometry amount to nontrivial dualities/
associator moves of a SymTree.
Given a geometry X we therefore also require the

existence of a filtration FX over the real half-line, para-
metrized by the “radius” r∈ ½0;∞Þ and with radial
shellsUr and the indexed family of sets fBrgr≥0 whereBr ¼
∪s≤r Us and ∂Br ¼ Ur. Among all possible filtrations we
consider those with following favorable properties:

(i) The filtration is centered on the singularities of X;
we impose B0 ¼ Sing. The filtration sweeps out the
full geometry—we impose B∞ ¼ X;

(ii) The filtration describes a disjoint collection of local
models at small radii. We impose

0 < r ≤ ϵ∶ Br ∼ ⊔i TubeðSingiÞ ð11Þ

for some ϵ > 0 where TubeðSingiÞ is the tubular
neighborhood of Singi and no two tubes overlap.
Tubes capture topological structure of a local model
centered on Singi;

(iii) The filtration is topologically piecewise constant.
There only exist finitely many critical radii, denoted
rk which we label as rk < rl for k < l, such that balls
wedged between the same critical radii are topo-
logically equivalent,

rk < R1 < R2 < rl∶ BR2
→ BR1

: ð12Þ

Here → denotes a deformation retraction from
BR2

to BR1
. In particular the integral homology

(a) (b)

FIG. 12. (a) String/brane running between two local models. Such an object admits a partition into three pieces, two of which are
contained in a local model, and one which connect the two via the bulk of X. In the QFT spacetime the result is a pair of defects Eð12Þ.
(b) Deforming the configuration into a spacetime direction x⊥ the bulk part of the string/brane gives a topological operator bounded by
the defects. Individually the defects EðiÞ are nongenuine.
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(and homotopy) groups are constant along the
interval ðrk; rlÞ, so we have

HnðBR1
Þ≅HnðBR2

Þ; HnðUR1
Þ≅HnðUR2

Þ; ð13Þ

(iv) The filtration has one asymptotic boundary. The
maximal radius r� ¼ maxfrkg is such that Br� is
connected and there are deformation retractions
X → Br and ∂X → ∂Br for all r ≥ r�.

Now, given such a filtration FX of the geometry X we
associate to it a SymTree, for a given choice of theory IIA,
IIB, M, by compactification of the topological terms
of the respective supergravity theory BLK over the boun-
dary ∂Br ¼ Ur. At each value of the radius r we have
π0ð∂BrÞ connected components and on each component
distinct topological fields are present. At the critical radii π0
jumps and previously disjoint local models combine.
Consequently, the symmetry TFT is defined on a tree ϒ
(see Fig. 13).
Generically, this tree has jIj þ 1 external nodes. Of these

jIj are located at r ¼ 0 and a single vertex is at r ¼ ∞. The
singularities Sing ¼ ⊔i∈ ISingi specify relative theories

setting enriched Neumann boundary conditions BðiÞ
phys at

the jIj vertices at r ¼ 0. Further, there is a topological
boundary condition Btop at the asymptotic node at infinity
which determines the overall global form.
Internal nodes arise whenever the number of connected

components of ∂Br ¼ Ur change. At the first transition
r ¼ r1 some local models centered on the individual
connected singular loci Singi combine, such combined
neighborhoods then continue to grow, merging with similar
neighborhoods at critical radii rk into larger neighborhoods
containing more and more components of Sing. The
number of connected components π0ð∂BrÞ decreases with
increasing radius r and is locally constant away from
critical radii (see Fig. 13).

2. Y-shaped junctions and their homology

Generically there are jIj − 1 internal trivalent vertices at
which two previously disjoint local models combine. The
tree ϒ then parametrizes a collection of such combinations.
It suffices to consider a single trivalent vertex as in Fig. 14.
Such a junction of symmetry TFTs is supported on a
Y-shaped tree. On the two legs at small radii we have
the TFTs S1 and S2. At the internal vertex these attach to
the TFT S12 describing symmetries at large radii. At the
internal vertex additional fields can be localized and enter
into the gluing conditions.
We now derive the gluing conditions at the junction from

geometry. First, note that the topological fields on the legs
of the Y-shaped graph derive via dimensional reduction
over the radial slices Ur and we therefore need to track the
corresponding cycles of Ur<r� through Ur¼r� to cycles
of Ur>r� .

20 We reformulate this problem by noting that
Ur>r� is the deformation retract of the pair of pants,

BR2>r>R1
¼ ∪

R2>r>R1

Ur; R2 > r� > R1; ð14Þ

which has boundary ∂BR2>r>R1
¼ UR2

∪ UR1
. Clearly there

are embedding maps URi
↪ BR2>r>R1

and we denote their
degree n lift to homology by

|ðr<r�Þ
n ∶ HnðUr<r� Þ ≅ HnðUR1

Þ → HnðBR2>r>R1
Þ

≅ HnðUr¼r� Þ;
|ðr>r�Þ
n ∶ HnðUr>r� Þ ≅ HnðUR2

Þ → HnðBR2>r>R1
Þ

≅ HnðUr¼r� Þ; ð15Þ

which compare cycles in large radius shells with those of
small radius shells by embedding them both into the critical
shell (see Fig. 15).

FIG. 14. Two relative theories BðiÞ
phys with symmetry topological

field theory Si which combine to Sij terminated by topological
boundary conditions Btop. From this fundamental junction more
generic graphs can be built.

FIG. 13. Radial filtration fBrgr≥0 of the singular geometry X
with ∂Br ¼ Ur.

20Note that Ur<r� , Ur¼r� , and Ur>r� are defined for fixed r and
r� so these are codimension-1 subsets.

TREELIKE STRUCTURE OF SYMMETRY TOPOLOGICAL FIELD … PHYS. REV. D 109, 106013 (2024)

106013-15



Cycles of small and large radius shells are further put in
relation by two Mayer-Vietoris long exact sequence, one
for small radii and one for large radii. These are setup such
that the mappings (15) are maps of these sequences,
offering a tool to compute them.
We begin by describing the small radius sequence.

Denote the two connected components of Ur<r� as

Ur<r� ¼ Uð1Þ
r<r� ⊔Uð2Þ

r<r� ; ð16Þ
where we suppress the index for notational purposes below.
These two shells grow until they touch along some locus

Uð12Þ
r¼r� ¼ Uð1Þ

r¼r� ∩ Uð2Þ
r¼r� ; ð17Þ

where the intersecting sets are such that we have deforma-

tion retractionsUðiÞ
r¼r� → UðiÞ

r<r� . There we also haveU
ð1Þ
r¼r� ∪

Uð2Þ
r¼r� ¼ Ur¼r� which is precisely the covering we use in

formulating the Mayer-Vietoris sequence. The sequence

… → HnðUð12Þ
r¼r�Þ ⟶

{ðr<r�Þn HnðUð1Þ
r¼r� Þ ⊕ HnðUð2Þ

r¼r� Þ

⟶
|ðr<r�Þn HnðUr¼r� Þ → … ð18Þ

then contains the map |ðr<r�Þn which relates cycles (and
therefore fields) at small radii to those of the critical shell.We

label these maps by r < r� to emphasize that the covering
of the critical slice is derived by approaching it from
small radii.
Let us next discuss the large radius sequence. Consider

growing UðiÞ
r<r� to the critical slice Ur¼r� and then further,

without changing the homotopy type, towhat wewill denote

as UðiÞ
r>r� . The shells press up against each other and share,

V ¼ Uð1Þ
r>r� ∩ Uð2Þ

r>r� ; ð19Þ

which has a boundary ∂V ≠ 0. When V has the same

dimension as UðiÞ
r>r� (i.e., is also codimension-1), then the

closure of UðiÞ
r>r�nV is a proper subset of UðiÞ

r>r� . The shell

Ur>r� is then defined as the closure ðUð1Þ
r>r� ∪ Uð2Þ

r>r�ÞnV. A
depiction of this process is shown in Fig. 16. Finally, note
that the shell Ur>r� ∪ V is deformation equivalent to Ur¼r� .
The Mayer-Vietoris sequence of the union Ur>r� ∪ V

therefore is

… → Hnð∂VÞ ⟶
{ðr>r�Þn HnðUr>r� Þ ⊕ HnðVÞ

⟶
|ðr>r�Þn ⊕|ðVÞn HnðUr¼r� Þ → … ð20Þ

containing the map |ðr>r�Þ
n which relates cycles at large radii

to those of the critical shell.
Let us anticipate the geometric origin of an extension

problem implicit in the above. First, note that V can be

viewed as a fattening of Uð12Þ
r¼r� . Conversely V deformation

retracts to Uð12Þ
r¼r� , and consequently we have the pair of

embeddings,

∂V ↪ V; Uð12Þ
r¼r� ↪ V: ð21Þ

The cycles in ∂V and Uð12Þ
r¼r� can therefore be compared.

We can follow ∂V through the deformation retraction

V → Uð12Þ
r¼r� and therefore there exists a group homomor-

phism,

ι∶H�ð∂VÞ → H�ðUð12Þ
r¼r� Þ; ð22Þ

which is neither injective nor surjective in general. Rather,
generically, the image Imι is extended by elements of the

FIG. 16. Movie growing the shells UðiÞ
r¼r� , until they touch and subsequently overlap in V. On the right-hand side V and Ur>r� only

overlap in ∂V.

FIG. 15. Pair of pants describing the uplift of a SymTree
junction.
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homology group H�ðUð12Þ
r¼r� Þ to its saturation Imι. The

physical interpretation of this extension to the saturation
is essentially the same as that given in Ref. [41]; a U(1)
symmetry of the “bulk” can, when pushed into one of the
relative boundaries instead descend to a torsional symmetry
generator in the boundary relative theory. This is in some
sense just a consequence of having suitable objects which
can partially screen the associated defects.

3. Y-shaped junctions and differential cohomology

Dimensional reduction of the BLK topological terms
results in the SymTFT for a given branch of our tree. This
reduction involves expanding the bulk fields in generators
for differential cohomology classes for the internal geom-
etry [20]. With this in mind, we now turn to an analysis of
how the different differential cohomology groups fuse in
the tree. Again, it suffices to consider the case of a Y-shaped
junction. More specifically, the symmetry TFT fields
originate via expansions along generators of the differential
cohomology groups H̆�ðUrÞ.
The differential cohomology groups H̆�ðUrÞ sit in the

short exact sequence21

0 → Ωp−1ðUrÞ=Ωp−1
Z ðUrÞ → H̆pðUrÞ⟶π

HpðUr;ZÞ → 0;

ð23Þ

whereΩpðUrÞ [respectivelyΩp
ZðUrÞ] denotes closed differ-

ential p-forms (resprespectively with integral periods) [54].
The groups HpðUr;ZÞ are standard singular cohomology
groups which we can relate via the universal coefficient
theorem to the singular homology groups appearing in the
Mayer-Vietoris sequences (18) and (20).
The embeddings (15) tracking the deformation of cycles

at small and large radius through the critical slice corre-
sponding to the junction, dualize to the restriction maps,

|̄pðr<r�Þ∶ HpðUr¼r� Þ → HpðUR1
Þ ≅ HpðUr<r�Þ;

|̄pðr>r�Þ∶ HpðUr¼r� Þ → HpðUR2
Þ ≅ HpðUr>r�Þ; ð24Þ

on cocycles and subsequently lift to the restrictions
|̆pðr<r�Þ; |̆

p
ðr>r�Þ on differential cohomology classes which

we use momentarily to formulate the boundary conditions
for bulk cocycles of the SymTree at the junction.

4. Flux contributions

So far, we have mainly concentrated on the background
geometry X, but this can be threaded by fluxes in many
cases. These fluxes emanate out from the localized singu-
larities, e.g., in systems with a brane probe of geometry.

Such branes source a supergravity flux FðxÞ, which is
continuous away from the singularities of X.
Again, we first pick a favorable filtration F of the space

X which satisfies the properties listed out in Sec. III A.
There then exist cycles Σr within the shells Ur such that,

nðrÞ≡
Z
Σr

F; ð25Þ

is a piecewise constant function. Appropriately normalized
nðrÞ is a signed counting function, counting how many
branes sourcing the flux F are contained in the ball
Br ¼ ∪r0≤r Ur0 . Consequently nðrÞ is constant on branches
of the SymTree and jumps at the junctions.22

5. Junction theory

Finally, we come to the contributions localized at the
junctions. As already mentioned, this analysis is somewhat
more delicate since in the stringy construction, such
“jagged edges” have already been smoothed out. In the
case of brane probes of singularities, this is compounded by
the fact that some modes [e.g., U(1)’s] can end up being
delocalized across the geometry, so projecting them onto
the junction is a somewhat discontinuous process.
That being said, there is no obstacle in seeing how the

different differential cohomology groups on branches fuse
together at such a junction. Indeed, the group H̆pðUr¼r� Þ
also specifies gluing conditions across the junction
for dynamical fields of the symmetry TFTs attaching to
the junction. Whenever we have fields in the SymTFT
Sr<r� ¼ fS1;S2g and Sr>r� ¼ S12, which result respec-
tively via expansion along the classes,

|̆r<r� ðt̆r¼r� Þ and |̆r>r�ðt̆r¼r� Þ; ð26Þ

with common origin within the pair of pants / the critical
slice (recall they are deformation equivalent), we have
that their profiles necessarily glue along the junction.
Equivalently, they restrict to the same value at the junction
due to their common origin as modes along t̆r¼r� . This
corresponds to imposing Dirichlet boundary conditions for
two out of the three associated bulk fields at the junction.
The overall glued profile is permitted to fluctuate, i.e.,
Neumann boundary conditions are imposed.
The fields not constrained by such a gluing condition are

localized to the junction and characterize dynamical
degrees of freedom on the junction, such fields result via
expansion along the classes,

K̆erpr¼r� ≡ Ker |̆pr<r� ∩ Ker |̆pr>r� ⊂ H̆pðUr¼r� Þ: ð27Þ

21They also sit in 0 → Hp−1ðUr;R=ZÞ → H̆pðUrÞ →
Ωp

ZðUrÞ → 0.

22This jumping phenomenon also signals the presence of
additional light degrees of freedom, as dictated by anomaly
inflow considerations. We expand on this point in specific
examples.
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In many cases, especially when focusing on discrete
symmetry structures, it will be sufficient to focus on the
singular cohomology subgroup,

Kerpr¼r� ≡ Ker |̄pr<r� ∩ Ker |̄pr>r� ⊂ HpðUr¼r� Þ: ð28Þ

In order to completely determine the dynamics of the
junction we however require information beyond topology.
The modes characterized by (28) are dynamical only if this
internal p-form profile is L2-normalizable. When non-
normalizable the corresponding field profiles are better
viewed as Lagrange multipliers which enforce identifica-
tions between different SymTFT branches.
The embedding maps |ðr>r�Þn ; |ðr<r�Þn completely deter-

mine a Y-shaped SymTree up to this question of normal-
izability. Their domain and codomain determine the TFTs
on the branches and the mappings themselves indicate, via
dualization to cohomology and lifts to differential coho-
mology, how the bulk fields interact across the junction.
Above we have interpreted the image (26) and kernel (27)
of the related maps in cohomology, it remains to interpret
the cokernel.
Once the junction has been determined to support

degrees of freedom, we may ask how to interpret the bulk
SymTree fields as associated with backgrounds for these.
We consider the cokernel of the mapping,

J̆ ≡ ð|̆r<r� ; |̆r>r�Þ∶ H̆�ðUr¼r� Þ → H̆�ðUr<r� Þ ⊕ H̆�ðUr>r� Þ;
ð29Þ

which correspond to bulk fields which are not fixed by
gluing conditions. In particular, denoting the composition
of J̆ with the projection down to singular cohomology by J̄,
we get the projections,

πr<r�∶ coker J̄ ¼ H�ðUr<r� Þ ⊕ H�ðUr>r� Þ
H�ðUr¼r� Þ

→
H�ðUr<r�Þ
H�ðUr¼r� Þ

;

πr>r�∶ coker J̄ ¼ H�ðUr<r� Þ ⊕ H�ðUr>r� Þ
H�ðUr¼r� Þ

→
H�ðUr>r�Þ
H�ðUr¼r� Þ

;

ð30Þ

and consequently coker J̄ can be viewed as an extension of
the image of πr<r� ; πr>r� by its kernel. This is the relevant
cohomological version of the extension described around
line (21). The quotients on the right-hand side are asso-
ciated with SymTree bulk fields which do not participate in
gluing conditions and for which the junction imposes
Neumann boundary conditions. The bulk fields descending
from cokerJ̄ relate to background fields for the junction
degrees of freedom.

IV. ILLUSTRATIVE EXAMPLE: ADJOINT
HIGGSING OF 7D SYM

To illustrate the considerations spelled out in the pre-
vious sections, we now turn to some examples. Many of the
key features are already present in the case of 7D Super
Yang-Mills theory (7D SYM), and so we first treat this case
in detail. An advantage of this case is that we have both an
explicit stringy realization of this theory (and thus implic-
itly a UV completion) as well as a field theoretic charac-
terization of the multisector system.
With this in mind, this section is organized as follows.

First, we review the case of a single 7D SYM theory, as
well as the construction of heavy defects and topological
symmetry operators. We also explain how adjoint Higgsing
is captured by deformations of the associated M-theory
background. With this in place, we next turn to adjoint
Higgsing/geometric deformations which produces a multi-
sector QFT at low energies. We explicitly show how the
SymTree theory arises in this context.

A. Gauge theory via geometry

Our starting point is 7D SYM, as realized by taking
M-theory on the supersymmetric background,

R6;1 × X; ð31Þ

where X ¼ C2=Γ, and Γ is a finite subgroup of SU(2) with
group action dictated by the condition that we preserve 7D
N ¼ 1 supersymmetry (16 real supercharges). There is an
ADE classification of such finite subgroups, and these in
turn specify the ADE type of the 7D SYM theory. As
explained in [31] (see also [29,30,32]) the global form of
the gauge group is fixed by a choice of boundary conditions
on ∂X ¼ S3=Γ. In gauge theoretic terms the center of the
simply connected ADE Lie group is just the Abelianization
of Γ. This follows directly from the underlying geometry /
gauge theory correspondence.
Indeed, in the relative QFT we can discuss the spectrum

of Wilson lines (codimension 6) and ’t Hooft defects
(codimension 3) and a choice of global form fixes the
spectrum in the absolute QFT. Wilson lines arise from
M2-branes which wrap a torsional cycle in H1ðS3=ΓÞ
of the boundary lens space, and which sweep out the
radial direction as well, i.e., they wrap ConeðγÞ for
γ ∈H1ðS3=ΓÞ. Similarly, the ’t Hooft defects arise from
M5-branes which wrap ConeðγÞ for γ ∈H1ðS3=ΓÞ.
As found in [33–35], the associated topological symmetry
operators which act on these defects arise from branes
wrapped “at infinity”. Indeed, the 1-form symmetry oper-
ator which acts on Wilson lines is generated by M5-branes
wrapped on a boundary 1-cycle, and the 4-form symmetry
operator which acts on ’t Hooft defects is generated by
M2-branes wrapped on a boundary 1-cycle. Specifying a
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consistent choice of boundary conditions then fixes an
absolute theory.
The symmetry TFT for this theory follows directly from

the braiding relations for the various fields, and can be
derived from dimensionally reducing the 11D kinetic term
for the M-theory 3-form field.23 Consider the special case
where Γ ¼ ZN . Then, the 8D topological action for the
SymTFT is

S8D ¼ i
2π

N
Z

B2 ∧ dC5 þ…; ð32Þ

where the superscript indicates the form degree. Here B2

and C5 take values in U(1) and the overall coefficient of N
restrict their periods to take values in ZN ⊂ Uð1Þ. We have
also dropped terms of the SymTFT associated with 2-form
and (−1)-form symmetries. These can also be extracted by
dimensional reduction of the topological terms of 11D
supergravity [20], but for ease of exposition we focus on
the 1-form and 4-form symmetries. We specify physical
boundary conditions on one end and topological boundary
conditions on the other to fix the global form of the theory.
Similar considerations hold for more general choices of

Γ; when the Abelianization AbðΓÞ is a cyclic group (all
cases other thanD2k) we simply takeN ¼ jAbðΓÞj, and one
can likewise extract a similar expression when Γ ¼ D2k,
where the Abelianization is just Z2 × Z2.

B. Multisector QFT via adjoint Higgsing

Starting from this theory, we can generate a multisector
QFT via adjoint Higgsing. Geometrically, we start with a
single singularity and then consider either a smoothing
deformation or blowup of the singularity so that the
resulting geometry has distinct singularities after the
deformation. In field theory terms, we are switching on
a background vacuum expectation value for some combi-
nation of the R-symmetry triplet of adjoint-valued scalars in
the 7DN ¼ 1 vector multiplet. Of course, since all of these
vacua are part of the same moduli space, there is a sense in
which the original SymTFT still governs the structure of
the spectrum of heavy defects and symmetry operators.
On the other hand, there is clearly some approximate notion
of the gauge theory corresponding to a single isolated
singularity and its associated heavy defects and symmetry
operators. Our aim will be to sharpen this correspondence.
The essential points are all captured by the case Γ ¼ ZN

so in what follows we again focus on this special case.
There are natural generalizations to the rest of the ADE
series, albeit at the expense of a few more complications in
writing out the explicit forms of blowups and smoothing
deformations.
To begin, then, we recall that an AN−1 singularity

X ¼ C2=ZN can be presented as the singular hypersurface
swept out by the locus,

x2 þ y2 ¼ zN: ð33Þ

Adjoint Higgsing amounts to a deformation or resolution of
this singularity. Here, we focus on a complex deformation
of the form,

x2 þ y2 ¼
YK
i¼1

ðz − tiÞNi ; ð34Þ

whereN1 þ � � � þ NK ¼ N, andN1t1 þ � � � þ NKtK ¼ 0 (a
tracelessness condition). This corresponds to the breaking
pattern,

SUðNÞ ⊃ SðUðN1Þ ×… × UðNKÞÞ; ð35Þ

as triggered by a complex adjoint valued Higgs field
of the form,24

hΦi ¼ t11N1×N1
⊕ … ⊕ tK1NK×NK

; ð36Þ

where 1M×M denotes the M ×M identity.
After this Higgsing, we find multiple sectors at low

energies, i.e., where we restrict all field ranges to be below
the scales set by the tj. Indeed, we have massiveW-bosons
as obtained from M2-branes which stretch between the
separated singularities. This mass goes as

Mij ∼ jti − tjj: ð37Þ

Further, in the vicinity of any individual singularity we
have a geometry of the form C2=ZNj

, and a corresponding
7D SYM theory with Lie algebra suNj

. There are also
uð1Þ sectors which are delocalized / spread across the
different singularities, and small fluctations about the
values of the tj (as well as the accompanying resolution
parameters) fill out R-symmetry triplets for the associated
vector multiplets.
Focussing on just the non-Abelian factors, we see a

multisector QFT, but one in which there are still residual
couplings to Abelian sectors as well as additional TFT
degrees of freedom. Our plan will be to extract the
corresponding SymTree for this configuration.

C. Extracting the SymTree

By inspection, it is enough to focus on just the case
where we Higgs the parent 7D SYM theory to two non-
Abelian factors. Indeed, all other treelike structures can be
obtained by further Higgsing operations. In the case at
hand, the Higgsed gauge group is

23For details on this see Appendix B.

24Two out of the three components of the SU(2) R-symmetry
triplet are being switched on here. The third one in this choice of
complex structure corresponds to a blowup mode.
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SUðNÞ ⊃ ðSUðN1Þ × SUðN2Þ × Uð1ÞÞ=ZL; ð38Þ

with N ¼ N1 þ N2 and where L ¼ lcmðN1; N2Þ is the least
common multiple of N1 and N2. We denote by X0 the
partial smoothing of X. The space X0 contains an AN1−1 and
AN2−1 singularity at z ¼ t1 and z ¼ t2 respectively and a
compact 2-cycle stretching between these. The adjoint
fields of the SYM theory reorganize following the decom-
position:

suN → suN1
⊕ suN2

⊕ uð1Þ
Ad½suN � → Ad½suN1

⊕ suN2
⊕ uð1Þ�

⊕ ðN1; N̄2ÞN=g ⊕ ðN̄1;N2Þ−N=g

N → ðN1; 1ÞN2=g ⊕ ð1;N2Þ−N1=g; ð39Þ

where g ¼ gcdðN1; N2Þ. Here the bifundamental fields are
the massiveW-bosons (in the off-diagonal blocks) and arise
from M2-branes wrapped on the compact 2-cycle.

1. Filtration and critical slice

We obtain the SymTree by first describing a convenient
choice of filtration FX0 sweeping out the partial smoothing
X0. The filtration has radial shells,

Ur>r� ¼ S3=ZN1þN2
;

Ur¼r� ¼ ðS3=ZN1
Þ ∪S1H

ðS3=ZN2
Þ;

Ur<r� ¼ ðS3=ZN1
Þ⊔ ðS3=ZN2

Þ; ð40Þ

with a single critical slice at r ¼ r� (see Fig. 17). Here ∪S1H
denotes the gluing of the two lens spaces along one of their
Hopf circles. Running the Mayer-Vietoris sequence we find
the critical slice to be characterized by the homology
groups,

HnððS3=ZN1
Þ ∪S1H

ðS3=ZN2
ÞÞ ≅

8>>>><
>>>>:

Z k ¼ 0

Zg k ¼ 1

Z k ¼ 2

Z2 k ¼ 3;

ð41Þ

where g ¼ gcdðN1; N2Þ. In Appendix C we identify the
generators of (41).
The filtration FX0 is motivated by the IIA dual setup

consisting of two D6-brane stacks with common transverse
space R3. We denote the location of the two stacks by
p1; p2 ∈R3 and by S21;r; S

2
2;r spheres of radius r centered on

these. A filtrationF IIA ofR3 is constructed by first growing
r. In the process two 3-balls are swept out, they grow until
they meet in a point. This results in a critical slice at radius
r ¼ r� which is the wedge sum,

S212;r� ¼ S21;r�∨pS22;r� : ð42Þ

The rest of F IIA follows by continuing to grow the
spheres, taking the radial shells to be their ‘peanut’ shaped
exterior. The filtration FX0 is then the M-theory lift
of F IIA via the Gibbons-Hawking ansatz, and the shells
of F IIA are extended to X0 by including allM-theory circles
projecting to these. In particular the point of kissing25

p in line (42) lifts to the circle S1H, and line (42) lifts
to Ur¼r� .

2. Projection to SymTree

We now reduce 11D supergravity on the radial shellsUr.
We retain only topological data following the approach
in [20]. This results in an 8D TFTaction for each branch of
the Y-shaped graph of Fig. 17 and a nontopological 7D
action describing the junction degrees of freedom. These
7D and 8D modes derive from the 11D field strength Ğ4 via
KK reduction.
We discuss this reduction in detail in Appendixes B

and C. There we show that we can discuss discrete
generalized symmetries in isolation of other structures26

occurring. The relevant discrete symmetries are the 1-form
symmetries of the various SYM sectors, and their dual 4-
form symmetries. The background fields for these sym-
metries are dynamical in the 8D TFTs and interact at the
junction.
In terms of differential cohomology classes we

are restricting our attention to the coefficients in the
expansions,

FIG. 17. We sketch the partially smoothed geometry X0 as a
fibration over a Y-shaped base. This picture presents a horizontal
slice of figures similar to Fig. 2.

25Namely, an osculation.
26Of course the 8D TFTs on the branches of the SymTree are

simply the SymTFTs of the AN−1; AN1−1; AN2−1 7D SYM
theories. The string theory analysis for these also produces
(−1)-form and 2-form symmetries. We defer a discussion of
interaction terms near the junction to Appendix C.
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ðr>r�Þ∶ Ğ4¼ B̆ðr>r�Þ
2 ⋆t̆ðr>r�Þ2 þ…

ðr¼ r�Þ∶ Ğ4¼ B̆ðr¼r�Þ
2 ⋆t̆ðr¼r�Þ

2 þ F̆2⋆ŭ2þ…

ðr<r�Þ∶ Ğ4¼ B̆ðr<r�;1Þ
2 ⋆t̆ðr<r�;1Þ2 þ B̆ðr>r�;2Þ

2 ⋆t̆ðr<r�;2Þ2 þ…;

ð43Þ

and omitting fields and interactions resulting from the “…”
terms. Here, the generators t̆2 are torsional classes and are
in correspondence with the torsional 1-cycles of the radial
shells Ur. Their exponent indicates the SymTree branch
they live on. The respective coefficient fields valued in U(1)
with periods taking values in finite subgroups of U(1). We
make this explicit by changing the normalization such that
the fields now take values in ZK where K ¼ N;N1; N2; g.
This rescaling is reflected in notation as

B̆ðr>r�Þ
2 ¼ 2πi

N
B̆ðNÞ
2 ; B̆ðr¼r�Þ

2 ¼ 2πi
g

B̆ðgÞ
2 ;

B̆ðr<r�;iÞ
2 ¼ 2πi

Ni
B̆ðNiÞ
2 ; ð44Þ

where the exponent now keeps track of the order of the
form with the index continuing to record its degree.
The free generator ŭ2 is in correspondence with the
free 2-cycle in (41) which only exists at the critical radius
r ¼ r� and results in an Abelian gauge field localized to the
junction. The fields of the SymTree under consideration are
thus,

ðr > r�Þ∶ BðNÞ
2 ;

ðr ¼ r�Þ∶ BðgÞ
2 ; A1;

ðr < r�Þ∶ BðN1Þ
2 ; BðN2Þ

2 ; ð45Þ

together with their magnetic duals. The discrete fields B2

are background fields for the 1-form center symmetry.
We now determine the theory localized at the junction

and the gluing conditions across the junction. Evaluating
the Mayer-Vietoris sequences of lines (18) and (20) we find
the intersection of kernels in line (28) yields,

Kerð2Þr¼r� ¼ Z: ð46Þ

This kernel characterizes the fields at the junction not
arising as restriction of bulk fields. Since the field content is
supersymmetric, we conclude that the dynamical junction
degrees of freedom organize into the following theory27:

7D N ¼ 1 uð1Þ vector multiplet: ð47Þ

Further, line (46) implies that the junction field BðgÞ
2 is eaten

up by identifications. Indeed computing the images of the
maps |̄r<r� |̄r>r� , defined in line (24), we find

Im|̄ð2Þr<r� ≅ Zg ⊕ Zg; Im|̄ð2Þr>r� ≅ Zg; ð48Þ

implying that the low radius pair BðN1Þ
2 and BðN2Þ

2 glues via

BðgÞ
2 to the large radius field BðNÞ

2 . More precisely, at the
critical slice we have the restrictions,

N1

g
BðN1Þ
2 jr¼r� ¼ BðgÞ

2 ;
N2

g
BðN2Þ
2 jr¼r� ¼ BðgÞ

2 ;

N
g
BðNÞ
2 jr¼r� ¼ BðgÞ

2 : ð49Þ

The background field BðgÞ
2 is thus auxiliary and can be

eliminated, straightforwardly implying the junction gluing
condition,

N1

g
BðN1Þ
2 jr¼r� ¼

N2

g
BðN2Þ
2 jr¼r� ¼

N
g
BðNÞ
2 jr¼r� ; ð50Þ

which is an equation with coefficients in Zg.
We turn to discuss how the Abelian junction theory

interacts with the three 8D TFTs. The point of view taken
here is that the junction theory itself is relative and that the

fields BðN1Þ
2 ; BðN2Þ

2 ; BðNÞ
2 admit an interpretation as back-

ground fields for (a subgroup of) its 1-form center
symmetry. Solving the extension problem in geometry
we determine the relevant subgroup to be ZLN=g ⊂ Uð1Þ
which naturally arises in the extension,

0 → ZL → ZLN=g → ZN=g → 0; ð51Þ

where L ¼ lcmðN1; N2Þ. Let us denote 1-form symmetry
backgrounds of the junction theory contained in this

subgroup as Bðl;Uð1ÞÞ
2 where we introduce l ¼ LN=g for

convenience, similarly we introduce a background for the
subgroup ZL ⊂ Uð1Þ. Studying the small radius Mayer-
Vietoris sequence we find the identifications,

BðN1Þ
2 ¼ N2

g
BðL;Uð1ÞÞ
2 ; BðN2Þ

2 ¼ N1

g
BðL;Uð1ÞÞ
2 ; ð52Þ

which fundamentally are identifications between center
subgroups of U(1) and SUðNiÞ. Next, studying the large
radius Mayer-Vietoris sequence we find the identifications

gBðNÞ
2 ¼ LBðl;Uð1ÞÞ

2 : ð53Þ

The right-hand sides are related simply as ðN=gÞBðl;Uð1ÞÞ
2 ¼

BðL;Uð1ÞÞ
2 . Note, that these are identifications and not gluing

conditions, the restriction to the critical slice jr¼r� is

27This mode is understood to arise via Higgsing from which
we infer that the 2-form (46) is L2-normalizable, i.e., the uð1Þ
theory is dynamical.
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missing compared to (50). One can check that the inter-
action of the 8D fields with and across the junction is now
fully determined. They either glue across the junctions or
enter the uð1Þ theory. For discussion and details on
geometrization of the above see Appendix C.
Overall the action of the SymTree now takes the form,

S ¼
X

branches b

SðbÞ8D þ
X

internal nodes n

SðnÞ7D

¼ Sð1Þ8D þ Sð2Þ8D þ Sð12Þ8D þ SðJ Þ
7D ; ð54Þ

where the final term is the junction theory, which includes a
4D N ¼ 4 uð1Þ vector multiplet that arises from the
relative separation of the D3-brane stacks, and also enfor-
ces the identifications for the 8D bulk modes. The first two
8D terms are supported at r∈ ð0; r�Þ, the third term is
supported along r∈ ðr�;∞Þ and the fourth terms is in 7D
located at r ¼ r�. The first three terms each correspond to a
leg of the Y-shaped SymTree and are topological, explicitly

Sð1Þ8D ¼ 2πi
N1

Z
R6;1×ð0;r�Þ

BðN1Þ
2 ∪ δCðN1Þ

5 þ…;

Sð2Þ8D ¼ 2πi
N2

Z
R6;1×ð0;r�Þ

BðN2Þ
2 ∪ δCðN2Þ

5 þ…;

Sð12Þ8D ¼ 2πi
N

Z
R6;1×ðr�;∞Þ

BðNÞ
2 ∪ δCðNÞ

5 þ…; ð55Þ

where the omitted terms include fields for the 2-form and
(−1)-form symmetry derived from the 11D Chern-Simons
term Ğ3

4, see Appendix C. We have switched from d to δ for
our differentials from wedge product to cup products
compared to (32) to emphasize the change from differential
forms valued in U(1) to discrete cocycles.
We now comment on the difference between BðretractÞ

phys , the
boundary condition obtained from retracting the suNi

SymTree branches into the uð1Þ junction, as in Fig. 4,

and BðfullÞ
phys , the boundary condition associated the parent

suN1þN2
theory. Recall from Sec. II, that retraction consists

of simply dimensionally reducing the two SymTFTs of the
branches along the interval. This means that the retracted
theory includes the 7D gauge theories from each interval
end which combine, with the junction degrees of freedom,

to form a suN1
⊕ suN2

⊕ uð1Þ gauge theory while Sð1Þ8D

and Sð2Þ8D vanish. Interestingly, this boundary condition has
defects which are localized within it. Upon contraction
defects running between the suNi

boundaries [as in the
configuration of Fig. 7(d)] descend to defects in the
engineered theory. The manner in which bulk fields reduce
to background fields of the 7D theory is precisely given by

lines (50) and (52). In comparison, BðfullÞ
phys in this example is

realized by physically moving the AN1−1 and AN2−1
singularities together to form a AN1þN2−1 singularity.

This fuses the boundary conditions of the branches of
the SymTree to a 7D suN1þN2

gauge theory, setting the
standard physical boundary conditions for Sfull.

3. Field theory interpretation

We now discuss the above from a field theoretic
perspective. This perspective relies heavily on understand-
ing the origin of the junction via the Higgsing specified by
line (38). More invariantly, we are relying on an under-
standing of how the physical edge modes fuse with the
junction theory. In contrast the geometric analysis yields
identical results without this additional input.
Our starting point is the Higgsing, which we repeat for

convenience here,

SUðNÞ → ðSUðN1Þ × SUðN2Þ × Uð1ÞÞ=ZL: ð56Þ

Note that this deformation does not change the 1-form
center symmetry of the theory. Indeed, screening arguments
are insensitive to such deformations as is clear from the
geometries X, X0 exhibiting the same boundaries and the
partial smoothing X0 → X introducing no 1-cycles.
We then may ask how to represent a 2-form background

field configuration of the left-hand side via data of the right-
hand side. This is equivalent to asking how to represent a
center element of the left-hand side as a combination of
center elements on the right-hand side modulo identifica-
tion imposed by ZL.
Observe that the Zg ⊂ ZN subgroup embeds into

ZN1
× ZN2

without involving the U(1) which is the content
of the gluing condition (50). Therefore, it remains to track
the ZN=g from left to right. This now necessarily involves
the U(1) and turns on line (53). However, no element of
U(1) except the identity is a central subgroup of SUðNÞ, we
therefore need to compensate the U(1) profile by turning on
a subgroup of ZN1

× ZN2
which is not central in SUðNÞ.

The subgroup Zg ⊂ ZN1
× ZN2

is central in SUðNÞ, there-
fore we are turning on a subgroup of ðZN1

× ZN2
Þ=Zg,

exactly as in line (52).

D. Multisector defects and symmetry operators

Let us next turn to the defects and symmetry operators of
the multisector QFT. We have already reviewed how these
arise in the UV parent theory, and in an electric polarization
where we have theZN center symmetry, the absolute theory
admits the following objects:

Defect Operators∶ M2-brane wrapped on ConeðγÞ
Symmetry Operators∶ M5-brane wrapped on γ; ð57Þ

where γ ∈H1ðS3=ZNÞ and the cone over γ stretches to the
singularity.
Consider next the SymTree generated by our smoothing

deformation / adjoint Higgsing where we are left with
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C2=ZN1
and C2=ZN2

singularities. In addition to the
localized non-Abelian gauge groups, we also have a
delocalized uð1Þ sector (i.e., an N ¼ 1 vector multiplet)
which we interpret as part of the junction of the SymTree.
Let us now turn to possible heavy defects and symmetry

operators of the parent UV theory and how they are
interpreted in the multisector QFT. To do this, it is enough
to study the fate of the various boundary cycles
γ ∈H1ðS3=ZNÞ and what happens to them as we push
them down to the junction and to the individual singular-
ities. The Gibbons-Hawking ansatz tells us that the gen-
erator of H1ðS3=ZNÞ pushes downwards into the local
model of C2=ZNi

without obstruction. However, the
equivalence relations imposed on the free group generated
by this chain is sensitive to the radial shell it is being
considered in, giving different homology groups in degree
1. Similarly generators of H1ðS3=ZNi

Þ can be deformed
between the two singularities without obstruction. From
here 2-cycles are constructed, which are simply traced out
by these 1-cycles following these deformations.
Defects follow by wrapping M2-=M5-branes on the

constructed 2-cycles, and returning to Fig. 7, we see that
fundamentally we are constructing defects of type (c) and
(d). Any defect of type (e) is a composite of these. Defects
of type (b) do not exist.
Defects of type (c) and (d) constructed in this way

correspond to the representations in (39) carrying U(1)
charge. Dressing amounts to tensoring the non-Abelian
representations by the Abelian ones, dressing the former by
the latter. The U(1) charge is computed via an intersection.
In Appendix C we show that the Abelian generator is
geometrized as [see the discussion leading to (C4) for
notation],

Σ≡ ðN2Σ1=gÞ ∪LS1H
ð−N1Σ2=gÞ: ð58Þ

In an electric frame, Wilson lines in the fundamental
representation Ni are constructed by M2-branes wrapping
the 1-cycle homology generator at “true infinity” S3=ZN

fibered to the C2=ZNi
singularity. In the critical slice we

find a U(1) line with charge qi ¼ γi · Σ where γi is a
representative for the 1-cycle from the ith local model. We
have γi · Σj ¼ δij and therefore,

q1 ¼
N2

g
; q2 ¼ −

N1

g
; ð59Þ

correctly reproducing (39). Taking orientations into
account, the charge of the bifundamental is of course
q1 − q2. We have the dressing Ni ⊗ 1qi ≡ ðNiÞqi and
ðN1;N2Þ ⊗ 1q1−q2 ≡ ðN1;N2Þq1−q2 which are the true
defects of the system.
There also exist defects which need not be dressed. By

the above analysis we found a subgroup Zg ⊂ ZN to glue

across the junction, to Zg ⊂ ZN1
× ZN2

and not involve
the U(1). At the level of defects this describes a configu-
ration of type (v). We begin with N=g copies of the
generator of H1ðS3=ZNÞ, fiber these radially inwards,
and after the critical slice we fiber Ni=g of these
to C2=ZNi

. The dressing line has charge ðN1=gÞq1 þ
ðN2=gÞq2 ¼ 0 and is trivial.
Similar considerations hold for the topological symmetry

operators, with M5-branes now wrapped on the torsional
cycles ofH1ðS3=ZNÞ. We discussed this in general terms in
Fig. 9. For M5-branes wrapped on γ ∈Zg ⊂ ZN , the
symmetry operator can be pushed down into the pair of
throats according to Zg ⊂ ZN1

× ZN2
where they act on the

corresponding lines. This corresponds to Fig. 9(d). When
γ ∉ Zg ⊂ ZN , we have a further dressing by operators of
the junction theory, as captured by the ZL charge. This
corresponds to Fig. 9(b).

V. MORE MULTISECTOR QFTs
VIA MODULI SPACE FLOWS

In the previous section we focused on the special case of
7D SYM as realized by M-theory on an ADE singularity.
Under adjoint Higgsing, i.e., a smoothing and/or blowup of
the geometry, we arrived at a multisector QFT. Similar
considerations apply to other QFTs which admit such
geometric deformations. In this section we present a few
such examples which have either a similar geometric or
field theoretic realization.
As a first class of examples, we consider the case of

multisector 6D SCFTs realized via tensor branch deforma-
tions. Geometrically, these are quite similar to the case of
7D SYM, but with a different physical interpretation of the
SymTree and associated defects and symmetry operators.
We illustrate how this works for brane probes of smooth
and singular geometries. A pleasant feature of some brane
probe theories is that, in a suitable large N limit, they result
in multithroat anti–de Sitter (AdS) configurations. This in
turn provides us with a holographic description of the
SymTree.

A. 6D SCFTs and their compactifications

Let us now turn to the SymTree for 6D SCFTs as realized
in F-theory backgrounds [55–57] (see e.g., [25,26] for
reviews). In all these cases, the base of the F-theory model
is of the form C2=Γ for Γ a finite subgroup of U(2). A
suitable elliptic fibration results in a noncompact ellipti-
cally fibered Calabi-Yau threefold which preserves (at
least) N ¼ ð1; 0Þ supersymmetry. In this case, we have
stringlike surface operators defects from D3-branes wrap-
ping cones of boundary one-cycles ConeðγÞ with
γ ∈H1ðS3=ΓÞ ≃ AbðΓÞ. Indeed, the 2-form symmetry for
the relative theory is specified by the Abelianization of Γ
(see Ref. [29]). There can in principle also be 0-form and
1-form symmetries, but these are model dependent so we
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defer an analysis of this structure to future work.28 For ease
of exposition, we also assume that Γ is of generalized
A-type, namely that it is always just a cyclic group ZN with
some group action induced from the action of U(2) on C2.
All other choices were classified in [29] and result in quite
similar conclusions.
Focusing, then, on just the 2-form symmetry, the

SymTFT for this theory follows from dimensional reduc-
tion of the topological action associated with the chiral
4-form of type IIB string theory,29

S7D ¼ i
4π

N
Z

C3 ∧ dC3 þ � � � ; ð61Þ

where the “…” refers to additional topological terms which
captured contributions from possible 0-form and 1-form
symmetries.
Now starting from this 6D SCFT, we can consider a

tensor branch flow which results in the system breaking up
into a multisector QFT. Geometrically this corresponds to
blowing up some collection of the previously collapsed
curves. Doing so, we can get local singularities of the form
C2=ZN1

and C2=ZN2
. It is now clear that the geometric

structure of a SymTree found in the case of 7D SYM
simply carries over since we again have boundary lens
spaces which fuse together.30 Carrying on in this way, we
can simply take our previous analysis of the SymTree
action and make some small adjustments to reach the
answer for our 7D theory.
Overall the action of the SymTree for a trivalent junction

now takes the form,

S ¼
X

branches b

SðbÞ7D þ
X

internalnodes n

SðnÞ6D

¼ Sð1Þ7D þ Sð2Þ7D þ Sð12Þ7D þ SðJ Þ
6D ; ð62Þ

where the final term is the junction theory, which includes a
6D N ¼ ð1; 0Þ tensor multiplet, and also enforces the
identifications for the 7D bulk modes. The first three terms
each correspond to a leg of the Y-shaped SymTree,

Sð1Þ7D ¼ πi
N1

Z
R5;1×ð0;r�Þ

CðN1Þ
3 ∪ δCðN1Þ

3 þ…

Sð2Þ7D ¼ πi
N2

Z
R5;1×ð0;r�Þ

CðN2Þ
3 ∪ δCðN2Þ

3 þ…

Sð12Þ7D ¼ πi
N

Z
R5;1×ðr�;∞Þ

CðNÞ
3 ∪ δCðNÞ

3 þ…: ð63Þ

So, up to a few small rearrangements in the physical
interpretation of various higher-form potentials, we see that
we again reach precisely the same SymTree structure
considered previously. Here we have again rescaled fields
similar to (44) as indicated by their raised index.
Similar considerations hold for compactifications of 6D

SCFTs. For example, starting from the 6D N ¼ ð2; 0Þ
theory, compactification on a T2 results in a 4D N ¼ 4
SYM theory, the global form of which depends on the
compactification and boundary data. In this case, we can
again extract a similar SymTree via adjoint Higgsing. We
can also engineer various 4D N ¼ 2 SCFTs with a
Coulomb branch moduli space by compactifying the 6D
N ¼ ð2; 0Þ theories on a genus g > 1 Riemann surface, as
well as by compactifying 6D N ¼ ð1; 0Þ theories on a T2.
In all these cases, we get multisector QFTs as dictated by
geometric deformations of a single parent theory.

B. Branes in flat space

We can engineer much the same sort of theories starting
from brane probes of geometry. For example, 4D N ¼ 4
SYM with an A-type gauge group follows from a stack of
coincident D3-branes filling 4D Minkowski space and
sitting at a common point of C3.
Focusing on the brane realization, the SymTFT is in this

case obtained via dimensional reduction on the boundary
∂C3 ¼ S5 in the presence of the RR 5-form flux sourced
by the D3-branes. Indeed, reduction of the type IIB term
F5 ∧ B2 ∧ F3 results in a 5D SymTFT action (see [21]),

S5D ¼ i
2π

N
Z

B2 ∧ dC2; ð64Þ

when we have N coincident D3-branes. Partitioning up the
stacks into individual segments by adjoint Higgsing, we
again see a treelike structure emerge.

28For some discussion of this, see e.g., Refs. [58–63].
29A proper derivation of the 7D SymTFT is a bit subtle because

we are dealing with reduction of a chiral 4-form. Following the
treatment in [22] as well as [20,53,63–65], one starts from an 11D
spacetime and a Chern-Simons-like action equipped with a Wu
structure,

S11D ¼ i
4π

Z
C5 ∧ dC5: ð60Þ

Then, treating the 10D spacetime as a boundary, we impose the
condition C5 ¼ �10DC5 as C5 is an 11D extension of the self-dual
5-form RR flux in IIB. Following a similar analysis to that
presented in Appendix B, we can then consider the reduction of
the associated “boundary kinetic term” on the linking S3=ZN to
arrive at the 7D TFT action. For related discussions see e.g.,
Refs. [22,65].

30One might ask whether the difference between a finite
subgroup of SU(2) versus U(2) plays a role here. At the level
of topological structures, it does not appear to make much of a
difference, although it can affect link pairings between cycles.
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Overall the action of the SymTree for a trivalent junction
now takes the form,

S ¼
X

branches b

SðbÞ5D þ
X

internalnodes n

SðnÞ4D

¼ Sð1Þ5D þ Sð2Þ5D þ Sð12Þ5D þ SðJ Þ
4D ð65Þ

where the final term is the junction theory, which includes a
4D N ¼ 4 uð1Þ vector multiplet, and also enforces the
identifications for the 5D bulk modes. The first three terms
each correspond to a leg of the Y-shaped SymTree,

Sð1Þ5D ¼ 2πi
N1

Z
R3;1×ð0;r�Þ

BðN1Þ
2 ∪ δCðN1Þ

2 þ…

Sð2Þ5D ¼ 2πi
N2

Z
R3;1×ð0;r�Þ

BðN2Þ
2 ∪ δCðN2Þ

2 þ…

Sð12Þ5D ¼ 2πi
N

Z
R3;1×ðr�;∞Þ

BðNÞ
2 ∪ δCðNÞ

2 þ…: ð66Þ

Here we have again rescaled fields similar to (44) as
indicated by their raised index.
One can also consider the explicit construction and

analysis of defects and symmetry operators in this case.
In the D3-brane case, the heavy defects of the relative
theory are engineered via F1- and D1-strings which stretch
from the boundary of C3 to the stacks of D3-branes.31

Starting from an electric polarization of the parent SUðNÞ
gauge theory, we observe that the electric Wilson lines
persist in the individual throats. Additionally, we observe
that we can also form string junctions which start as F1
strings at the boundary S5, but which fragment to a
D1-string and a dyonic ð1;−1Þ-string on the other throats.
These are associated with “nongenuine” line operators of
the individual sectors. We see this explicitly in the
decoupling limit because this nongenuine line ends on a
topological surface operator constructed from everything
else attached to the junction theory (which is now at
infinity). See Fig. 18 for a depiction of this phenomenon.
A pleasant feature of this setup is that the near horizon

limit of an individual stack of N D3-branes results in the
semiclassical gravity dual AdS5 × S5 with N units of self-
dual 5-form flux threading the geometry [66]. Partitioning
up N ¼ N1 þ � � � þ NK , and assuming each Ni is still
sufficiently large to produce a semiclassical gravity dual on
its own, we observe that we get a multithroat configuration
of AdS vacua, as in Fig. 19. Clearly, we still retain the
structure of a SymTree, although here, the radial direction
of the AdS throats corresponds to the radial direction of the
SymTree. Down a given throat, we have a geometry of the

form AdSðiÞ5 × S5ðiÞ threaded by Ni units of RR 5-form flux.

The merger between the different throats results in a jump
in the level of the associated bulk 5D topological term.
Additional degrees of freedom are localized at these special
radial slices, and these are just the locations of the junction
theory (in the SymTree). Of course, in the holographic dual
the 5-form flux varies smoothly over the 10D geometry; the
jumping occurs because of reduction on the linking S5’s.

1. The view from a single stack

Although we have emphasized a “democratic perspec-
tive” for how to realize the SymTree in terms of branes
probing an extradimensional geometry, it is also interesting
to consider the view from a single stack, where we
continuously enlarge the size of shells including the branes.
Doing so, we begin down in the deep IR of a single AdS
throat with a fixed value of N1 for the amount of brane flux.
As we go further into the UV, we encounter a domain wall
(another stack) and the total amount of flux jumps to
N1 þ N2. At the domain wall, we have localized degrees of
freedom which absorb the anomaly inflow generated by the

FIG. 18. Depiction of line operators after adjoint Higgsing of
4D N ¼ 4 SYM with gauge group SUðNÞ ¼ SUðN1 þ N2Þ to
SðUðN1Þ × UðN2ÞÞ. A nongenuine ’t Hooft line (0,1) and dyonic
line ð1;−1Þ of two sectors of the multisector theory can fuse at
the junction with an electric Wilson line (1,0). These are realized
by ðp; qÞ-strings, i.e., bound states of p F1-strings and q D1-
strings. This implements an explicit example of the general
phenomena anticipated in Fig. 11.

FIG. 19. Sequestered substacks of D3-branes are described in a
near horizon limit by a multithroat AdS configuration. Throats
merge at the length scale R� characterizing the depth of the
throats.

31The defect group is expected to be captured by a suitable
generalization of twisted K-theory to RR fluxes (see Appendix A
of [36]), but at the level of the SymTFT, this matters little.
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mismatch in topological terms on the two sides of the
interface. Continuing in this fashion, we again build up the
local structure of a SymTree.

2. Wilson line dressing

It is instructive to consider in more detail how heavy
defects end up being dressed by additional degrees of
freedom localized near the junction of the SymTree. To
illustrate, we again focus on the case of 4D N ¼ 4 SYM
with gauge group SUðNÞ ¼ SUðN1 þ � � � þ NKÞ, i.e.,
the electric polarization of the relative suN theory and
consider adjoint Higgsing to the subgroup SðUðN1Þ ×…
×UðNKÞÞ. The relative suNi

theories specify physical
boundary conditions of the SymTree, while the uð1Þ factors
sit at the junction(s). See Fig. 20 for a depiction of the case
with a single multivalent junction.
We can rephrase the above in terms of UðNiÞ gauge

connections which we decompose as

Ai ¼ Ai þ
ai
Ni

1Ni×Ni
; ð67Þ

which embed in the SUðNÞ connection in the obvious
way.32 In particular, we have the overall trace constraint,

N1a1 þ � � � þ NKaK ¼ 0: ð68Þ
Suppose we now attempt to construct a Wilson line in an

irreducible representation Ri of the suNi
throat.33 On its

own, this does not really make sense because the global

form of the SUðNÞ gauge group has an electric Zð1Þ
N

symmetry, whereas the suNi
gauge theory has electric

defects acted on by Zð1Þ
Ni
. We can dress the “naive” Wilson

line for SUðNiÞ gauge theory by an overall Uð1Þi line,

WRi;qi ¼ Wnaive
Ri

exp

�
−iqðRiÞ

Z
ai

�
; ð69Þ

where qðRiÞ is simply the Ni-ality of the representation,

qðRiÞ ¼
#boxesðRiÞ

Ni
; ð70Þ

in the obvious notation.
Returning to line (68), we can of course also project

down to the K − 1 independent U(1) vector potentials, e.g.,
matching back onto (39). Consider for example the case
K ¼ 2 with Ri the fundamental representation of suNi

.
The dressing of line (69) then corresponds to the repre-
sentation ðRiÞ1 where the added U(1) gauge field is that of
the Abelian factor in

UðNiÞ ¼
SUðNiÞ × Uð1Þi

ZNi

: ð71Þ

We now reduce to a single Abelian factor as in

SðUðN1Þ×UðN2ÞÞ¼SUðN1Þ×SUðN2Þ×Uð1Þ=ZL; ð72Þ

where L is the least common multiple lcmðN1; N2Þ.
Denoting this Uð1Þ potential as a, it is related to the
Uð1Þi vector potentials as

a1 ¼
N2

g
a; a2 ¼ −

N1

g
a; ð73Þ

which is consistent with the constraint (68) as well as the
charge assignment in the final line of (39).
From manipulations like the above we now see that the

individual 1-form symmetries across the different relative
suNi

theories are correlated. Indeed, precisely because all
of these Wilson lines descend from a parent SUðNÞ gauge
theory, observe that the electric Zð1Þ

N 1-form symmetry
naturally acts on each of theWRi;qi ’s. Suppose next that we
fix a Young diagram Y such that this can be interpreted as a
representation RY

i of each suNi
factor.34 We can then build

an operator which transforms under the parent 1-form
symmetry:

WY ¼
XK
i¼1

WRY
i ;qi

ð74Þ

whereRY
i denotes the representation of suNi

with the same
Young diagram. The line operator WY has N-ality charge

FIG. 20. SymTree with topological boundary condition for
SUðN1 þ N2 þ � � � þ NKÞ global form, and junction and tree
ϒ describing the Higgsing SUðN1 þ N2 þ � � � þ NKÞ ⊃
SðUðN1Þ × UðN2Þ ×… × UðNKÞÞ. Node theories are 4D SYM
with indicated gauge algebra.

32ai is the trace of the UðNiÞ gauge connection in the
fundamental representation.

33In stringy terms, we get the fundamental representation of
suNi

from an F1-string which descends to the stack of D3-branes.
Higher-dimensional representations are obtained by merging
such lines, i.e., via fusion of these fundamental lines.

34Of course the notation here is a bit redundant once we specify
Ri. It is more to emphasize the point that it is all dictated by the
Young diagram.
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dictated by the number of boxes. This makes the trans-
formation of the Wilson lines consistent in each individual
throat, and the dressing by the U(1) line operators ensures
that there is a common phase rotation for each summand.
Since we have labeled our Wilson line operators by a

choice of Young diagram Y, it is natural to ask what
happens when this Young diagram has a sufficient number
of boxes which anti-symmetrize indices in the representa-
tion so that Y does not specify a genuine representation for
some choice of Ni. In this case, we take this to mean that
the original WRY

i
of a given suNi

theory has actually

broken up into a product of Wilson lines labeled by smaller
Young diagrams. This is in accord with how we would treat
heavy probe quarks in the corresponding representation.

C. Branes at singularities

As another class of examples, we now turn to multisector
QFTs realized by brane probes of singularities. More
precisely, we assume that we have a single stack of branes
probing a Calabi-Yau singularity, where we can geomet-
rically deform both the singularity, as well as the stacks of
branes. From the perspective of the Calabi-Yau singularity,
we are dealing with a higher-dimensional QFTwhich has a
collection of defects, as realized by the probe branes. For a
different approach to bulk modes coupled to dynamical
SCFT edge modes realized via geometry, see Ref. [37].
There are many ways in which such systems can arise.

For example, we can take the 7D SYM theories as realized
by M-theory on C2=ZL, and introduce a stack of N
M5-branes probing the singularity. This results in a 6D
conformal matter theory.35 Introducing a smoothing
deformation, the original A-type singularity breaks up into
a collection of A-type singularities which are each
locally of the form C2=ZLi

with L ¼ L1 þ � � � þ LK . We
can also partition up the stacks of M5-branes as
N ¼ N1 þ � � � þ NK. Similar considerations hold for a
stack of N D3-branes probing a C2=ZL singularity where
we can perform a similar partitioning of the geometry

(see Fig. 21). To keep our discussion general, we assume
we are dealing with a local Calabi-Yau singularity X which
admits smoothing deformations to local singularities
fXjgMj¼1 and a stack of N branes which we partition up
as N ¼ N1 þ � � � þ NK , i.e., we assume there are no
obstructions in the moduli space (as generated by a
potential).
As a general comment, it can happen that the brane probe

specifies a QFT T brane in dimension D but should be
viewed as a defect of a D0 ≥ D-dimensional QFT T geom

engineered by a geometric singularity.36 From the perspec-
tive of the SymTFT Sbrane for the brane probe theory, the
theory T geom actually fills out the higher-dimensional bulk.
This occurs, for example, in configurations such as
M5-brane probes of ADE singularities, where the holo-
graphic dual is (in the large number of M5’s limit) AdS7 ×
S4=ΓADE with the 7D SYM sector filling all of AdS7. This
issue is not unique to SymTrees but generically arises in the
stringy realization of a SymTFT in the first place. Strictly
speaking, then, the SymTFT is no longer purely a TFT
since we still have gapless degrees of freedom in the bulk.
This arises in many string constructions, see e.g., Ref. [37]
for some recent examples along these lines. In this case,
then, the SymTree will generically have branches which
might include both gapped as well as gapless degrees of
freedom.
With these subtleties addressed, let us now turn to the

structure of the SymTree in this setting. First of all, we have
the “true infinity” which consists of the boundary ∂X as
threaded by some units of fluxes (as sourced by the probe
branes). On the other side of the tree, we have physical
boundary conditions, as obtained both from the stacks of
branes and singularities. Indeed, we can begin by separat-
ing the singularities from the branes, and they specify
different sorts of boundary conditions. For example, the
singularities are generically a higher-dimensional relative
QFT and the branes specify a lower-dimensional “defect”
QFT. Starting near one such boundary condition we can

FIG. 21. Deformation of a necklace quiver with L nodes to a pair of quivers with L1, L2 nodes respectively. The quivers are (locally)
engineered by a stack of N (respectively Ni) D3-branes probing C2=ZL (respectively C2=ZLi

).

35For various properties of conformal matter, see e.g.,
Refs. [56,62,67–69].

36Of course, it could happen that D0 ¼ D, in which case the
subtleties which we now discuss do not arise.

TREELIKE STRUCTURE OF SYMMETRY TOPOLOGICAL FIELD … PHYS. REV. D 109, 106013 (2024)

106013-27



build up ever larger radial slices around any one of the
singularities or stacks of branes. Eventually, they touch,
and we produce a SymTree again. In the cases just
mentioned, we have three generic situations for the local
structure of the SymTree:

(i) Trivalent junction from fusing two stacks of branes;
(ii) Trivalent junction from fusing two singularities;
(iii) Trivalent junction from fusing a brane with a

singularity.
We have already dealt with the first two cases, where we
also dealt with the junction theory. This leaves us with the

fusion of a brane probe with a singularity. In this case, we
analyze the junction by pushing the singularity up into the
bulk of the SymTree. This results in a single branch which
begins with a brane stack physical boundary condition, and
which then transitions to the singularity. Prior to reaching
the singularity, the local geometry of the brane stack is
simply Rn with a boundary Sn−1. Once we cross the
singularity, however, the boundary jumps to ∂Xj. This
can therefore be treated as a single SymTFT, and reduction
on the boundary in the presence of a flux proceeds in
precisely the sameway as already discussed. See Fig. 22 for

(a)

(b)

(c)

(d)

(f)

(e)

FIG. 22. SymTrees for brane probes of singularities. (a) Stack of K D3-branes probing an C2=ZN singularity. In the extradimensional
geometry the D3-branes and the singularity are separated. (b) Cross section of this configuration. (c) We contract a branch/center the
filtration on the D3-brane stack. Moving radially outwards from the D3-brane stack the linking S5K with K units of D3 flux sweeps over
the singularity and is folded to an ðS5=ZNÞK . (d) We contract another branch pushing the brane stack into the singularity. This alters the
physical boundary condition and the massless edge modes are now organized into a quiver gauge theory. The shaded slabs/red cross
section signify, from the perspective of 4D edge modes/5D slabs, that the ADE locus is noncompact. It stretches to infinity of the
respective filtration and alters the boundary conditions. (e) The SymTree of two stacks of D3-branes probing a partial resolution of a
C2=ZN singularity. The internal dimensions contain a pair C2=ZNi

singularities and Ki D3-brane, where i ¼ 1, 2, and which are all
separated. In (f) we show the cross section and label branches by the geometry of the corresponding radial shells and their D3-brane flux.
Note, there is a purely geometric junction J ðSingÞ and junction purely characterized by adjoint Higgsing of a brane stack J ðD3Þ.
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a depiction of a hybrid SymTree with both branes and
singularities.
A special multisector QFT of interest is where we focus

on the world volume degrees of freedom of the branes,
ignoring the contributions from the higher-dimensional
QFT generated by the singularity. To analyze this case,
we start from the SymTFT for Nj branes at the jth
singularity and pull the singularity off the physical boun-
dary condition. Doing this for all the sectors, we can now
fuse together the singularities first. Thus, this reduces to
one of the cases previously considered.

VI. ISOLATED MULTISECTOR QFTs

The operating theme in many of the previous examples
has been to start from a single parent UV theory, and to
then initiate a flow on moduli space which, at low
energies, results in a multisector QFT. In this section
we consider a class of multisector QFTs which arise
simply from geometries with multiple singularities, but in
which the collision of such singularities is always at
infinite distance in moduli space. Consequently, we do not

have a single sector parent boundary condition BðfullÞ
phys ,

however BðretractÞ
phys is still well-defined as in Fig. 4. To

illustrate, we focus on some examples of isolated orbifold
singularities where the underlying QFTs are coupled by
purely topological terms. We begin by revisiting 7D SYM
theories, as well as 6D SCFTs, and then turn to an
example with 5D SCFTs.
As a general comment, a common feature we shall

encounter is the appearance of a putative U(1) sym-
metry factor as associated with the local motion of the
isolated singularities. In a compact model we would
indeed get a normalizable mode associated with this de-
formation, but in the decompactified limit, this mode is
log-normalizable, i.e., its kinetic term is proportional to
logVolX (in Planck units). To maintain continuity with
our discussion of the junction theories in earlier sections,
we shall therefore continue to include this Uð1Þ factor, but
it is important to bear in mind that in the limit decoupled
from gravity, it does not contribute a normalizable
mode in the SymTree. However, once we couple to
gravity, this mode “comes to life” so we include it in
what follows.

A. Revisiting multisector 7D models

To generate isolated multisector 7D SYM sectors, we
return to M-theory, but now introduce ADE singularities
such that the product group G1 ×… × GK cannot be
obtained from adjoint Higgsing from a single simple gauge
group factor. This occurs in many situations, e.g., when all
Gj are E-type gauge groups.
One way to geometrically engineer such examples is to

start in F-theory, where we realize such gauge group factors
in terms of a suitable SLð2;ZÞ monodromy transformation

around a codimension two singularity of a 7-brane, as
marked by a distinguished point in the complex line C.37 In
this way, the entire ADE series of Lie algebras dictates a
specific monodromy structure. Far away from the 7-brane,
we characterize this in terms of an SLð2;ZÞ duality bundle
on the boundary S1 ¼ ∂C, i.e., θ → θ þ 2π means acting by
M7−brane, the monodromy matrix for the 7-brane in ques-
tion. Note that this also implicitly specifies a T2 bundle
over the boundary S1 [60,71,72].
Suppose now that we have multiple codimension

two singularities, as captured by monodromy matrices
M1;…;MK . The structure of the F-theory geometry is just
as before, but now the “true infinity” involves a monodromy
given by the productM1…MK . The fusion of junctions and
the corresponding change in the bundles at each step is also
captured by products of such monodromy matrices.
With the F-theory characterization in place, we pass to

M-theory by further compactification on a circle, in which
case theF-theory torus now becomes part of the target space
geometry. Everything we have just specified in terms of
monodromy matrices is directly specified by a choice of T2

bundle over an S1. We also see that when the radial shells
surrounding two distinct singularities just touch, there is an
additional free generator in the homology group of the
boundary 3-manifold. This is theU(1) of the junction theory.
Observe that in the above discussion, we did not assume

that we could push the singularities on top of one another.
Of course, we can specialize to the case of adjoint
Higgsing, e.g., when all theMj commute and each specifies
a monodromy of the form τ → τ þ Nj as we get for an suNj

gauge algebra. In this case, we can merge all the singu-
larities at finite distance in moduli space.
On the other hand, we can also consider cases where

merging the singularities is at infinite distance in moduli
space. This case gives us an example of a multisector
QFTwhere each sector is fully isolated from its neighbors.38

We now turn to the construction of the SymTree in
these cases.

1. Filtration and critical slice

The filtration of FX is constructed using the elliptic
fibration structure π∶X → B, with base B ¼ C, via the lift
of a filtration FB of the base. Any base filtration FB lifts to
a filtration of X by replacing the radial shells of FB by their
preimage with respect to π. Now, the ADE singularities of
X project to two points pi ∈C and we simply pick FB to be
swept out, at small radius by two circles S1i centered on pi.
These then kiss at a point p, resulting in a figure eight, and

37For example, in terms of the standard A,B,C nonperturbative
7-branes of Ref. [70], the EN series is realized as AN−1BC2.

38In a compact model where this modulus is normalizable
(instead of log-normalizable as in the presence situation), one can
push the singularities but this results in a higher-dimensional
theory. For further discussion, see Ref. [73].
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then merge into a single circle S112 at large radius. See
Fig. 23 where small to large radii are depicted as
ðaÞ → ðbÞ → ðcÞ. The point p lifts to a generic torus fiber
π−1ðpÞ ¼ T2

p.
The radial shells of FX are

Ur>r� ¼ ΣM1M2

3 ;

Ur¼r� ¼ ðΣM1

3 Þ ∪T2 ðΣM2

3 Þ;
Ur<r� ¼ ΣM1

3 ⊔ΣM2

3 ; ð75Þ

where ΣM
3 denotes the three-manifold constructed by

fibering a two-torus over a circle with monodromy
twist M. Here we will specify M by an element of
SLð2;ZÞ which gives the monodromy action on H1ðT2Þ.
The elliptic singularity, via Kodaira’s classification, fixes
the conjugacy class of M. When considering multiple
elliptic singularities there may not exist a SLð2;ZÞ frame
in which all monodromy matrices take Kodaira’s canonical
form simultaneously, as often happens in the context of K3

surfaces. Monodromy matrices are compared by traversing
closed loops, starting and ending at one common point in
B, linking a singularity. Using the monodromy data the
homology groups of ΣM

3 are

HnðΣM
3 Þ ≅

8>>><
>>>:

Z k ¼ 0

Z ⊕ cokerðM − 1Þ k ¼ 1

Z ⊕ cokerðM − 1Þ∧ k ¼ 2

Z k ¼ 3;

ð76Þ

where we introduced the shorthand notation,

coker ðM−1Þ∧¼HomðcokerðM−1Þ;ZÞ
≅ cokerðM−1Þ=Tor cokerðM−1Þ; ð77Þ

for a free group. These groups are invariant with respect to
SLð2;ZÞ conjugation of M. The homology groups of the
critical slice are

HnððΣM1

3 Þ ∪T2 ðΣM2

3 ÞÞ ≅

8>>><
>>>:

Z k ¼ 0

Z2 ⊕ ½Z2=ImðM1 − 1;M2 − 1Þ� k ¼ 1

Z ⊕ cokerðM1 − 1Þ∧ ⊕ cokerðM2 − 1Þ∧ ⊕ F k ¼ 2

Z2 k ¼ 3

ð78Þ

where with the second entry in degree one we are denoting a
quotient both by the image of M1 − 1 and M2 − 1. This
quotient is only invariant with respect to simultaneous
SLð2;ZÞ transformations ofM1 andM2. Further, depending
on the case, we have F ¼ 0;Z;Z2. The rank of F, denoted
jFj ¼ rankF, counts the number of two-cycles stretching
between the ADE singularities which depends both
on the pair of elliptic singularities and their relative ori-
entation in SLð2;ZÞ. We discuss the computation of these
homology groups and their generators in Appendix D.

2. Projection to the SymTree

We now reduce 11D supergravity on the radial shellsUr.
The computation follows the same steps as laid out in
Sec. III and Appendix D.

Again, we will focus on the subset of the generalized
symmetries originating from the center symmetries of the
gauge theory sector. More precisely, we focus on the
discrete 1-from symmetries and their dual 4-form sym-
metries. We defer the discussion of a (−1)-form U(1)
symmetry, 2-form U(1) instanton symmetry, KK U(1)
0-form symmetry, associated with the zero section, and a
U(1) 1-form symmetry of a decoupled Abelian vector
multiplet associated with the fiber class. The latter is fully
decoupled, the fiber class does not intersect any compact
curves and is not even topologically coupled [41]. For
further discussion on these see [60,71].
In terms of geometry these restrictions amount to

focusing on 1-cycles and 2-cycles with one leg the elliptic
fiber, these are

(a) (b) (c)

FIG. 23. (a)–(c) We depict the base of the local K3 π∶X → B ¼ C. The preimage under π of a base filtration FB gives a filtration FX.
The critical slice projects to a figure eight. The filtration for the base lifts to the full geometry, as determined by the SLð2;ZÞmonodromy
matrices M1, M2.
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H1ðΣMi
3 Þ ≅ cokerðMi − 1Þ ⊕ …

H1ððΣM1

3 Þ ∪T2 ðΣM2

3 ÞÞ ≅ Z2=ImðM1 − 1;M2 − 1Þ ⊕ …

H2ððΣM1

3 Þ ∪T2 ðΣM2

3 ÞÞ ≅ F ⊕ …; ð79Þ

which, lifting to differential cohomology, translates to restricting our attention to the coefficients in the expansions39

ðr > r�Þ∶ Ğ4 ¼
X
j∈ J

B̆ðr>r�;jÞ
2 ⋆t̆ðr>r�;jÞ

2 þ
X
j∈ J0

H̆ðr>r�;jÞ
2;Uð1Þ ⋆ŭðr>r�;jÞ

2 þ…;

ðr ¼ r�Þ∶ Ğ4 ¼
X
j∈ J�

B̆ðr¼r�;jÞ
2 ⋆t̆ðr¼r�Þ

2 þ
X
k∈K

F̆ðr¼r�;kÞ
2;Uð1Þ ⋆ŭðr¼r�;kÞ

2 þ…;

ðr < r�Þ∶ Ğ4 ¼
X
j∈ J1

B̆ðr<r�;1;jÞ
2 ⋆t̆ðr<r�;1;jÞ

2 þ
X
j∈ J2

B̆ðr<r�;2;jÞ
2 ⋆t̆ðr<r�;2;jÞ

2

þ
X
j∈ J0

1

H̆ðr<r�;1;jÞ
2;Uð1Þ ⋆ŭðr<r�;1;jÞ

2 þ
X
j∈ J0

2

H̆ðr<r�;2;jÞ
2;Uð1Þ ⋆ŭðr<r�;2;jÞ

2 þ…; ð80Þ

where J1; J2; J�; J∈ f0; f0g; f0; 1ggwhich count the number of torsional groups in the prime decomposition of the finitely
generated Abelian groups computed as the torsion contributions above. Similarly the primed index sets describe free
contributions. We have jKj ¼ rankF. The geometrization of these groups is analogous to the discussion near line (43). The
fields of the SymTree under consideration are thus, projecting back down to cohomology,

ðr > r�Þ∶Bðr>r�;jÞ
2 ; Hðr>r�;lÞ

2;Uð1Þ j∈ J;l∈ J0;

ðr ¼ r�Þ∶Bðr¼r�;jÞ
2 ; Aðr¼r�;kÞ

1;Uð1Þ j∈ J�; k∈K;

ðr < r�Þ∶Bðr<r�;1;jÞ
2 ; Bðr<r�;2;lÞ

2 ; Hðr<r�;1;rÞ
2;Uð1Þ ; Hðr<r�;2;sÞ

2;Uð1Þ j∈ J1;l∈ J2; r∈ J01; s∈ J02; ð81Þ

together with their magnetic duals. The fields on the
SymTree branches are background fields for the discrete
and continous symmetry of the 7D theory. TheH2 fields are
backgrounds for the decoupled Abelian vector multiplets
mentioned above.
The elliptic fiber has two 1-cycles and the geometric

origin of these legs thus restricts the number of fields under
consideration to two on each SymTree branch

jJij þ jJ0ij ≤ 2; jJj þ jJ0j ≤ 2: ð82Þ

There are also up to two U(1) log-normalizable vector
multiplets localized at the junction, i.e., by supersymmetry
the junction theory is

jFj7DN ¼ 1 uð1Þ log -normalizable vector multiplets:

ð83Þ

Additionally, the junction fields Bðr¼r�;jÞ
2 are eaten up by

identifications. Indeed the part of the maps |̄r<r� |̄r>r� ,
defined in (24), relevant for the above fields are the
restriction maps associated via duality to the homology
embedding maps |r<r�|r>r� defined by

|ðiÞr<r�∶ Z2=ImðMi − 1Þ → Z2=ImðM1 − 1;M2 − 1Þ;
|r>r�∶ Z2=ImðM1M2 − 1Þ → Z2=ImðM1 − 1;M2 − 1Þ;

ð84Þ

with |r<r� ¼ |ð1Þr<r� þ |ð2Þr<r� . Because the mappings |ðiÞr<r�
impose further identifications, the dual of these maps have
vanishing kernel. With this all of the junction field

Bðr¼r�;jÞ
2 arises as restrictions from the discrete field

localized on the small radius branches, i.e., they are eaten
up completely by gluing conditions. This of course
matches with the junction degrees of freedom being solely
those of line (83).
Instead of writing out the gluing conditions explicitly, as

in (50) and (52), we now consider a representative
examples for the cases jFj ¼ 1. The case jFj ¼ 2 as for
example engineered by two elliptic singularities both of

39The lowered indices denote form degrees, the raised indices
specify, in order, the radial shells the fields are localized to, if
these have multiple connected components which component,
and finally and index running over the relevant homology
generators for that component. We further attach the index
“U(1)” for background fields for continuous symmetries, as
obtained via expansion along free classes.
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Kodaira type I�0 is rather subtle.40 The case jFj ¼ 0 has
topological junctions at which only gluing conditions are
formulated.

3. Case jFj= 1 with uð1Þ junction
Consider a pair of elliptic singularities both of Kodaira

type IV� engineering two e6 gauge theory sectors. The
relevant monodromies are

M≡M1¼M2¼
�−1 −1

1 0

�
; M1M2¼

�
0 1

−1 −1

�
; ð85Þ

which determine the fields of the SymTree,

ðr > r�Þ∶ Bðr>r�Þ
2 ;

ðr ¼ r�Þ∶ Bðr¼r�Þ
2 ; Aðr¼r�Þ

1 ;

ðr < r�Þ∶ Bðr<r�;1Þ
2 ; Bðr<r�;2Þ

2 ; ð86Þ
where all the B-fields are valued in Z3 ⊂ Uð1Þ. The gluing
conditions across the junctions are

Bðr<r�;1Þ
2 jr¼r� ¼ Bðr<r�;2Þ

2 jr¼r� ¼ −Bðr>r�Þ
2 jr¼r� ¼ Bð2Þ

�;j ð87Þ

where the minus sign is due to M−1 ¼ M2. There is no
mixing between B-fields and the uð1Þ junction sector, i.e.,
none of the B-fields serve as background fields for the uð1Þ
junction. These gluing conditions reflect the gauge group,
in an electric frame,

G ¼ E6 × E6 × Uð1Þ
Z3

; ð88Þ

where E6 is the simply connected Lie group with Lie
algebra e6. We also find massive bifundamentals
ð27; 27Þ2 ⊕ ð27; 27Þ−2 which is compatible with the over-
all observed symmetries. Again, we comment that in the
decompactified limit, this Uð1Þ factor is log-normalizable,
i.e., it is not really part of the SymTree junction.

B. 6D SCFTs

As another class of multisector QFTs, consider
N ¼ ð2; 0Þ SCFTs as realized by type IIB string theory on
an ADE singularity. Such singularities are modeled as C2=Γ
for Γ a finite subgroup of SU(2), but we can also reach the
same sort of structures from noncompact elliptically fibered
Calabi-Yau twofolds. Indeed, the same geometry introduced

in our analysis of isolated 7D sectors works equally well
in this case as well. For each individual 6D SCFT, we have
a 7D SymTFT. In these cases, the junction theory again
contains a log-normalizable tensor multiplet (as in the
nonisolated case). Again, there is a topological coupling
between the different 6D SCFTs as captured by the bulk
3-form potential of the SymTFT branches.
We can perform a similar analysis in the more general

case of 6D SCFTs as realized by F-theory on a noncompact
elliptically fibered Calabi-Yau threefold with multiple
canonical singularities. Indeed, the main requirement here
is that we start from independent contracting configurations
of curves which cannot be combined into a single con-
figuration of curves. We remark that this happens rather
frequently in explicit 6D supergravity models realized
in F-theory.

C. 5D SCFTs

Consider next the case of isolated multisector 5D SCFTs.
In M-theory we get examples of 5D SCFTs by working on
the background R4;1 × X for X a Calabi-Yau threefold with
a canonical singularity. Some aspects of the geometry, as
well as higher-form symmetries for these cases were
studied e.g., in Refs. [31,32,37,59,78,79]. In general, we
can consider a Calabi-Yau threefold which has multiple
isolated canonical singularities that cannot be merged.
These furnish examples of multisector models with isolated
5D SCFTs which only couple via topological terms.
To illustrate these considerations in more detail, we focus

on multisector models where each sector is just the E0

Seiberg SCFT [80,81]. Geometrically, the E0 SCFT is
realized viaM-theory onC3=Z3. The boundary geometry is
the generalized lens space S5=Z3. The model has a Z3

1-form symmetry with symmetry operators obtained from
M5-branes wrapped on torsional 3-cycles at the boundary
geometry. This symmetry links/acts on M2-branes which
stretch from the singularity out to the torsional one-cycles
of the boundary, i.e., ConeðγÞ for γ ∈H1ðS5=Z3Þ. The
relevant homology groups in this case are

HkðS5=Z3Þ ≅

8>>>>>>>>><
>>>>>>>>>:

Z k ¼ 0

Z3 k ¼ 1

0 k ¼ 2

Z3 k ¼ 3

0 k ¼ 4

Z k ¼ 5

: ð89Þ

To produce a collection of E0 SCFTs, it suffices to
compactify one of the complex directions of our original
model. With this in mind, we consider the quotient space
X ¼ ðT2 × C × CÞ=Z3, where we fix the complex structure
of the T2 to be τ ¼ expð2πi=6Þ. Each holomorphic factor
has a local coordinate zi, and the group action is simply

40In the context of an F-theory compactification, the mono-
dromy around a pair of I�0 singularities results in a ð−1ÞF
transformation (see e.g., [74]). This monodromy transformation
is present in Mpð2;ZÞ, the spin cover of SLð2;ZÞ (see [75]) as
well as the Pinþ cover of GLð2;ZÞ (see [76]). For further
discussion on some of the physical implications of these finer
duality structures, see e.g., [72,74,77].
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ðz1; z2; z3Þ → ðωz1;ωz2;ωz3Þ where ω3 ¼ 1. This results
in three codimension six singularities, each of which has
the form C3=Z3. In this case, the asymptotic geometry for
the full system is ∂X ¼ ðT2 × S3Þ=Z3. We can view this as
a specific SLð2;ZÞ bundle over the lens space S3=Z3, or as
a lens space bundle over the quotient space T2=Z3. While
we focus on this case, similar considerations hold for
related spaces such as ðT2 × T2 × CÞ=Z3. The fully com-
pactified case T6=Z3 (i.e., 5D SCFTs coupled to gravity)
and their higher-form symmetries was studied in [41].
The 5D field theory obtained from M-theory on ðT2 ×

C2Þ=Z3 contains three E0 SCFT sectors. Additionally,
because we have a compact T2 factor which also has finite
volume at the conformal boundary of X, reduction of the
M-theory 3-form potential on this 2-cycle results in a
continuous uð1Þ 0-form gauge symmetry. Observe that
since the E0 theories do not have a continuous 0-form
symmetry,41 this gauge symmetry can only couple via
massive modes / topological terms to the E0 theories. The
decoupling limit for the model corresponds to sending the
volume of the T2 factor to infinite size.

1. Filtration and critical slice

We now determine the SymTree by first describing a
convenient choice of filtration FX sweeping out
X ¼ ðT2 × C2Þ=Z3. The filtration is again constructed by
growing tubular neighborhoods of the singularities. This
results in the 5D radial shells,

Ur>r� ¼ ∂X;

Ur¼r� ¼ X∘jretract;
Ur<r� ¼ ðS5=Z3Þ⊔ ðS5=Z3Þ⊔ ðS5=Z3Þ; ð90Þ

with a single critical slice at r ¼ r�. Here X∘ is the total
space X with the three singularities excised and X∘jretract
denotes the deformation retraction of X∘ to 5D. The space
X∘ is a topological model for three-legged pants.42 Via
various dualities in algebraic topology, the critical slice are
computed to have the homology groups,

HnðX∘Þ ≅ HnðX∘jretractÞ ≅

8>>>>>>>>><
>>>>>>>>>:

Z k ¼ 0

Z2
3 k ¼ 1

Z k ¼ 2

Z3
3 k ¼ 3

0 k ¼ 4

Z3 k ¼ 5

ð91Þ

[see 24 for a sketch of the filtration]. The asymptotic
boundary is smooth and admits two fibrations X → T2=Z3

and X → S3=Z3 and from here we compute,

Hkð∂XÞ ≅

8>>>>>>>>><
>>>>>>>>>:

Z k ¼ 0

Z2
3 k ¼ 1

Z k ¼ 2

Z ⊕ Z2
3 k ¼ 3

0 k ¼ 4

Z k ¼ 5

: ð92Þ

The three-legged pants X∘ runs between three copies of
S5=Z3 and one copy of ∂X. In Appendix C we give
additional details and identify generators. The homology
groups Hkð∂XÞ determine the defect and symmetry oper-
ators, as in Refs. [33–35,39]. Returning to our discussion
near line (89), we see that we can again speak of a 1-form
symmetry operator as realized by M5-branes wrapping a
torsional generator of H3ð∂XÞ. Similar considerations hold
for the other symmetry operators, as well as the asymptotic
profile of defects in the SymTFT which become defects of
the relative QFTs localized at singularities.
But compared with the case of line (89), we also see the

appearance of free generators in H2ð∂XÞ and H3ð∂XÞ. We
already anticipated the appearance of such free factors; they
are associated with the presence of a U(1) 0-form gauge
symmetry in the 5D theory. This U(1) field does not
directly couple to the E0 SCFTs because these theories
do not have a continuous global U(1) symmetry. On the
other hand, we clearly have massive M2-branes stretched
between the different sectors, as captured by elements of
H2ðXÞ. Proceeding to one of our 5D SCFT sectors, we
integrate out these massive M2-branes; their remnant
consists of line defects of the individual E0 theory. In
the local E0 sectors, the remnant of the U(1) gauge
symmetry is a global Z3 1-form symmetry which acts
on these lines.

FIG. 24. SymTree derived from the filtration FX of the orbifold
X ¼ ðT2 × C2Þ=Z3. We give the topological models for the radial
shells at the legs and junctions. The junction valency is 4.

41Geometrically, this is a consequence of H3ðS5=Z3Þ ¼ Z3

being pure torsion. There is of course also a continuous SU(2) R-
symmetry, but that is not relevant for the present discussion.

42That is, three legs and one waist. The cross section of these is
S5=Z3 and ∂X, respectively. See Fig. 30 in Appendix D.

TREELIKE STRUCTURE OF SYMMETRY TOPOLOGICAL FIELD … PHYS. REV. D 109, 106013 (2024)

106013-33



2. Projection to SymTree

We now determine the SymTree by reducing 11D
supergravity on the radial shells Ur. This resembles the
steps resulting in (45), hence we will be brief and only
highlight differences to the previous cases.
We focus on the SymTree fields (and their duals),

ð89Þ → ðr < r�Þ∶ Bðr<r�;iÞ
2 ; Bðr<r�;jÞ

0 ;…

ð91Þ → ðr ¼ r�Þ∶ Bðr¼r�;aÞ
2 ; Bðr¼r�;iÞ

0 ; Fðr¼r�Þ
2;Uð1Þ ;…

ð92Þ → ðr > r�Þ∶ Bðr>r�;aÞ
2 ; Bðr>r�;bÞ

0 ; Hðr>r�Þ
2;Uð1Þ ; H

ðr>r�Þ
1;Uð1Þ ;…;

ð93Þ

derived via KK reduction from Ğ4. Here i, j ¼ 1, 2, 3 run
over the three generalized lens spaces at low radii and a,
b ¼ 1, 2. The B-fields have discrete periods taking values
in Z3, all other fields take values in U(1). The indices a, b
can be thought to label differences of labels i, j and we
sometimes write aij; bij. This notation is to indicate that, if
the fields labeled by i are associated with cycles σi, then
those lablled by aij are associated with σi − σj. See
Appendix D for explicit discussion.
We begin by determining the how junction fields glue to

fields living on the branches of the SymTree. From the
Mayer-Vietoris sequences (18) and (20) we compute,
transitioning to cohomology,

Hðr>r�Þ
2;Uð1Þ jr¼r� ¼ Fðr¼r�Þ

2;Uð1Þ

Hðr>r�Þ
1;Uð1Þ jr¼r� ¼ 0 ð94Þ

for fields valued in U(1) and associated with free gener-
ators. From the second relation we conclude that the
corresponding 0-form symmetry does not couple to the
E0 sectors. From the first relation we conclude that there is
no isolated junction theory. All junction fields arise as
restrictions from fields on the branches of the SymTree.
For torsional fields we compute,

ðBðr<r�;iÞ
2 − Bðr<r�;jÞ

2 Þjr¼r� ¼ B
ðr>r�;aijÞ
2 jr¼r� ¼ B

ðr¼r�;aijÞ
2

Bðr<r�;iÞ
0 jr¼r� ¼ Bðr¼r�;iÞ

0

B
ðr>r�;aijÞ
0 jr¼r� ¼ Bðr¼r�;iÞ

0 − Bðr¼r�;jÞ
0 ; ð95Þ

and find these to be fully eaten up by gluing conditions.
These result follow by geometrizing the various homo-
logy group generators as in appendix D. The geometry
X → T2=Z3 clearly has a compact 2-cycle (the zero
section), however, the corresponding metric modulus is
not normalizable. Overall the action of the SymTree now
takes the form,

S ¼
X

branches b

SðbÞ6D þ
X

internal nodesn

SðnÞ5D

¼ Sð1Þ6D þ Sð2Þ6D þ Sð3Þ6D þ Sð123Þ6D þ S5D;J ; ð96Þ

where the 5D junction action simply enforces the gluing
conditions between the different 6D bulk fields. The first
four terms each correspond to a leg of the Y-shaped
SymTree and are topological,

SðiÞ6D ¼ i
2π

3

Z
R4;1×ð0;r�Þ

Bðr<r�;iÞ
2 ∧ dBðr<r�;iÞ

3 þ 1

3
Bðr<r�;iÞ
2 ∧ Bðr<r�;iÞ

2 ∧ Bðr<r�;iÞ
2 þ…

Sð123Þ6D ¼ i
2π

3
X
a¼1;2

Z
R4;1×ðr�;∞Þ

Bðr>r�;aÞ
2 ∧ dBðr>r�;aÞ

3 þ � � �

þ i
2π

Z
R4;1×ðr�;∞Þ

Hðr>r�Þ
2;Uð1Þ ∧ dHðr>r�Þ

3;Uð1Þ þHðr>r�Þ
1;Uð1Þ ∧ dHðr>r�Þ

4;Uð1Þ þ � � � ; ð97Þ

where the “…” involves bulk fields for the 2-form and
(−1)-form symmetry derived from the 11D Chern-Simons
term Ğ3

4. See Ref. [20] for additional discussion.

VII. NONSUPERSYMMETRIC EXAMPLE

So far, we have mainly focused on examples which are
also supersymmetric. This is mainly so that we can
maintain technical control over the construction, and also
so that we can match to known string constructions, which
are often implicitly supersymmetric.
That being said, the general structure of SymTFTs applies

more broadly and does not really rely on supersymmetry at

all. With this in mind, we now present a nonsupersymmetric
example which illustrates much of the same structure found
in the supersymmetric setting.
Along these lines, we consider 4D SUðNÞ gauge theory

with matter given by a complex adjoint-valued scalar ϕ. We
shall be interested in a model in which ϕ has a potential
energy density Vðϕ;ϕ†Þ which leads to Higgsing of the
SUðNÞ gauge theory to a gauge group of the form,

G ¼ SUðN1Þ × SUðN2Þ × Uð1Þ
ZL

; ð98Þ
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where L¼ lcmðN1;N2Þ¼N1N2=gcdðN1;N2Þ. To achieve
this, we assume the vacuum expectation value of ϕ is of the
form,43

hϕi¼diagðv1;…;v1|fflfflfflfflffl{zfflfflfflfflffl}
N1

;v2;…;v2|fflfflfflfflffl{zfflfflfflfflffl}
N2

Þ; with N1v1þN2v2¼0:

ð99Þ

Below the characteristic energy scale set by this vacuum
expectation valuewe reach the expected gauge group of line
(98). Similar considerations hold for breaking patterns
which involve additional suNi

factors, so we leave this
extension implicit in what follows.
Now, after adjoint Higgsing,we observe that the two suNi

factors have different beta functions, and so the gauge
coupling for the gauge group factor with more colors
will run to strong coupling faster.44 Without loss of general-
ity, we assume N1 ≥ N2, and thus that Λ1 ≥ Λ2 for the
associated strong coupling scales.45 We would like to
understand now how the topological coupling imposed
by the ZL quotient in (98) affects this model both for an
observer at intermediate energy scales Λ1 > E > Λ2 and in
the deep IR Λ2 > E where both factors are confined.
First, note that the junction theory connecting the two

sectors is again given by theU(1) gauge theorywith the same
topological couplings as in Sec. V B. Also similar to the
supersymmetric moduli space flow example, the IR electric
1-form symmetry below the energy scales Λ1 and Λ2 is

IR Electric1-form Symmetry∶ ðZg × Uð1ÞÞð1Þ; ð100Þ

where g ≔ gcdðN1; N2Þ. TheUð1Þð1Þ factor is of less interest
to us since the U(1) photon in G remains gapless and
spontaneously breaks the Uð1Þð1Þ.46 On the other hand, the
ðZgÞð1Þ factor is retained from the UV to the IR. This simply

follows from the fact that we have an electric area law for the
Wilson lines.

VIII. LARGE M AVERAGING AND
MULTISECTOR MODELS

Having presented a number of examples of multisector
QFTs, as well as their associated SymTrees, we now
explain how we can use this same formalism to study
large M47 averaging in CFTs with a gravity dual. Large M
averaging was recently discussed in Refs. [47,82] as a way
to provide an approximate characterization of chaotic
dynamics in holographic systems, especially for observ-
ables above the large48 black hole threshold, i.e., for
operators with dimension Δ≳M. Our aim here will be
study the structure of higher-form symmetries and whether
it is compatible with such a large M averaging procedure.
To keep our discussion concrete, we focus on the case of

4D N ¼ 4 SYM theory with gauge group SUðMÞ, i.e., the
electric polarization of the relative suM QFT. In that
context, the electric Wilson lines provide order parameters
for the confinement/deconfinement transition. Indeed, as
found in [48], putting the boundary theory on S1 × S3, i.e.,
at finite temperature, the breaking of the center symmetry
directly tracks with the Hawking Page transition [83]. As
such, Wilson line observables, and thus higher-form
symmetries are directly sensitive to states near the black
hole threshold. Thus, we expect that it should be possible
to make sense of large M averaging and higher-form
symmetries.
At first glance, we meet with a puzzle; what does it mean

to have a Zð1Þ
M symmetry if we are going to average overM?

At a pragmatic level, one might wish to assert that only
self-averaging observables Oself need to be considered, and
that Wilson lines should be excluded from such consid-
erations but then it is unclear how to actually calculate
correlation functions which involve both theOself’s and the
Wilson lines.
Our aim will be to reverse engineer a prescription in

gauge theory which does allow for higher-form sym-
metries, even in the presence of large M averaging.
The main idea will be to use a similar proposal to that
given in [46] where we directly build a multisector
ensemble of QFTs. Each sector will be a relative suNi

theory with Ni ¼ M þ εi for εi an integer much smaller
than M. Projecting onto a diagonal subset of operators O,
we show that connected correlators for local operators
exhibits large M ensemble averaging. Moreover, by dress-
ing “naive” Wilson lines of each relative theory, we show
how to produce a diagonal subset of Wilson linesW which

all transform under a common Zð1Þ
M 1-form symmetry.

43In a supersymmetric theory this can be arranged by a suitable
choice of superpotential. Recall that the physical potential in a
supersymmetric theory is of the schematic form V ¼ j∂W=∂ϕj2,
with superpotential WðϕÞ ¼ aTrϕ2 þ bTrϕ3 þ λTrϕ, and where
the λ serves as a Lagrange multiplier enforcing the tracelessness
constraint. W also implicitly defines a function of a single
complex variable, and so we can enforce the desired choice of
critical points by demanding (by abuse of notation) W0ðzÞ ¼
ðz − v1Þðz − v2Þ with N1v1 þ N2v2 ¼ 0. In the nonsupersym-
metric setting, additional tuning and/or higher-order terms are
typically necessary to achieve this breaking pattern.

44Recall that in pure SUðNÞ gauge theory, the one-loop
running of α ¼ g2=4π is dα−1=dt ¼ b=2π with b ¼ 11N

3
.

45Of course, we are also implicitly assuming that v1; v2 ≫ Λ1.
46Also, the sense in which Uð1Þð1Þ is an IR symmetry is that it

is broken in the UV explicitly due to the gauge covariant
derivative of SUðNÞ, i.e., the conservation equation d � FUð1Þ ¼ 0

implicit from the effective Lagrangian below the Higgsing scales
receives corrections to the right-hand side as it is realized in the
equations of motion DASUðNÞ � FSUðNÞ ¼ 0 at high energies.

47M here is associated to the central charge of the CFT,
commonly referred to as “large c” or “large N” in the literature.

48In 3D gravity, the black hole threshold is sharp, but inD > 3,
we can also have small black holes.
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The rest of this section is organized as follows. We begin
by reviewing the top-down construction of ensemble
averaging proposed in [46] and explain how we can use
it to implement large M averaging for local observables.
With this in place, we then show how to dress Wilson lines
of the individual sectors of such a system so that extended
operators correctly transform under a common 1-form
symmetry.
As a general comment, though we couch our discussion

in terms of stringy terms, there is clearly a bottom-up
prescription available where we simply consider a large
number of replica theories with different values of M.
Dressing the Wilson lines via the SymTree then yields
precisely the same prescription.

A. Artisanal ensembles

To study higher-form symmetries in conformal field
theories (CFTs) with largeM averaging, we first review the
proposal of [46] which engineers “by hand” an ensemble
average with respect to parametric families of QFTs. In
such artisinal ensembles, the main idea is to consider a
multisector QFT with similar field content in each sector.
After reviewing how this works when averaging over the
marginal parameters of a CFT,49 we show that the same
considerations extend to ensemble averaging inM for large
M QFTs. Again, we emphasize that this procedure reverse
engineers the same low energy behavior as that of self-
averaging observables but can deviate from this result at
short distances/high energies.
We begin by briefly reviewing how we can use a multi-

sector QFT to engineer an ensemble average. Consider a
multisector QFT comprised of decoupled CFTs which we
label as T k, where the index k ¼ 1;…; K runs over all the
sectors. We assume for now that the CFTs have the same
operator content, but possibly different values of marginal
parameters which we specify as λ⃗k. With this in mind,
suppose we now introduce a local operatorOk for one such
sector. We can use a connection on the moduli space to
construct its parallel transported version on the other copies
of the multisector QFT. Doing so, we can speak of the
operator obtained from the linear combination,

O ¼ O1 þ � � � þOK: ð101Þ

For connected correlators, we observe that there is a
pleasant factorization of the associated correlation func-
tions for the O’s. Indeed, we have normalized connected
correlation functions of the form,

hOð1Þ…OðnÞiconn;norm ≈
1

K

X
1≤k≤K

hOð1Þ
k …OðnÞ

k iT k
; ð102Þ

namely, the correlation function breaks up into a sum over
the distinct sectors. It is important to emphasize that we
only discuss connected correlators here. Additionally, the
normalization factor 1=K reflects a normalization of the
identity operator for the full system, and also ensures that
the large K limit is well-defined.
To see how this results in ensemble averaging, note that

the kth CFT sector has its corresponding set of parameters
λ⃗k. Therefore, we can define a discrete probability distri-
bution over the parameter values λ⃗ with density,

pdiscðλ⃗Þ ¼
Kðλ⃗Þ
K

; ð103Þ

where Kðλ⃗Þ counts the number of brane stacks with
parameters λ⃗.
In the context of stringy realizations of such ensembles,

there is a natural sense in which we can always “smooth
out” these discretized distributions to continuous proba-
bility distributions. As noted in [46], we can realize this
ensemble by taking brane configurations probing an
extradimensional geometry. In this case, we still have a
multisector QFT but one in which there are mixing terms
between the sectors specified by irrelevant operators.
The geometry of the extra dimensions specifies values
of the parameters in the worldvolume theory. Further, since
the branes have finite tension, the branes are not strictly
localized at a point in the transverse direction, but are
instead “spread out” over a characteristic length scale.50

Approximating this spread as uniform, we smooth out the
probability distribution (103) from a sum of δ-functions (or
“comb”) into a sum of step functions, which can be further
regarded as a “binned” approximation for a continuous
distribution psmooth. The resulting distribution can be
expressed as a histogram function via an indicator Iλ⃗0;ϵ⃗λ⃗0

ðλÞ,

psmoothðλ⃗Þ ¼
Z
λ⃗0
dλ⃗0Iλ⃗0;ϵ⃗λ⃗0 ðλ⃗Þ

Kðλ⃗0Þ
K

; ð104Þ

where ϵ⃗λ⃗0 is the appropriate vector of widths of the window

centered on λ⃗0 and Iλ⃗0;ϵ⃗λ⃗0
ðλ⃗Þ has unit area. Using this

distribution, we can rewrite the correlation function
(101) as

49One can generalize this to cover more general parameters of a
QFT, a feature which can be read off from the associated brane
constructions.

50For a Dp-brane, this scale is characterized by lmin ∼ ð 1
Tp
Þ1p

with Tp ∼ ðgslpþ1
s Þ−1, where gs is the string coupling and ls is the

fundamental string length.
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hOð1Þ…OðnÞinormalized ≈
1

K

X
1≤k≤K

hOð1Þ
k …OðnÞ

k iHk

≈
Z

dλ⃗psmoothðλ⃗ÞhOð1Þ…OðmÞiλ⃗;

ð105Þ

which mimics an ensemble averaged computation for the

observable hOð1Þ…OðmÞi.
In order to have a holographic interpretation of this

ensemble averaging, we now assume that each individual
CFT sector has its own semiclassical AdS dual, with the
same value of the cosmological constant. It is indeed
possible to engineer an ensemble of local CFT sectors
with the same dual cosmological constant but different
parameters, as demonstrated with concrete examples in
Ref. [46]. Note that the operator O given in (101) is a sum
over operators, each of which enjoys the same field content
in its respective local CFT, and as such describes the
collective motion of many copies Oi of this operator.
Therefore, although in fact the full system contains K
distinct AdS throats, when we restrict our attention to the
set of observables of the form O, one only reconstructs a
single AdS dual according to the Gubser-Klebanov-
Polyakov dictionary [84].
At low energies, we thus see that this top-down ensemble

averaging produces a probability distribution which can in
principle match to the one which might be prescribed by
other holographic considerations. The approximation can
break down in various ways, both in terms of short distance
limits, but also entropically by sampling sufficiently many
times from the “true distribution” generated by a single
chaotic system and that of the top-down reverse-engineered
system.
Our discussion so far has focused on the case of

averaging over the marginal parameters of a CFT. An
interesting generalization of this proposal is to consider the
consequences of also permitting a variation in the number
of degrees of freedom in a large M CFT, i.e., to allow for
large M averaging. Strictly speaking, the operator content
of each CFTwith a different value ofM is distinct. Even so,
there is a clear notion of varying M, especially in large M
gauge theories. For example, in an SUðMÞ gauge theory we
can label (possibly gauge noninvariant) operators by a
representation of SUðMÞ, as specified by a Young diagram
Y. The Young diagram is independent of M insofar as we
restrict our attention to representations where the number of
antisymmetrizing indices is “small” compared to M, and
even when this is not the case, the dependence on M is
relatively mild (we simply pass to multiparticle states).
Indeed, this is also quite natural in the context of brane
constructions of largeM parametric families of branes with
an AdS dual. Otherwise, the very notion of having a
semiclassical gravity dual with GNewton scaling as a power
of M would make little sense to begin with.

Proceeding in this fashion, then, we can now enlarge our
notion of our ensemble of relative theories T i to possibly
include a variation in the marginal parameters as well as in
the value of the Ni. Again, this is quite natural in the
context of string constructions where the value of Ni is
really just the asymptotic value of a flux quanta sourced by
a stack of branes, i.e., it is simply the background value of a
flux operator in the gravity dual.
Indeed, we can implement this sort of ensemble both at

the formal level of a multisector QFT, as well as in the
context of explicit brane constructions. We actually
encountered such systems in Sec. V where we studied
brane probes of singularities. In the near horizon limit, this
results in a multithroat configuration, and we can tune the
marginal couplings as well as the parameter Ni in each
stack to even maintain the same value of the cosmological
constant in each throat.
In the case of building an ensemble over Ni, provided all

Ni are of the form Ni ¼ M þ εi for εi an integer far smaller
than M, the precise form of the distribution matters little.
Indeed, in this case we achieve a reasonable approximation
even using the uniform distribution and all other choices
require sampling a large number of times from the Ni. As
such, the choice of distribution is relatively insensitive to
the particular brane configuration and we indeed find a
“preferred” distribution for our average over M.51

Proceeding as before, we also face no immediate
obstacles in building local operators O ¼ O1 þ � � �
þOK. Their normalized connected correlators again
exhibit an ensemble average which now includes an
average over M, see Fig. 25 for a depiction. We comment
here that in the proposal of [47], the expectation is that up
to nonperturbative corrections of order expð−MÞ, there is
no ensemble averaging at all for operators with scaling
dimension below the black hole threshold. In most of the
cases we know of where we can implement a large M
average via branes in string theory, the typical situation is
a D > 2 CFT, and the gravity dual also supports small
black holes. As such, largeM averaging should be present
(even if smaller) in all these cases. For further discussion
on this point, see Appendix E.
For largeM averaging over extended operators, however,

we face an additional complication because these are often
sensitive to the arithmetic properties of the individual Ni in
each sector of our multisector QFT. For example, the
Wilson lines of an SUðNiÞ gauge theory are charged under

the electric Zð1Þ
Ni

1-form symmetry. To make sense of
Wilson line operators, we can thus entertain two general
possibilities: either we demand that a putative WY (as
specified by a choice of Young diagram/representation) has
a well-defined charge under an electric 1-form symmetry,
or we forfeit the existence of a 1-form symmetry in the

51For some recent discussion on nonperturbative effects which
distinguish the choice of distribution, see e.g., Ref. [85].
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large M average. The latter possibility would be a pity
because it would seem to also require abandoning the
beautiful connection between bulk gravitational dynamics
and center symmetry breaking in the gauge theory dual
found in [48]. So, we shall instead proceed by constructing
a suitable WY which has a well-defined charge under the

Zð1Þ
M 1-form symmetry.
In fact, we have already presented the main elements of

this construction in Sec. V B 2 where we considered the
case of N ¼ N1 þ � � � þ NK branes probing an extradimen-
sional geometry. As we observed there, we can start with
the Wilson line of the relative suNj

theory and then dress it
by U(1) factors of the SymTree as in Eq. (74). Doing so, we
produce an operator which has a well-defined charge under

the Zð1Þ
N 1-form symmetry of the SUðNÞ gauge theory.

Similar considerations hold for other choices of polariza-
tion of the relative suN theory. To get the specific case of a

Wilson lineWY charged under a Zð1Þ
M 1-form symmetry we

now specialize further by setting N ¼ LM and work in the
polarization where the absolute theory has gauge group

SUðLMÞ=ZL. This theory has an electric Zð1Þ
M 1-form

symmetry (isomorphic to the center of the gauge group),
and as such, the W constructed in this way has a well-

defined charge under the Zð1Þ
M 1-form symmetry. A conse-

quence of this is that in the diagonal theory with the
ensemble operators such asO andWY , we can still speak of
our 1-form symmetries, which matches to expectation from
the bulk gravity dual. Again, let us emphasize that here we
are interested in studying large M averaging in its own
right, and whether we can make sense of gauge/gravity dual
in that setting. We expect, however, that these consider-
ations connect with the analysis in [47,82].

IX. CONCLUSIONS

Much of the topological structure of global symmetries
in a D-dimensional QFT is captured by a bulk (Dþ 1)-
dimensional field theory with suitable boundary conditions
imposed to fix the global form of the QFT. In this paper
we have studied the case of a D-dimensional multisector
QFT. Each individual sector is associated to a SymTFT,
but these can form junctions, leading to topological mixing
between the sectors. Topological operators and defects
of a given sector must then be dressed by additional

operators associated with modes localized at the (possibly
nontopological) junctions of different SymTFTs. We have
illustrated these general considerations in the context of
various QFTs realized via geometry and branes probing
singularities. We have also presented some nonsupersym-
metric examples. We also used this construction to study
generalized symmetries in holographic large M ensemble
averaging. In the remainder of this section we discuss some
potential avenues for future investigation.
A general feature of SymTree theories is the appearance

of multiple boundaries. In this work we have focused on the
appearance of multiple physical boundaries, which covers
the appearance of multisector QFTs. One can also entertain
additional topological boundary conditions. This leads to a
further generalization in the global structure of a QFT, as
influenced by the presence of a junction of SymTFTs. It
would be interesting to study the structure of such theories,
for example, their partition functions.
One of the general themes in recent work is the appear-

ance of various higher-categorical symmetries which cap-
ture the topological structure of such QFTs. In most cases
considered to date, heavy use has been made of the bulk
SymTFT associated with such a QFT. Given what we have
observed here, one can sometimes have additional sub-
structure as captured by a SymTree.We have sketched some
aspects of the higher-categorical structurewhich enters here,
but it would be interesting to formalize this further.
The structure of the SymTree resembles that of a tree-

level Feynman diagram. Continuing with this analogy, it is
natural to also consider SymTrees which include closed
loops as well. It would also be interesting to investigate the
sense in which there might be a “metatheory” with
scattering amplitudes associated with such diagrams, per-
haps along the lines sketched in Ref. [86].
It is natural to study the fate of these categorical

structures once we switch on gravity. For example, in
Ref. [41], it was noted that the heavy defects and topo-
logical symmetry operators of individual sectors inevitably
become correlated in such systems. One might expect that
including the effects of gravity leads to additional con-
straints on multisector models which are only topologically
coupled when gravity is switched off. Studying such
constraints would likely be quite informative.
While we have presented a prescription for making sense

of higher-form symmetries in a large M averaging

FIG. 25. On the left, we depict the collection of separated 4DN ¼ 4 suNi
SYM theories that we label by T i whereNi ¼ M þ ϵi and a

sum of local operators in each of these sectors. The wedges represent the AdS5 × S5 dual spacetimes for each sector. On the right, we
illustrate the averaged operator O in the ensemble averaged theory T̄ .
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prescription, one of the important features of Ref. [47] is
that this really ought to be viewed as taking place in a single
large M gauge theory. It would nevertheless be interesting
to see whether a more explicit map between the ensemble
of theories considered here and possible replicas connected
by wormhole configurations can also be constructed.
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APPENDIX A: COUPLING QFTs TO TFTs À LA
KAPUSTIN-SEIBERG

Couplings between QFTs and TFTs were explored
previously in [27]. In this appendix we review this con-
struction and compare it to our discussion of SymTrees.
We focus on a 4D example with the QFT given by an

SUðNÞ gauge theory and the TFT given by ZN topological
gauge theory ðZNÞp with discrete θ-parameter p. Once
coupled, the system describes a ðSUðNÞ=ZNÞp gauge
theory with a discrete θ-parameter p turned on [27].

In the SymTFT framework changing from SUðNÞ to
ðSUðNÞ=ZNÞp amounts to changing the topological boun-
dary conditions of the associated 5D topological field theory,
perhaps together with adding an SPT. Clearly this does not
add any physical degrees of freedom and formulating the
QFT/TFT coupling of [27] via a Y-shaped SymTree there-
fore, if possible, must therefore involve two topological
boundary conditions and one physical boundary conditions,
the latter supporting the relative suN theory.
To make this explicit let us discuss deforming the

respective SymTFT into a SymTree. We begin by consid-
ering the SymTFT,

S5D ¼ 2πi
N

Z
BðNÞ
2 ∪ δCðNÞ

2 ; ðA1Þ

where fields now take values in ZN . We place this TFT on
the slab M4 × ½0; 1� with one physical and topological
boundary condition.
For concreteness we now also restrict to the case N ¼ 2.

In this case the physical boundary condition is determined
by an edge mode su2 theory,

jT su2
i ¼

X
d

ZG0
½d�jG0; di; ðA2Þ

where G ¼ SUð2Þ; SOð3Þþ; SOð3Þ− is one of the global
forms of the gauge algebra su2 and the subscript p ¼ 0, 1
in Gp labels a stacked SPT. The background 2-form fields
for the 1-form symmetry of G are denoted d, they are

associated with SymTFT fields Bð2Þ
2 ; Cð2Þ

2 ; Bð2Þ
2 þ Cð2Þ

2

respectively, and ZG0
½d� the partition function of gauge

theory with gauge group G with background d turned on.
We refer to [19,36] for further details.
The topological Dirichlet and Neumann boundary con-

ditions Btop we consider are

Dirichlet∶ hGp;Dj;

Neumann∶ hGp;Dj¼
X
d

exp
�
i
Z

d∪D
�
hGp;dj; ðA3Þ

where the overline denotes that the Neumann boundary
condition is conjugate, via Fourier transformation, to the
respective Dirichlet boundary conditions. Here D is the
Dirichlet boundary profile imposed on the relevant 2-form
background. Upon contracting the SymTFT slab the
partition functions compute as

hGp;DjT su2
i¼ZGp

½D�; hGp;DjT su2
i¼ZGp=Z2

½D�:
ðA4Þ

Note also that via gauging of 1-form symmetries one finds
the Fourier pairs,
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exp

�
iπ
Z

Dð1Þ∪Dð2Þ
�
¼hSUð2Þ0;Dð1ÞjSOð3Þþ;0;D

ð2Þi

¼hSOð3Þþ;1;D
ð1ÞjSOð3Þ−;1;Dð2Þi

¼hSUð2Þ1;Dð1ÞjSOð3Þ−;0;Dð2Þi:
ðA5Þ

In [36] it was shown that there is simple SymmetryTFT
bulk operator for each Fourier pair, which maps one
boundary condition of a Fourier pair onto the other and
vice versa. For the discussion at hand the relevant Fourier
operator is

P ¼ exp

�
iπ

Z
PðB2 þ C2Þ

2

�

¼ exp

�
iπ

Z
PðB2Þ

2
þ PðC2Þ

2
þ B2 ∪ C2

�
: ðA6Þ

Here we denote the Pontryagin square of a 2-form B2 as
PðB2Þ. This operator maps topological boundary condi-
tions as

PjSUð2Þ0; Di ¼ jSOð3Þþ;0; Di;
PjSUð2Þ1; Di ¼ jSOð3Þþ;1; Di;

PjSOð3Þ−;0; Di ¼ jSOð3Þ−;1; Di; ðA7Þ

and satisfies P∘P ¼ 1. In particular, from the first line, we
have the identity,

PjSUð2Þ0;Di¼
X
d

exp

�
πi
Z

d∪D

�
jSUð2Þ0;di: ðA8Þ

We now turn to phrase the coupling of the SUð2Þ theory
to the discrete ðZ2Þp theory in the SymTFT framework,
resulting in an SOð3Þþ theory. First, we note that we can
express the SOð3Þþ;0 gauge theory partition function as

ZSOð3Þþ;0
½D� ¼ hSUð2Þ0; DjPjT su2

i; ðA9Þ

where acting with P to the left we simply produce the
boundary condition hSOð3Þþ;0; Dj. Acting on the right we
obtain a new physical boundary condition jPT su2

iwhich is

jPT su2
i

¼
X
d1

ZSUð2Þ0 ½d1�
X
d2

exp

�
iπ

Z
d1 ∪ d2

�
jSUð2Þ0; d2i

¼
X
d2

�X
d1

ZSUð2Þ0 ½d1� exp
�
iπ

Z
d1 ∪ d2

��
jSUð2Þ0; d2i

ðA10Þ

(see Fig. 26). Now note that the argument of the expo-
nential is the action for a ðZ2Þ0 topological gauge theory
coupled to a background d2. The sum over the common d1
is interpreted as a gauging and we write,

jPT su2
i ¼

X
d

ZSUð2Þ0jðZ2Þp ½d�jSUð2Þ0; di; ðA11Þ

where SUð2Þ0jðZ2Þp denotes the coupled system QFT/TFT
in [27]. It is immediate that we have ZSUð2Þ0jðZ2Þp ½d� ¼
ZSOð3Þþ;0

½d�.
In the difference between jPT su2

i and jT su2
i it is thus

crucial to keep track of the TFT basis fjGp;Dig in which
the relative boundary condition is expanded. Equivalently,
the coupling a TFT to a QFT in the framework of [27] can
be phrased in SymTFT language as a manipulation of the
physical boundary condition: once expanded in a TFT basis
the coefficients are permuted against the basis elements.
We now formulate the discussion above using SymTrees.

The point of our discussion will be that the topo-
logical couplings we have described throughout this paper
are different from those analyzed by Kapustin and Seiberg
in [27]. Naively, one might have thought that the coupling
described there can be recast as a Y-shaped SymTree with
external nodes associated to the SUð2Þ theory and topo-
logical ðZ2Þp theory and the topological boundary
condition.
Starting from the central configuration in Fig. 26, the

SymTree is constructed by extracting a third edge which is
glued trivially at the introduced trivalent junction (see
Fig. 27). More precisely, the three edges e we have the

fields Bð2;eÞ
2 and at the junction they are all set pairwise

equal, similarly for Cð2;eÞ
2 . Figure 27 then shows the

deformation of this configuration back to the one appearing
in Fig. 26. The resulting edge supports the action

SP ¼ πi
Z

PðB2 þ C2Þ
2

; ðA12Þ

FIG. 26. In the SymTFT frame work changing from SU(2) to SUð2Þ=Z2 ¼ SOð3Þþ gauge theory can be formulated as a change in
topological boundary condition. Equivalently, we can realize this as an insertion of the Fourier operator P. This operator can the be
collided with the physical boundary condition giving a notion of coupling the relative physical boundary to a TFT.
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and upon retracting the third leg we revert to the configu-
ration shown in Fig. 26 in the central subfigure.

APPENDIX B: SINGLE DERIVATIVE TERMS
IN SYMTFT ACTION

The goal of this appendix will be to derive the leading
term in (32) from reducing the 11D M-theory kinetic term
for the 3-form potential which we reproduce here,

S8D ¼ i
2π

N
Z
8D

B2 ∧ dC5: ðB1Þ

This appears in the 8D topological action of the
SymTFT of 7D suN SYM, as engineered from M-theory
on C2=ZN .

52 The key effect of line (B1) is that it creates a
braiding algebra between the electric 1-form and magnetic
4-form symmetry operators, or equivalently, signifies a
mixed ’t Hooft anomaly between these symmetries.
We will perform this dimensional reduction in a similar

fashion to [87] which represents torsional cocycles by
nonharmonic differential forms.53 In particular, we can
represent the generator of ZN ¼ H2ðS3=Γ;ZÞ by a pair
ðα2; β1Þ where the 2-form α2 and 1-form β1 obey

Nα2 ¼ dβ1; d†β1 ¼ 0: ðB2Þ

The M-theory fluxes can then be expanded along
ðα2; β1Þ as

G4 ¼ ðdA1 þ NB2Þ ∧ α2 þ dB2 ∧ β1; ðB3Þ

G7 ¼ ðdA4 þ NC5Þ ∧ α2 þ dC5 ∧ β1: ðB4Þ

This expands in the 11D kinetic term as

−2πiS11D ¼ 1

2

Z
11D

G4 ∧ G7 ðB5Þ

¼ 1

2

�Z
S3=ZN

α2 ∧ β1

�

×

�Z
8D

dA1 ∧ dC5 þ NB2 ∧ dC5

− dB2 ∧ dA4 − NdB2 ∧ C5

�
; ðB6Þ

where the “8D” directions are the directions of the SymTFT
are Rþ ×M7, and the minus signs result from anticommut-
ing β1 through 5-forms. The two-derivative terms in the
above expansion are not topological as �8DdC5 ¼ dA1 and
�8DdA4 ¼ dB2 so these will not be of concern to us here.54

On the other hand, the single derivative terms are topo-
logical and after integrating by parts we have

S8D ¼ i
2π

�Z
S3=ZN

α2 ∧ β1

��
N
Z
8D

B2 ∧ dC5

�
: ðB7Þ

The term
R
S3=ZN

α2 ∧ β1 is the cohomological version of

the linking pairing of 1-cycles on S3=ZN and normalizing
this integral to be ≡1 mod N reproduces line (B1).

APPENDIX C: SYMTREES FROM
ASYMPTOTICALLY LOCALLY EUCLIDEAN

SPACES

In this appendix we discuss topological features of the
filtration FX0 which sweeps out,

X0∶ x2 þ y2 ¼ ðz − z1ÞN1ðz − z2ÞN2 ; ðC1Þ

as introduced in Sec. V. We discuss the homology groups of
the radial slices Ur and their relationship across the critical
slice as determined by the small radius [line (18)] and large
radius [line (20)] Mayer-Vietoris sequences. Further, we
dualize and lift to differential cohomology as relevant in the
reduction of the 11D supergravity terms. We extend the
SymTree analysis of Sec. V and include generalized
symmetries indicated by the “…” in the expansion of
line (43).

1. Generators of HnðUr= r� Þ
We begin by identifying the generators of the integral

homology groups of the critical slice,

Ur¼r� ¼ ðS3=ZN1
Þ ∪S1H

ðS3=ZN2
Þ; ðC2Þ

(a) (b)

FIG. 27. SymTree with two topological boundary conditions
realizing the polarization change (a) SUð2Þ to (b) SOð3Þþ.

52It is straightforward to generalize to arbitrary ΓADE ⊂ SUð2Þ
but we will stick with Γ ¼ ZN for ease of exposition.

53For a more systematic derivation of similar BF-type terms in
SymTFTs from reducing string=M-theory actions, see the up-
coming work [88]. 54At long distances the topological term dominates.
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which are listed in line (41). The bottom and top degree
generators are clear. The generator in degree one is the
common Hopf circle S1H. Next note, within each lens space
there exists a chain Σi such that,

∂Σi ¼ NiS1H: ðC3Þ

As a consequence S1H is torsional, representing a class of
order g ¼ gcdðN1; N2Þ. We move on to discuss the gen-
erator in degree two. For this note that we can glue
multiples of the two chains Σi to a 2-cycle of the critical
slice,

Σ≡ ðN2Σ1=gÞ ∪LS1H
ð−N1Σ2=gÞ: ðC4Þ

Here L ¼ lcmðN1; N2Þ and the sign is required for closure
∂Σ ¼ 0. To see that Σ represents a free class we now
compare this 2-cycle to the generator e of H2ðX0Þ ≅ Z.
The cross section of Σ is LS1H while the cross section of e
is S1H. From this we conclude that mapping Σ into H2ðX0Þ
we have

Σ ¼ Le ðC5Þ

or Σ ¼ 0. Clearly the embedding is not trivial. From the
IIA dual we see that Σ, projected to R3, links both D6-
brane stacks. See Fig. 28 where we illustrate the 2-chains
Σi within the Hopf fibration for S3=ZNi

. Upon gluing this
construction back to back as indicated in line (C4) we
indeed find line (C5) holds.

2. Small and large radius
Mayer-Vietoris sequences

Next we determine how cycles contained within small/
large radii slices deform to those of the critical slice. This
data is carried by the maps within the small/large radius
Mayer-Vietoris sequences whose associated coverings we
now describe and which we then compute.
The covering of the critical slice associated with small

radii is then given by the two patches S3=ZN1
; S3=ZN2

which intersect in S1H. The large radii covering has patches
S3=ZN and the tubular neighborhood,

S1H ↪ TðS1HÞ → D2; ðC6Þ

which is a solid torus fibered over a diskD2. These patches
intersect along the torus T2 ¼ ∂TðS1HÞ which is a circle
fibration over the circle ∂D2 (see Fig. 29).
With respect to these decompositions the long exact

Mayer-Vietoris sequences are

FIG. 28. Sketch of the Hopf-fibration S3=ZNi
→ S2 and the

bounding chain Σi within it. The Euler class NivolS2 of this circle
fibration characterizes the obstruction to the existence of a
section. Consider attempting to construct such a section, as
depicted, by starting at the south pole of S2 and growing a disk
inside of S3=ZNi

, projecting to S2 as shown. Upon reaching the
North pole the boundary ∂Σi does not close, rather it winds Ni

times around the Hopf fiber S1H. With this Σi is a chain bounding
Ni copies of S1H .

FIG. 29. Depict the covering of the large radius Mayer-Vietoris
sequence with respect to the M-theory circle fibration. In R3, the
IIA dual to X0, we have two spheres S2i touching along a two-disk
D2 marked blue. The preimage of this disk and its complement
are the large radius covering. The boundary of the preimage of the
disk, which is the intersection of the two covering sets, is the
circle S1H fibered over the boundary of the disk.
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HnðS1HÞ HnðS3=ZN1
Þ ⊕ HnðS3=ZN2

Þ HnðUr¼r� Þ
ðn ¼ 3Þ 0 → Z ⊕ Z → Z2 →

ðn ¼ 2Þ 0 → 0 ⊕ 0 → Z →

ðn ¼ 1Þ Z → ZN1
⊕ ZN2

→ Zg →

ðn ¼ 0Þ Z → Z ⊕ Z → Z → 0

ðC7Þ

at small radii and

HnðT2Þ HnðTðS1HÞÞ ⊕ HnðS3=ZNÞ HnðUr¼r� Þ
ðn ¼ 3Þ 0 → 0 ⊕ Z → Z2 →

ðn ¼ 2Þ Z → 0 ⊕ 0 → Z →

ðn ¼ 1Þ Z2 → Z ⊕ ZN → Zg →

ðn ¼ 0Þ Z → Z ⊕ Z → Z → 0

ðC8Þ

at large radii. We remark that the most relevant part of the
above sequences is summarized, respectively, in the fol-
lowing two exact subsequences:

0 → Z ⟶
∂
ðr<r�Þ
2 Z ⟶

{ðr<r�Þ
1 ZN1

⊕ ZN2
⟶
|ðr<r�Þ
1 Zg → 0;

0 → Z ⟶
∂
ðr>r�Þ
2 Z ⟶

{ðr>r�Þ
1 ZN1þN2

⟶
|ðr>r�Þ
1 Zg → 0; ðC9Þ

where the index p marks maps mapping from a domain of
p-cycles and the exponent labels the Mayer-Vietoris
sequence the subsequence was extracted from.
We now discuss the maps featuring in these subsequen-

ces. First, recall that the boundary map in the Mayer-
Vietoris sequence is defined by cutting a cycle along the
intersection of the two covering components and then
considering one of the resulting halves. The initial cycle
is then mapped to the boundary of one of its ‘halves’. With
this the map ∂ðr<r�Þ2 maps Σ onto its cross section and, as the

codomain of ∂
ðr<r�Þ
2 is generated by S1H and considering

line (C5), therefore is multiplication by L.

In order to characterize ∂
ðr>r�Þ
2 let us consider the torus

T2 ¼ ∂TðS1HÞ and denote its one cycles by S1H and
∂D2 ¼ β1. We therefore have ∂Σ1 ¼ N1S1H þ β1 and
∂Σ2 ¼ N2S1H − β1. The two halves of Σ overlap in T2

and therefore,

∂
ðr>r�Þ
2 Σ ¼ ðN2=gÞ∂Σ1 − ðN1=gÞ∂Σ2 ¼ ðN=gÞβ1: ðC10Þ

Similar consideration result in noting that β1 generates the

codomain of ∂
ðr>r�Þ
2 which is therefore multiplication

by N=g ¼ ðN1 þ N2Þ=g.
All remaining n ¼ 1 homology groups are generated by

the obvious Hopf circles and in obvious, yet slightly
redundant, notation we rewrite (C9) as

0→hΣi⟶1↦L hαi⟶1;↦ð1;−1Þ hðS1HÞ1i⊕hðS1HÞ2i⟶
mod ð1;−1Þ hS1Hi→0

0→hΣi⟶1↦N=g hβi⟶1↦g hðS1HÞ12i⟶
modg hS1Hi→0; ðC11Þ

where α ¼ S1H.

3. The extension problem

Now we turn to an extension problem, discussed around
lines (21) and (22). From Fig. 28 and related discussion it
follows that β is a multiple of α. Also note (see Sec. V) that

we have identified the U(1) localized to the critical
slice as55

55As elsewhere, here G∨ ¼ HomðG;Uð1ÞÞ denotes the Pon-
tryagin dual of an Abelian group G.
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hΣi∨ ¼ Z∨ ¼ Uð1Þ; ðC12Þ

while various 1-form symmetry background fields on the
edges of the SymTree attaching to the junction are related
to the homology groups that α, β are mapped into. The
relevance of the refinement of hβi into hαi lies in noting that
in the coupling of the junction U(1) to the edges of the
SymTree only runs via the subgroup,

ZLN=g ⊂ Uð1Þ: ðC13Þ

More precisely, as we explain later, we are permitted to
interpret the fields on the SymTree edges as background
fields for the relative U(1) junction theory which take
values in thisZLN=g subgroup. Also the preferred nesting of
groups is

0 → ZL → ZLN=g → ZN=g → 0; ðC14Þ

where Pontryagin duality has flipped the arrow, i.e., hβi∨ is
a refinement of hαi∨ and the preferred subgroup ofZLN=g ⊂
Uð1Þ is ZL ⊂ Uð1Þ.

4. Differential cohomology uplift

Homology groups of internalM-theory dimensions carry
geometric intuition. The reduction of 11D supergravity
however proceeds via expansions in differential cohomol-
ogy classes. We now discuss how to move from homology
to differential cohomology and discuss the reduction of the
topological 11D SUGRAChern-Simons terms on the radial
shells.
First, note that, while the critical slice Ur¼r� is

not a manifold, it is a finite CW complex. We hence have,
via the universal coefficient theorem, the cohomology
groups,

HnððS3=ZN1
Þ ∪S1H

ðS3=ZN2
ÞÞ ≅

8>>>>><
>>>>>:

Z ≅ h10i k ¼ 0

0 k ¼ 1

Z ⊕ Zg ≅ hu2i ⊕ ht2i k ¼ 2

Z2 ≅ hvolð1Þ3 ; volð2Þ3 i k ¼ 3;

ðC15Þ

which are lifted to the differential cohomology classes,

1̆0; ŭ2; t̆2; v̆olð1Þ3 ; v̆olð2Þ3 ; ðC16Þ

which with respect to the projection π∶ H̆� → H� of the
short exact sequence of line (23) satisfy

πð1̆0Þ ¼ 10; πðŭ2Þ ¼ u2; πðt̆2Þ ¼ t2;

πðv̆olðiÞ3 Þ ¼ volðiÞ3 ; ðC17Þ

where i ¼ 1, 2. Similarly, for lens spaces, we have

HnðS3=ZKÞ ≅

8>>><
>>>:

Z ≅ h10i k ¼ 0

0 k ¼ 1

ZK ≅ ht2i k ¼ 2

Z ≅ hvol3i k ¼ 3;

ðC18Þ

where K ¼ N for r > r� and K ¼ N1; N2 for r < r� along
the three SymTree edges. These are lifted analogously to
differential cohomology as in line (23).
Whenever it is necessary to resolve the redundancy in the

notation of lines (C15) and (C18) we append a raised label
clarifying which of the SymTree edges we are referring to,
for example,

t̆ðr<r�Þ;1
2 ; t̆ðr<r�Þ;2

2 ; t̆ðr>r�Þ
2 ; ðC19Þ

refer to the differential cohomology classes associated with
the two small-radius edges r < r� and large-radius edge
r > r� of the Y-shaped graph ϒ supporting the SymTree.
All differential cohomology classes relevant in the KK

reduction are the uplift of integral singular cohomology
classes and as such are related to and across the critical slice
via mappings which are dual to those appearing in lines
(C7) and (C8), i.e., the mappings appearing in the respec-
tive Mayer-Vietoris cohomology sequences. The boundary
map ∂ dualizes to the coboundary map. All other maps are
embeddings and dualize to restrictions for cocycles.

5. 11D SUGRA reduction

Next we turn to the KK reduction of the topological 11D
SUGRA terms along the differential cohomology classes
lifted from lines (C15) and (C18). First, we determine the
bulk fields of the SymTree. This extends line (43). Then we
determine the SymTree action governing their interactions.
It is in the latter part where the uplift to differential
cohomology bears fruit in the computation of anomaly
coefficients.
The fields on a branch of the SymTree are determined by

KK reduction of the field strength Ğ4 over the associated
radial shell. For the lens space shells we have
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Ğ4 ¼ H̆ðinstÞ
4 ⋆1̆0 þ B̆ðKÞ

2 ⋆t̆2 þ H̆1⋆v̆ol3 þ…; ðC20Þ

and the coefficients are the SymTree fields on the 8D
branches of the SymTree. Here we have suppressed an
additional label of the fields denoting the branch of the
SymTree these live on, we shall add it as a raised index
later. We also normalize such that G4 has integral periods.
For the small radius branches which attach to the physical
boundaries supporting 7D SYM edge modes, one has the
interpretations:

(i) H̆inst
4 —continuous 4-form field strength, associated

with a 3-form U(1) SymTree gauge potential Cinst
3

and restricting to the background of a 2-form
symmetry on the physical boundaries which is there
interpreted as 2-form instanton symmetry;

(ii) H̆1—continuous 1-form field strength, associated
with a 0-form U(1) SymTree gauge potential Cinst

0 .
The associated parameter is

θ ¼
Z
S3=ZK

C3; ðC21Þ

where C3 is the 11D SUGRA 3-form potential. We
return to the physical interpretation of this parameter
after discussing the other fields;

(iii) B̆ðKÞ
2 —discrete 2-form gauge field with ZK values.

This field restricts on the boundary to the back-
ground potential for a 1-form symmetry on the
physical boundaries which is there interpreted as
the center symmetry.

The “…” omissions refer to an expansion along classes of
Ωp−1=Ωp−1

Z , which lie in the kernel of the projection
π∶ H̆p → Hp resulting in U(1) valued fields in 8D which
do not couple to background fields for the discrete
symmetries of the 7D SYM relative theories.
The one outlier in this discussion is the appearance of a

continuous parameter coming from H̆1, and its associated
0-form potential in the bulk 8D theory. This would suggest
the appearance of an 8D topological term of the schematic
form θH̆inst

4 ∪ H̆inst
4 . Restricting to the 7D world volume,

this would descend to a Chern-Simons-like theory of the
form,

S7D;CS ¼
i
4π

θ

Z
C3 ∧ dC3; ðC22Þ

for the background 3-form associated with the 2-form
symmetry. For θ ∉ Z, this would result in a theory with an
improperly quantized level, i.e., it cannot be defined
independent of the 8D bulk.
Now we turn to discuss the TFT interactions between

these fields which are determined via reduction of the 11D
supergravity Chern-Simons term,

2πi
6

Z
Ğ4⋆Ğ4⋆Ğ4; ðC23Þ

over the lens space shells. Inserting the expansions
of line (C20) this results in (see Ref. [20]),

S̆ðanomalyÞ
I ;K ¼ πi

Z
M7×I

H̆ðinstÞ
4 ⋆H̆ðinstÞ

4 ⋆H̆1

− 2πi
K − 1

2K

Z
M7×I

H̆ðinstÞ
4 ⋆B̆ðKÞ

2 ⋆B̆ðKÞ
2 ; ðC24Þ

with spacetime M7 and interval I ¼ ðr; r�Þ for the case
K ¼ N1; N2, or I ¼ ðr�;∞Þ for the case K ¼ N, specify-
ing mixed anomalies. Along each branch of the SymTree
we also have the one-derivative action

Sð0ÞI ;K ¼ 2πi
K

Z
M7×I

BðKÞ
2 ∪ δCðKÞ

5 ; ðC25Þ

whose derivation is discussed in Appendix B. The TFT
action associated with one edge e of the SymTree with
internal radial shells S3=ZK is then,

SI ;K ¼ Sð0ÞI ;K þ SðanomalyÞ
I ;K þ…; ðC26Þ

where we have projected back down to integral singular
cohomology, replacing the star product ⋆ with the cup
product ∪ in the process. When truncating to the indicated
two terms we are describing the TFT associated with
discrete symmetry structures in a background of continuous
symmetry structures. Of course the full TFT does not
distinguish between discrete and continuous, however we
postpone details of this to future work.
Overall the full SymTree action takes the form,

Sϒ ¼ Sð0;r�Þ;N1
þ Sð0;r�Þ;N2

þ Sðr�;∞Þ;N þ Sðr¼r�Þ;J : ðC27Þ

where the last term describes a possibly nontopological
relative junction theory which we are yet to determine. In
addition to the junction action we are now required to
supplement the overall action with boundary conditions for
the bulk fields at the junction. The junction degrees of
freedom crucially enter these boundary conditions, we
therefore determine these first and then solve for the
boundary conditions via geometry.
First, we determine the fields localized to the junction.

For this, similar to line (C20), we expand Ğ4 in the classes
of line (C15) of the critical slice resulting in,

Ğ4jr¼r� ¼ H̆ðr¼r�;instÞ
4 ⋆1̆0 þ B̆ðr¼r�Þ

2 ⋆t̆2 þ F̆ðr¼r�Þ
2;Uð1Þ⋆ŭ2

þ H̆ðr¼r�;1Þ
1 ⋆v̆olð1Þ3 þ H̆ðr¼r�;2Þ

1 ⋆v̆olð2Þ3 þ…:

ðC28Þ
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The first set of boundary conditions derives by determining
which of the coefficient fields arises as restrictions from
fields on the edges of the SymTree to the junction. For this
we need to relate the internal legs of differential cohomol-
ogy class across the junction. In homology this amounts to
studying how the dual cycles of the edges embed into the
critical slice of the junction. For example the mappings

|ðr<r�Þ1 ; |ðr>r�Þ2 of line (C9) immediately gives the gluing
conditions of line (50). Similar embeddings straightfor-
wardly give,

H̆ðr<r�;1;instÞ
4 jr¼r� ¼ H̆ðr<r�;2;instÞ

4 jr¼r� ¼ H̆ðr>r�;instÞ
4 jr¼r�

¼ H̆ðr¼r�;instÞ
4 ; ðC29Þ

H̆ðr<r�;1Þ
1 jr¼r� ¼ H̆ðr¼r�;1Þ

1 ; H̆ðr<r�;2Þ
1 jr¼r� ¼ H̆ðr¼r�;2Þ

1 ;

H̆ðr>r�Þ
1 jr¼r� ¼ H̆ðr¼r�;1Þ

1 ¼ H̆ðr¼r�;2Þ
1 ; ðC30Þ

and we note that all coefficient fields of line (C28) are thus
fixed by bulk fields of the SymTree except for the U(1)
2-form background fields. In order the raised indices here
give the radii the fields live on, the connected component of
this radial slice if it is disconnected and additional physical
qualifiers. Next, following the discussion in Sec. III, we
have the images

Im|̄ð0Þr<r� ≅ Z ⊕ Z; Im|̄ð0Þr>r� ≅ Z;

Im|̄ð2Þr<r� ≅ Zg ⊂ ZN1
⊕ ZN2

; Im|̄ð2Þr>r� ≅ Zg ⊂ ZN;

Im|̄ð3Þr<r� ≅ Z ⊕ Z; Im|̄ð3Þr>r� ≅ Z; ðC31Þ

with trivial cokernels in degree 0 and 3. Here notation is
such that |ðpÞ; |̄ðpÞ; |̆ðpÞ respectively denote the embedding
map in homology in the large radius and small radius
Mayer-Vietoris sequences (which we distinguish by an
additional lowered or raised index), the restriction map in
the cohomology version of these sequences and the uplift of
the latter to differential cohomology. We further have

Ker|̄ð2Þr<r� ∩ Ker|̄ð2Þr>r� ≅ Z; ðC32Þ

generated by u2 identifying F̆ðr¼r�Þ
2;Uð1Þ as a junction degree of

freedom, i.e., it does not arise as restrictions of external
bulk fields and is free to fluctuate.
Having identified the junction edge modes, we now view

these as a relative theory with respect to the three SymTree
edges attaching to the junction. We are thus required to give
an interpretation of the bulk fields as background fields for
the junction edge modes. This results in lines (52) and (53).
To proceed note that in restricting all the 2-form fields

BðKÞ
2 , valued in ZK and supported on the three SymTree

edges, to the junction we have set boundary conditions for a
subgroup,

Z2
g ⊂ ZN1

⊕ ZN2
⊕ ZN; ðC33Þ

via the gluing conditions of line (50). The three BðKÞ
2 fields

are only fixed relative to each other, hence only Z2
g is eaten

up by the conditions, rather than Z3
g. The extension

problem discussed in Appendix C 3 now implies that the
remaining B-field profiles in

ZN1
⊕ ZN2

⊕ ZN

Z2
g

ðC34Þ

are to be interpreted as 2-form fields associated with U(1)
backgrounds in the junction taking values in ZNL=g, the
central entry in line (C14). The quotient of line (C34) is
precisely ZNL=g ¼ ZN1N2N=g2. The quotient of line (C34)
also clearly gives map from bulk fields to background field
for the U(1) junction theory, it is simply the quotient map
itself,

Q∶ ZN1
⊕ ZN2

⊕ ZN →
ZN1

⊕ ZN2
⊕ ZN

Z2
g

: ðC35Þ

Working out the quotient for elements ðn1; n2; nÞ∈ZN1
⊕

ZN2
⊕ ZN with one nonvanishing entry we find lines (52)

and (53).

APPENDIX D: SEQUENCES FOR ISOLATED
MULTISECTOR QFTs

In this appendix we supply additional details on the
isolated multisector QFTs analyzed in Sec. VI.

1. Sequences for 7D Models

We now discuss the filtration FX with radial shells of
Sec. III A 1 in greater detail. Recall that we are considering
elliptic local K3 surfaces X → B with base B ¼ C. As such
we will repeatedly encounter three-manifolds ΣM

3 which are
smooth torus bundles,

T2 ↪ ΣM
3 → S1; ðD1Þ

over a circle subject to a monodromy twist. For our
purposes only the action of this monodromy on the nth
homology lattice of the torus fiber will be relevant, and we
denote it by Mn. The homology groups of such a three-
manifold derive from the exact sequence,

0→CoKerðMðnÞ−1Þ→HnðΣM
3 Þ→KerðMðn−1Þ−1Þ→0:

ðD2Þ

The monodromies we consider are such that Mð0Þ ¼
Mð2Þ ¼ 1 and Mð1Þ ≡M∈SLð2;ZÞ. From this sequence
we derive the homology groups (76). Let us discuss the
generators of these groups. Top and bottom homology
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classes are clear. Consider H1ðΣM
3 Þ ≅ Z ⊕ CoKerðM − 1Þ.

The factor of Z admits a simple representative, the base
circle S1. Now consider a 1-cycle γ1 ∈H1ðT2Þ of the
elliptic fiber. Now trace out a 2-chain by transporting it
once around the circle base transforming as

γ1 → Mγ1 ¼ ðM − 1Þγ1 þ γ1; ðD3Þ

considering orientations the initial and final copied of γ1
cancel against each other, the 2-chain has boundary
ðM − 1Þγ1. This explains the contribution CoKerðM − 1Þ.
The homology generators in degree 2 followed by duality,
they are the fiber class and any eigenvector of M fibered
over the base circle.
Let us next compute the homology groups of the critical

slice,

Ur¼r� ¼ ðΣM1

3 Þ ∪T2 ðΣM2

3 Þ: ðD4Þ

Again top and bottom homology classes are clear. Note that
Ur¼r� is fibered over a figure eight S1∨S1 and hence the
factor of Z2 in

H1ðUr¼r� Þ ¼ Z2 ⊕ ½Z2=ImðM1 − 1;M2 − 1Þ� ðD5Þ

are represented by the two base circles. Constructing
2-chains by transporting 1-cycles of the elliptic fiber

around these circles as above then gives the quotient
contribution. The degree-two cycles,56

H2ðUr¼r� Þ¼Z⊕ cokerðM1−1Þ∧⊕ cokerðM2−1Þ∧⊕F;

ðD6Þ

are respectively the fiber, monodromy eigen-1-cycles
fibered over any one of the base circles and a case
dependent contribution F ¼ 0;Z;Z2 of a fiber 1-cycle
fibered over the full figure eight base. From these consid-
erations the restriction to line (79) parametrizing the gauge
theory data is clear.
Next we determine how cycles contained within small/

large radii slices deform to those of the critical slice,
studying the small / large radius Mayer-Vietoris sequences
whose associated coverings we now describe and which we
then compute.
The covering of the critical slice associated with small

radii is then given by the two patches ΣM1

3 ;ΣM2

3 which
intersect in T2. The large radii covering has patches ΣM1M2

3

and the cylinder I × T2. Growing the base circles the touch
along a point and then an interval, the latter cylinder are
simply all fibers projecting to the interval, see Fig. 16.
These patches intersect along two tori T2 ⊔T2.
With respect to these decompositions the long exact

Mayer-Vietoris sequences are

HnðT2Þ HnðΣM1

3 Þ ⊕ HnðΣM2

3 Þ HnðUr¼r� Þ
ðn ¼ 3Þ 0 → Z ⊕ Z → Z2 →

ðn ¼ 2Þ Z → Z ⊕ C∧
1 ⊕ Z ⊕ C∧

2 → Z ⊕ C∧
1 ⊕ C∧

2 ⊕ F →

ðn ¼ 1Þ Z2 → Z ⊕ C1 ⊕ Z ⊕ C2 → Z2 ⊕ C1;2 →

ðn ¼ 0Þ Z → Z ⊕ Z → Z → 0

ðD7Þ

at small radii, where we abbreviated Ci ¼ CoKerðMi − 1Þ and C1;2 ¼ Z2=ImðM1 − 1;M2 − 1Þ, and

HnðT2 ⊔T2Þ HnðT2Þ ⊕ HnðΣM1M2

3 Þ HnðUr¼r� Þ
ðn ¼ 3Þ 0 → 0 ⊕ Z → Z2 →

ðn ¼ 2Þ Z ⊕ Z → Z ⊕ Z ⊕ C∧
12 → Z ⊕ C∧

1 ⊕ C∧
2 ⊕ F →

ðn ¼ 1Þ Z2 ⊕ Z2 → Z2 ⊕ Z ⊕ C12 → Z2 ⊕ C1;2 →

ðn ¼ 0Þ Z ⊕ Z → Z ⊕ Z → Z → 0

ðD8Þ

at large radii, where we abbreviated C12 ¼ CoKerðM1M2 − 1Þ. We remark that the most relevant part of the above
sequences is summarized, respectively, in the following two exact subsequences:

0 → F ⟶
∂
ðr<r�Þ
2 Z2 ⟶

{ðr<r�Þ
1 C1 ⊕ C2 ⟶

|ðr<r�Þ
1 C1;2 → 0;

0 → C∧
12 ⟶

|ðr>r�Þ
2 C∧

1 ⊕ C∧
2 ⊕ F ⟶

∂
ðr>r�Þ
2 Z2 ⟶

{ðr>r�Þ
1 C12⟶

|ðr>r�Þ
1 C1;2 → 0; ðD9Þ

56Given an Abelian group G we define a dual group as G∧ ¼ HomðG;ZÞ.
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where the index p marks maps mapping from a domain of
p-cycles and the exponent labels the Mayer-Vietoris
sequence the subsequence was extracted from. These
subsequences follow by explicit considerations from hav-
ing identified the generators above. The sequence (D9)
should be compared (C11) which forms the starting point
for the SymTree discussion laid out in Appendix C 3.
Instead of laying out this very similar analysis we

demonstrate how to make direct contact with previous
results. As expected this can be achieved by considering
two mutually local singularities of Kodaira type IN1

; IN2
,

respectively with monodromy matrices,

M1 ¼
�
1 N1

0 1

�
; M2 ¼

�
1 N2

0 1

�
: ðD10Þ

This gives,

Ci ≅ Z⊕ ZNi
; C12 ≅ Z⊕ ZN1þN2

; C1;2 ≅ Z⊕ Zg;

C∧
i ≅ Z; C∧

12 ≅ Z; C∧
1;2 ≅ Z: ðD11Þ

Further there is a single 1-cycle of the fiber which pinches
at both singularities and hence we expect F ≅ Z, corre-
sponding to the compact 2-cycle obtained by fibering that
1-cycle between the singularities. However, the generator
of F is constructed from the 2-cycles constructed around
(D3) in much the same way as (C4), this reproduces (C5).
Inserting (D11) into (D9), we find an exact subsequence
0 → Z → Z2 → Z → 0 which we can remove in both
sequences as well as an additional subsequence 0 → Z →
Z → 0 in the second sequence. Once these trivial parts are
cut we reproduce (C11).

2. Homology groups for X = ðT2 × C2Þ=Z3

In this Appendix we expand on the homology compu-
tations for the geometry X ¼ T2 × C2=Z3 and in particular
derive the homology groups lines (91) and (92) which are
relevant for the small and large radius Mayer-Vietoris
sequences with respect to the filtration (90). The
SymTree for this case is depicted in Fig. 24.
Let us first discuss the homology groups of ∂X ¼ ðT2 ×

S3Þ=Z3 given in (92) and identify their generators. The
homology groups are determined by considering the two
fibrations,

π1∶ ∂X → T2=Z3; π2∶ ∂X → S3=Z3; ðD12Þ

which have generic fiber S3, T2 respectively. The boundary
is smooth and hence its homology groups are organized by
Poincaré duality. First, consider the fibration π1, which has
three exceptional fibers ðS3=Z3Þi with i ¼ 1, 2, 3 which
project to the three fixed points of T2=Z3. For these we
have

3ðS3=Z3Þi ¼ S3; ðD13Þ

where the left-hand side denotes the generic fiber of π1.
These three-cycles generate the third homlogy group of ∂X
and taking the above equivalence into account are iso-
morphic to Z ⊕ Z2

3. There are no four-cycles and Poincaré
duality completely fixes the homology groups of ∂X. The
one-cycles γi, generating copy of Z2

3, are given by the uplift
of the three 1-cycles which link exactly one marked point
on T2=Z3. They satisfy the homology relations,

γ1 þ γ2 þ γ3 ¼ 0; 3γi ¼ 0: ðD14Þ

Finally the 2-cycle is simply the fiber class of the fibration
π2, i.e., a copy of T2.
We can now compute the homology groups of X∘. We

proceed via Poincaré-Lefschetz duality together with exci-
sion which establish the isomorphisms,

HnðX∘Þ ≅ H6−nðX∘; ∂ðX∘ÞÞ ¼ H6−nðX; ∂X ∪ fx1; x2; x3gÞ;
ðD15Þ

where xi denote the location of the three codimension-6
singularities. We then compute the left-hand side using
the long exact sequence in relative homology resulting in
line (91). The only not straightforward map in this
computation is the restriction map,

R2∶ H2ðXÞ ≅ Z → Z ≅ H2ð∂X ∪ fx1; x2; x3gÞ; ðD16Þ

which is multiplication by 3. We can now further geom-
etrize the homology groups of line (91). For this think of X∘
as three-legged pants with cross section ðS5=Z3Þi and one
branch with cross section ∂X (see Fig. 30). The generators
in degree 1 are again the γi subject to the same relation
(D14). Given γi there exists a deformation into the
boundary component ðS5=Z3Þi such that γi generates
H1ððS5=Z3ÞiÞÞ ≅ Z3. The generator in degree two is again
the T2 fiber class. The generators in degree three are now all

FIG. 30. Sketch of the geometry X∘.

FLORENT BAUME et al. PHYS. REV. D 109, 106013 (2024)

106013-48



three lens spaces ðS3=Z3Þi. These however now generate
Z3

3 because any such lens space is homologous to the
ðS3=Z3Þi ⊂ ðS5=Z3Þi making it clear that all class gener-
ated by these are torsional. Finally the top degree class
follows because there are four boundary components
which sum to zero in homology, the trivializing chain is
X∘ itself.
With these identifications of generators the small and large

radius Mayer-Vietoris sequences follow straightforwardly.

APPENDIX E: HOLOGRAPHY AND ENSEMBLE
AVERAGING

In this appendix we briefly review some aspects of
ensemble averaging in the context of the AdS=CFT
correspondence. There are by now many papers in the
literature with differing viewpoints on the under-
lying reason that such averaging occurs, so we mainly
focus on the features most salient to our discussion in
Sec. VIII.
To large extent, ensemble averaging in holography is

expected due to a factorization puzzle which occurs in
comparing the partition functions of causally disconnected
boundary CFTs which are joined by a bulk wormhole
configuration [89,90].
Consider a system in which the boundary has n

connected components Σ ¼ Σ1 ⊔Σ2 ⊔…⊔Σn. The gravi-
tational path integral must naively sum over all possible
bulk manifolds with this conformal boundary. Near each
boundary, we need to specify the asymptotic profile for
the fields of the CFT, e.g., the moduli / parameters of the
theory. We denote these as ϕj

∂Σi
¼ Ji for i ¼ 1;…; n.

According to the standard holographic dictionary
[66,84,91], the path integral results in a connected
correlation function,

hZ½J1�…Z½Jn�i; ðE1Þ

which cannot generically be factored into a product of
correlation functions for the individual components of the
boundary. For example, with n ¼ 2,

hZ½J1�Z½J2�i ≠ hZ½J1�ihZ½J2�i; ðE2Þ

where Z½J1� and Z½J2� can be regarded as CFT partition
functions over the two boundary components Σ1 and Σ2,
respectively.
From the point of view of the effective theory and

holography, the proposal is to interpret this nonfactoriza-
tion as due to the contribution of wormhole configurations
in the gravitational path integral, which corresponds to the
ensemble averaging of boundary theories. There are indeed
low-dimensional examples demonstrating this behavior,
e.g., the duality between 2D JT gravity and 1D random
matrix theory (see e.g., [82,92,93] and Refs. therein), as

well as the duality between semiclassical 3D gravity and
2D CFT ensemble averaging (see e.g., Refs. [47,82]).
At present, a full understanding of the mechanism

underlying ensemble averaging remains an open question.
One interpretation is that this ensemble averaging is “real”
in the sense that the gravitational theory really is dual to
an ensemble of CFTs; this possibility is closely related
to having a high-dimensional Hilbert space for baby
universes [94],57 which in turn would also appear to require
treating gravity as an open system. On the other hand, a
more conservative interpretation is that even within a single
fixed CFT, any attempt to describe black hole physics will
necessarily require some sort of chaotic dynamics. As such,
one should expect averaging to be a generic feature of states
which are sufficiently “complex”. This would be in line
with Wigner’s approach to nuclear theory which makes use
of a probabilistic ensemble of Hamiltonians [96] to model
the structure of large nuclei. Such an approach would also
be in line with the general contours of the eigenstate
thermalization hypothesis (see [97,98]).
Some aspects of this more conservative interpretation

were recently sharpened in the specific context of 3D
gravitational theories in Ref. [47] (see also [82]), but it is
expected that some of these considerations apply more
broadly. In Ref. [47], Schlenker and Witten studied the
factorization puzzle by separating observables into those
below and above the black hole threshold. Here, “below the
black hole threshold” means, in the CFT dual, states with
scaling dimensions above the ground state by only a fixed
amount, i.e., above some ΔBH, in the large M limit. It is
claimed that observables below the black hole threshold do
not demonstrate ensemble averaging while, by contrast,
black hole states are responsible for the ensemble averaging
behavior of the gravitational path integral.
This proposal is based on two statements: that black hole

physics is chaotic, and that the Hilbert spaceHM describing
black hole states does not have a large-M limit. To see this,
note that the black hole entropy SBH at a fixed temperature
grows as a power of M, e.g., SBH ∝ M2 if the boundary
CFT is a 4D large M gauge theory. Then, in the limit of
large M, if one changesM to M þ 1, the dimension of HM
grows by exponential factor as

eM
2

→ eðMþ1Þ2 : ðE3Þ

Therefore, it is very likely that the Hilbert space and the
corresponding Hamiltonian of black hole states do not have
a largeM limit. The HamiltonianHM of black hole states at
given M is then a pseudorandom matrix58 For neighboring

57See, however, [46,95].
58A pseudorandom matrix is one generated by a deterministic

causal algorithm, but one in which it cannot be distinguished
from a truly random matrix by any predetermined statistical test
for randomness.
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values of M, each HM can be regarded as an independent
draw from a random matrix ensemble.59

To better understand how this affects the computation of
observables, let us focus on an arbitrary observable OM
depending only on HM. In random matrix theory, OM may
be a “self-averaging” function, meaning that it has almost
the same value for almost any draw from the ensemble. In
this case, hOMi will be a smooth function ofM, with small
e−S corrections reflecting the fact that self-averaging
functions of a random matrix can differ slightly from draw
to draw. If OM is not self-averaging, it will be an erratic
function of M whose expectation value hOMi cannot be
simply computed approximately. However, the gravita-
tional path integral always produces a smooth function
ofM by typically summing over the contributions of saddle
points.60 From the random matrix theory point of view,
even for nonself-averaging observables, there still exists an
averaged value within the ensemble, which is possibly
computed using the gravitational path integral. In this
sense, hOMi as derived from the gravitational path integral
should represent an averaged result over nearby values of
large M. The reason underlying this property of the
gravitational path integral is related to the coarse-graining
nature of the semiclassical gravity (see e.g., [101]). We
must emphasize that the Schlenker-Witten proposal by no
means claims that the ensemble averaging is always over

microscopically well-defined CFTs, which is in contrast to
the procedure given in e.g., Refs. [102–108].
Another subtlety with the Schlenker-Witten proposal is

how it works in AdSDþ1=CFTD when the CFT spacetime
dimension is D > 2. Recall that in (Dþ 1)-dimensional
gravity, the AdSDþ1 black hole solutions can be separated as

small black holes with ρþ <

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D

r
LAdS;

large black holes with ρþ >

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D

r
LAdS; ðE4Þ

where ρþ is the location of the horizon andLAdS is the length
scale of AdSDþ1. In AdS3, there is no small black hole and
thus there exists a sharp black hole threshold scale to
distinguish states with energies below and above it. When
D > 2, however, there exist small black holes, so it is not
clear in what sense one can determine whether states are
subthreshold or not. This would seem to suggest that at least
in higher-dimensional CFTs, large-M ensemble averaging
would need to be entertained even in considering correlators
for low-dimension operators.
Another question is how to implement large-M averag-

ing when dealing with extended operators which transform
nontrivially under higher-form symmetries. Such operators
are often directly sensitive to the topological sector of the
bulk gravitational dual, and in particular quantities such as
M itself. This occurs, for example, in the 5D topological
term,

S5D ¼ i
2π

M
Z

B2 ∧ dC2: ðE5Þ

One of the aims of Sec. VIII is to construct extended
operators which still admit large M averaging even whilst
still retaining a higher-form symmetry.
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