VLQ searches and hadronic final states in the ATLAS experiment

11th Large Hadron Collider Physics Conference

Venugopal Ellajosyula

On behalf of the ATLAS collaboration May 12, 2023

Uppsala University

Introduction

Contents

- Introduction to vector-like quarks and minimal Composite Higgs Models
- Pair-produced vector-like top and bottom partners in events with large E_T^{miss} arXiv:2212.05263
- Pair-production of vector-like quarks with at least one leptonically decaying Z boson and a 3rd generation quark ATLAS-CONF-2021-024
- Search for singly produced vector-like top partners in multilepton final states ATLAS-CONF-2023-020

This list is not exhaustive. A complete list of analyses with the full Run-2 data collected by ATLAS can be found here.

What are VLQs?

Vector-like fermions, ψ , have left- and right-handed chiralities that transform in the same way under the SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$

• Only left-handed charged currents for SM quarks:

$$J^{\mu +} = J^{\mu +}_L = ar{u}_L \gamma^\mu d_L = ar{u}_L \gamma^\mu \left(1 - \gamma^5
ight) d
ightarrow oldsymbol{V} - oldsymbol{A}$$

• BOTH left- and right-handed charged currents for VLQs:

$$J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} = \bar{u}_L \gamma^\mu d_L + \bar{u}_R \gamma^\mu d_R = \bar{u} \gamma^\mu d \to \mathbf{V}$$

Additionally, gauge-invariant mass terms, $-M\bar{\psi}\psi$, allowed without the need of Higgs.

Composite-Higgs models and vector-like quarks

- The Higgs boson is a composite pseudo-Nambu-Goldstone boson (pNGB) from spontaneous breaking of a global symmetry in a new strongly coupled sector → This protects the Higgs mass.
- Models with partial compositeness predict **new vector-like fermions**.
- Simplest extensions with VLQ (*T* and *B*)
- VLQs assumed to decay via charged and neutral currents to 3rd generation quarks.

- QCD pair-production: Mass-independent, dominant at low mass
- Single-production: Scales with coupling, model dependent, significant at high mass.

Pair-produced vector-like top and bottom partners in events with large E_T^{miss} $_{\rm arxiv:2212.05263}$

Preselection

 $E_{\rm T}^{\rm miss} \text{ triggers}$ = 1 signal lepton no additional baseline lepton \geq 4 jets \geq 1 b-jet $E_{\rm T}^{\rm miss} > 250 \text{ GeV}$ $m_{\rm T}^W > 30 \text{ GeV}$ $|\Delta \phi(j_{1,2}, \vec{E}_{\rm T}^{\rm miss})| > 0.4$

- Vector-like $T^{2/3}$, $B^{-1/3}$, and $X^{5/3}$ considered
- Events characterized by low lepton-multiplicity, high jet-multiplicity, and large $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$
- Contributions of mis-measured jets to ${\rm E}_{\rm T}^{\rm miss}$ reduced using the $\Delta\phi$ cut
- Signal regions defined using Neural Network

Event selection

	Training region low-NN _{out} CR/SR	Top reweighting region	W+jets CR	Single-top CR
m_T^W [GeV]	> 120	> 120	∈ [30, 120]	∈ [30, 120]
am _{T2} [GeV]	> 200	< 180	> 200	> 200
b-jet multiplicity	≥ 1	≥ 1	= 1	≥ 2
Large-R jet multiplicity	≥ 1	≥ 1	≤ 1	≤ 1
m(large-R jet) [GeV]	-	-	< 150	< 150
Lepton charge	-	-	+1	-
$\Delta R(b_1, b_2)$	-	-	-	> 1.4
NNout	$< 0.5/\ge 0.5$	-	-	-

• Dominant backgrounds after pre-selection cuts are $t\bar{t}$ and W+jets

- Cut on m_T^W used to reduce semi-leptonic $t\bar{t}$ and W+jets
- Di-leptonic *tt* events where one lepton is not detected reduced using requirements on the asymmetric transverse mass
- At least one top quark from the signal expected to have high- p_T
 - Requirement on number of large-R jets
- Neural networks used to distinguish between signal and background
 - Trained for different signal hypotheses (depending of branching ratios of *T* and *B*) using events in the training region
 - Input variables such as high m_{eff} for VLQ mass, properties of large-R jets, b-jet multiplicity, transverse mass etc. used

Examples of discriminating variables

6

Results

VLQ	Scenario	Exp. limit [TeV]	Obs. limit [TeV]
Т	$\mathcal{B}(T \rightarrow Zt) = 100\%$	1.45	1.47
Т	singlet	1.33	1.26
Т	(T, B) or (X, T) doublet	1.41	1.41
В	singlet	1.30	1.33
B/X	$\mathcal{B}(B/X \to Wt) = 100\%$ or $(T, B)/(X, T)$ doublet	1.42	1.46
T/B/X	(T, B) or (X, T) doublet, mass degenerate	1.56	1.59

- No significant excesses
- Analysis most sensitive to the $T \rightarrow Zt$ and $B \rightarrow Wt$ decay modes
- Strongest limits for the (T, B) and (X, T) when m_X = m_T = m_B are at 1.59 TeV
- Limits also shown for all possible branching ratios where the VLQs can decay only to SM particles

Pair-production of vector-like quarks with at least one leptonically decaying Z boson and a 3^{rd} generation quark

ATLAS-CONF-2021-024

- Optimized for decays to a leptonically-decaying Z boson and a third generation SM quark.
- Events characterized by high-p_T Z boson, b−tagged jets, high-p_T large-R jets, exactly 2ℓ or ≥ 3ℓ, boosted W, Z, H, and t.
- Categorization done using a neural-network based boosted object tagger.

Multi-Class Boosted Object Tagger (MCBOT)

- Based on multi-class DNN trained using RC jets from Z' → tt and W' → WZ simulations, with multijet as background.
- Three signal labels (V, H, top) are obtained by matching the RC jet to the corresponding boson or top quark at generator-level within $\Delta R < 0.75$.

- Analysis exploits the high multiplicities of jets, large-R jets, and *b*-jets in addition to requirements on *p*^Z_T and *H*_T to suppress backgrounds.
- Large-R jets reclustered from calibrated R=0.4 jets used as input to MCBOT to identify hadronically decaying V, H, and top quark.

Results

Model	Observed (Expected) Mass Limits [TeV] 2l 3l Combination				
$T\bar{T}$ Singlet	1.14 (1.16)	1.22 (1.21)	1.27 (1.29)		
$T\bar{T}$ Doublet	1.34 (1.32)	1.38 (1.37)	1.46 (1.44)		
$100\% T \rightarrow Zt$	1.43 (1.43)	1.54 (1.50)	1.60 (1.57)		
$\begin{array}{c} B\bar{B} \text{ Singlet} \\ B\bar{B} \text{ Doublet} \\ 100\% \ B \rightarrow Zb \end{array}$	1.14 (1.21)	1.11 (1.10)	1.20 (1.25)		
	1.31 (1.37)	1.07 (1.04)	1.32 (1.38)		
	1.40 (1.47)	1.16 (1.18)	1.42 (1.49)		

- No significant excesses
- Combined results exclude T masses upto 1.27 and 1.46 TeV for singlet and doublet configurations
- Combined results exclude B masses upto 1.20 and 1.32 TeV for singlet and doublet configurations
- These limits are better than the previous searches by more than 200 GeV.

Search for singly produced vector-like top partners in multilepton final states ATLAS-CONF-2023-020

- Optimized for vector-like quarks decaying to Z bosons which further decays to a pair of electron or muons
- Characterized by the presence of a pair of opposite-sign dileptons, *b*-jets, and forward jets
- Two final states (2 ℓ and 3 ℓ) optimized independently
- Improvement compared to previous iteration of this search are mainly from more data, better kinematic selections, and more efficient top-tagging

Dilepton channel

	$2\ell CR1$	$2\ell CR2$	$2\ell CR3$	$2\ell VR1$	$2\ell VR2$	$2\ell SR$	
1 pair of OS-SF leptor				cons with $ m(\ell \ell) - m_Z < 10 \text{ GeV}$			
Prosoloction	$p_{\rm T} (\ell \ell) > 200 {\rm ~GeV}, H_{\rm T} > 300 {\rm ~GeV}$						
1 reselection	$\geq 1 \text{ vRC jet}$						
$H_{\rm T} + E_{\rm T}^{\rm miss} < m_{\ell\ell J}$							
forward jets	≥ 1	0	0	≥ 1	0	≥ 1	
b-tagged jets	0	≥ 1	0	0	≥ 1	≥ 1	
top-tagged jets	-	-	≥ 1	≥ 1	≥ 1	≥ 1	
top-vetoed jets	≥ 1	≥ 1	-	-	-	-	

- Dominant backgrounds from Z+jets, and smaller contribution from VV and $t\bar{t}$
- Signal expected to have high energy objects, including Z boson and top quark
 - Requirements on $p_T(\ell \ell)$ and H_T
 - Require atleast one variable radius reclustered (vRC) jet originating from the boosted top quark
- Mass of the VLQ reconstructed using the Z boson candidate, and the leading vRC jet
- Forward jets scattering off of a heavy, off-shell vector boson from one of the incoming partons also expected

Dilepton channel

- Signal expected to have high energy objects, including Z boson and top quark
 - Requirements on $p_T(\ell \ell)$ and H_T
 - Require atleast one variable radius reclustered (vRC) jet originating from the boosted top quark
- Mass of the VLQ reconstructed using the Z boson candidate, and the leading vRC jet
- Forward jets scattering off of a heavy, off-shell vector boson from one of the incoming partons also expected

Trilepton channel

	3ℓVV	3ℓMixed	3ℓttX	$3\ell VR$	3ℓSR
Preselection	≥ 3 leptons ≥ 1 pair of OS-SF leptons with $ m(\ell \ell) - m_Z < 10$ GeV				
b-tagged jets	0	1	≥ 2	≥ 1	≥ 1
forward jets	-	0	0	≥ 1	≥ 1
$\Delta \phi$ selections	-	$\Delta\phi(Z,\ell_3)<2.6$	$\Delta\phi(Z,\ell_3)<2.6$	$\Delta \phi(Z, \ell_3) < \frac{\pi}{2} \text{ OR}$ $\Delta \phi(Z, b_{\text{lead}}) < \frac{\pi}{2}$	$\Delta \phi(Z, \ell_3) > \frac{\pi}{2}$ AND $\Delta \phi(Z, b_{lead}) > \frac{\pi}{2}$
other selections	-	-	-	-	$\begin{aligned} \max(p_{\mathrm{T}}(\ell)) &> 200 \text{ GeV} \\ p_{\mathrm{T}}(\ell\ell) &> 300 \text{ GeV} \\ H_{\mathrm{T}} \cdot n(\text{jets}) &< 6 \text{ TeV} \end{aligned}$

- Dominant background sources are VV, ttV, ttH
- Similar to the 2ℓ channel, b−jets and forward jets are expected, in addition to high p_T objects such as the Z boson and top quark
- Angular separation between Z and top quark expected to be high
 - Additional requirements on $\Delta \phi(Z, \ell_3)$ and $\Delta \phi(Z, b_{lead})$

Trilepton channel

- Dominant background sources are VV, ttV, ttH
- Similar to the 2ℓ channel, b−jets and forward jets are expected, in addition to high p_T objects such as the Z boson and top quark
- Angular separation between Z and top quark expected to be high
 - Additional requirements on $\Delta \phi(Z, \ell_3)$ and $\Delta \phi(Z, b_{lead})$

Results

- No significant excesses
- Limits on cross-sections reinterpreted in the coupling-mass, and width-BR planes
- Only singlet case shown here
- Coupling, κ, between 0.22 and 0.64 excluded for masses between 1000 and 1975 GeV
- Doublet exclusions slightly weaker 16

- Vector-like quarks predicted by several models including CHMs
- Searches presented in this talk consider the minimal CHMs with three types of VLQs, $T^{2/3},B^{-1/3},$ and $X^{5/3}$ decaying to SM
- Searches for third generation vector-like quarks produced singly and in pairs presented here
- No significant excesses seen but several new and innovative methods were developed
- Limits on the masses with more data and newer methods stronger than before.