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Abstract

Axion inflation, i.e. an axion-like inflaton coupled to an Abelian gauge field through a Chern-Simons
interaction, comes with a rich and testable phenomenology. This is particularly true in the strong
backreaction regime, where the gauge field production heavily impacts the axion dynamics. Lattice
simulations have recently demonstrated the importance of accounting for inhomogeneities of the
axion field in this regime. We propose a perturbative scheme to account for these inhomogeneities
while maintaining high computational efficiency. Our goal is to accurately capture deviations from
the homogeneous axion field approximation within the perturbative regime as well as self-consistently
determine the onset of the non-perturbative regime.
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1 Introduction

Cosmic inflation remains the most attractive theory to explain the precise observations of the cosmic
microwave background (CMB) by the Planck satellite [1,2]. Among the particle physics models which
can lead to a quasi-exponential expansion, considerable attention has been paid to axion-like particles
as the driving field of inflation. The axion’s angular symmetry is only broken by non-perturbative
effects and thus the observationally required flatness of the potential can be ensured naturally [3].
Furthermore, the shift symmetry allows for derivative couplings of the axion to the Chern-Simons
density FµνF̃

µν of a (dark) gauge field Aµ. Such couplings can lead to the exponential production
of Aµ due to a tachyonic instability of one of the two helicity modes in the equations of motion
(EOM), which is solely controlled by the axion velocity and hence generically impacts the later stages
of inflation, corresponding to length scales much smaller than those accessible in CMB observations.
The consequences of such a large non-thermal Aµ population are diverse and include: i) an effective
friction term in the axion EOM [4], ii) a strong enhancement of the scalar and tensor perturbations
with possible observational consequences, such as the production of primordial black holes [5–11] and
(chiral) stochastic gravitation waves [12–18] and iii) a mechanism for magnetogenesis [19–24] and
baryogenesis [23,25–27] if the gauge field is taken to be the Standard Model (SM) hypercharge.

Obtaining accurate predictions for any of these processes requires evolving the highly non-linear
system containing the axion and gauge fields, as well as when present, any light fermions. In this
paper we shall focus on the case where the gauge field is a dark photon, with no other couplings
to the SM (or beyond) other than the Chern-Simons coupling to the axion.1 In this case, the most
important backreaction to consider is the effective friction induced by the gauge fields on the axion [4],
and our interest will be in the regime where this backreaction is strong, i.e. typically towards the end
of inflation. Changes in the axion velocity impact gauge field modes within the tachyonic instability
window, which contribute to the friction force. As a result, the friction term reacts with some time
delay to the changes in the axion velocity, leading to a resonantly coupled system with distinct peaks in
the axion velocity [31,32]. These results have been confirmed in perturbative stability analysis [33,34]

1For the discussion of the SM case including light fermions see [28–30].
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as well as using the gradient expansion formalism (GEF) [30, 34]. The latter provides a remarkably
efficient tool for numerical simulations based on expressing the non-linear EOMs in position space as a
tower of ordinary differential equations (ODEs) for the 2-point functions of the axion, the gauge fields,
and the gradients of the gauge fields, reducing the computation time by orders of magnitude compared
to e.g. the iterative procedure used in [32].

All these methods, however, make a crucial assumption: they take the axion field to be homoge-
neous. Given the rapid growth of the axion perturbations, the significant departure from the standard
slow-roll regime and the strong non-linearities involved, it is not surprising that this approximation
breaks down in the strong backreaction regime. This has recently been explicitly demonstrated in a
lattice simulation [35] using CosmoLattice [36,37], reproducing earlier results when switching off axion
gradients but finding significant departures when the axion gradients are taken into account consis-
tently. While accurately dealing with the full non-linear problem including the strong backreaction,
the downside of these simulations is that they are extremely costly. Moreover, as can be seen from
the results obtained in [35], the highly non-linear dynamics implies that observable quantities (such
as the magnitude of the gauge field contribution or the scalar perturbations at a given scale) are not
monotonic functions of the axion gauge field coupling. A full exploration of the phenomenology of axion
inflation throughout the parameter space thus seems very costly at best based on lattice simulations
only.

Our goal in this paper is to leverage the benefits of the highly efficient GEF to perturbatively include
axion gradients. To obtain a closed set of ODEs, this requires evolving not only the 2-point functions
but also higher p-point functions under the GEF scheme. We are particularly interested in the regime
where axion gradients are relevant and impact the evolution of the axion vacuum expectation value
and the gauge field distribution, while still allowing for a perturbative treatment. As time evolves,
this will typically give way to a regime in which the axion gradients become too large to be treated
perturbatively, calling for a lattice simulation. Within our formalism, we self-consistently determine
the breakdown of perturbativity, providing a tool to compute initial conditions for lattice simulations,
focusing their computational power on the truly non-linear regimes. Our work should be seen as a first
step in developing this methodology, and we discuss possible extensions and scalability. In the process,
we gain new insights into the application of the GEF to axion inflation, notably regarding the need
to go to rather high order in the GEF tower to obtain convergence as well as an improved truncation
relation.

The paper is organized as follows. In Sec. 2 we briefly review the GEF and derive an extension
including axion gradients. Some technical details, in particular the more lengthy equations for the
3-point functions are given in App. A, while App. B focuses on the limitations of the GEF and in
particular the truncation relation. Our results are presented in Sec. 3, and contrasted with results
obtained in lattice computations as well as under the assumption of a homogeneous axion field. The
final Sec. 4 summarizes and discusses the results.

2 The gradient expansion formalism including axion inhomogeneities

The gradient expansion formalism developed in Refs. [30,38] for axion inflation (see [39,40] for earlier
work in related contexts) provides a computationally efficient way of accounting for the backreaction
of the gauge fields on the axion dynamics. The system of interest here is an unbroken, dark U(1) gauge
group coupled to the axion via a Chern-Simons interaction,

S =

∫
d4x

√−g

[
1

2
gµν∂µϕ∂νϕ− V (ϕ)− 1

4
gµρgνσFµνFρσ − αϕ

4πfa

1√−g
FµνF̃

µν

]
, (2.1)
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where F̃µν = ϵµνρσFρσ/2 with ϵ0123 = 1 and for simplicity we will set V (ϕ) = m2
ϕϕ

2/2. The GEF
re-arranges the resulting coupled partial differential equations governing the dynamics of the electric
and magnetic field (i.e. Maxwell’s equations in the presence of an axion photon coupling) into a tower
of linear ODEs for the 2-point functions

P(n)
X =

1

an

〈
X⃗ · (∇⃗×)nX⃗

〉
, P(n)

XY = − 1

an

〈
X⃗ · (∇⃗×)nY⃗

〉
. (2.2)

with X,Y = {E,B}, the bracket indicating the spatial average, and a indicating the scale factor
of the expanding universe. Under the assumptions that the axion field is homogeneous and that its
velocity varies only slowly, the EOMs of the 2-point functions form a closed system, and the infinite
set of equations can be truncated at finite power n of the curl yielding an efficient and accurate
evaluation of the axion and gauge field dynamics [30]. However, as we will discuss in more detail below,
typically neither of these assumptions are fulfilled once the gauge field backreaction becomes significant.
In the strong backreaction regime, the axion field enters into a oscillatory regime, understood as
resonances resulting from the time-delayed friction force exerted by the gauge fields [30–33]. More
recently lattice studies have qualitatively confirmed the existence of the oscillatory behavior, finding
however quantitatively significant differences (notably a significant damping of these oscillations) when
including the inhomogeneities in the axion field [35].

The goal of the present paper is to extend the GEF beyond these two assumptions. Below, we
derive an extended version of the GEF including axion inhomogeneities (i.e. axion gradient terms) in
a perturbative manner. The resulting non-linearities in the EOMs of the 2-point functions prompt us
to include higher p-point functions in order to reduce our equations to ODEs, in a similar spirit as the
original GEF. Similarly, we will need to find a suitable procedure to truncate this second expansion
series as finite (and low) p. In the process, we will shed light on the role of rapid changes in the axion
velocity and the resulting limitations of the GEF.

2.1 Equations of motion

We start from the exact EOMs as derived from Eq. (2.1), separating the homogeneous component of
the axion ϕ(t) from its inhomogeneous component χ(t, x⃗),

0 = ϕ̈+ 3Hϕ̇+m2
ϕϕ− β

MP

〈
E⃗ · B⃗

〉
, (2.3)

0 = χ̈+ 3Hχ̇− ∇2χ

a2
+m2

ϕχ− β

MP

(
E⃗ · B⃗ −

〈
E⃗ · B⃗

〉)
, (2.4)

0 =
˙⃗
E + 2HE⃗ − 1

a
∇⃗ × B⃗ +

β

MP

(
ϕ̇+ χ̇

)
B⃗ +

β

MP

1

a
∇⃗χ× E⃗ , (2.5)

0 =
˙⃗
B + 2HB⃗ +

1

a
∇⃗ × E⃗ , (2.6)

0 = ∇⃗ · E⃗ +
β

MP
∇⃗χ · B⃗ , 0 = ∇⃗ · B⃗ , (2.7)

for the matter sector with β = αMP /(πfa), and

H2 =
1

3M2
P

〈
1

2

(
ϕ̇2 + χ̇2

)
+

(∂iχ)
2

2a2
+

m2
ϕ

2

(
ϕ2 + χ2

)
+

1

2

(
|E⃗|2 + |B⃗|2

)〉
, (2.8)

Ḣ = − 1

6M2
P

〈
3
(
ϕ̇2 + χ̇2

)
+

(∂iχ)
2

a2
+ 2

(
|E⃗|2 + |B⃗|2

)〉
, (2.9)
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for the gravity sector. For χ = 0, multiplying Eqs. (2.5) and (2.6) with {(∇⃗×)nE⃗, (∇⃗×)nB⃗} yields
a tower of ODEs linear in the (scalar) 2-point functions (2.2). To include the axion gradients, the
structure of the last two terms in Eq. (2.5) as well as the last term in the Gauss constraint in Eq. (2.7)
suggests the inclusion of 3-point functions including one power of either χ̇ or ∇⃗χ. Using the EOMs,
the ODEs governing these 3-point functions in turn depend on 4-point functions, etc. The result is a
double expansion in gradients (∇×)n and p-point functions.

To first order in this expansion, we will only keep 3-point functions with up to one spatial derivative.
In this case, the EOMs of the 2-point electromagnetic functions P with n ≥ 2 are the same as in the
usual GEF formalism [30],

Ṗ(n)
E + (n+ 4)HP(n)

E − 2βϕ̇

MP
P(n)
EB + 2P(n+1)

EB =
[
Ṗ(n)
E

]
b
, (2.10)

Ṗ(n)
B + (n+ 4)HP(n)

B − 2P(n+1)
EB =

[
Ṗ(n)
B

]
b
, (2.11)

Ṗ(n)
EB + (n+ 4)HP(n)

EB − P(n+1)
E + P(n+1)

B − βϕ̇

MP
P(n)
B =

[
Ṗ(n)
EB

]
b
. (2.12)

Here, the boundary terms on the right-hand side account for the change in the number of modes which
have been excited from the vacuum, see below for a more detailed discussion. The superscript (n)
refers to the number of curls, indexing the GEF tower.

The EOMs for 2-point functions for the electromagnetic fields for n = {0, 1} now contain 3-point
functions B as anticipated,

Ṗ(0)
E + 4HP(0)

E + 2P(1)
EB − 2βϕ̇

MP
P(0)
EB − 2β

MP
B(0)
χ̇;EB =

[
Ṗ(0)
E

]
b
, (2.13)

Ṗ(0)
B + 4HP(0)

B − 2P(1)
EB =

[
Ṗ(0)
B

]
b
, (2.14)

Ṗ(0)
EB + 4HP(0)

EB − P(1)
E + P(1)

B − βϕ̇

MP
P(0)
B − β

MP
B(0)
χ̇;B − β

MP

(
B(1,0)
χ;EB − B(0,1)

χ;EB

)
=

[
Ṗ(0)
EB

]
b
, (2.15)

and

Ṗ(1)
E + 5HP(1)

E + 2P(2)
EB − 2βϕ̇

MP
P(1)
EB − 2β

MP
B(1,0)
χ̇;EB =

[
Ṗ(1)
E

]
b
, (2.16)

Ṗ(1)
B + 5HP(1)

B − 2P(2)
EB =

[
Ṗ(1)
B

]
b
, (2.17)

Ṗ(1)
EB + 5HP(1)

EB − P(2)
E + P(2)

B − βϕ̇

MP
P(1)
B − β

MP
B(1)
χ̇;B =

[
Ṗ(1)
EB

]
b
, (2.18)

where we have defined

B(n)
f ;E =

1

an

〈
f
((

∇⃗×
)n

E⃗
)
· E⃗

〉
, B(n)

f ;B =
1

an

〈
f
((

∇⃗×
)n

B⃗
)
· B⃗

〉
, B(0)

f ;EB = −
〈
fE⃗ · B⃗

〉
,

B(1,0)
f ;EB = −1

a

〈
f
(
∇⃗ × E⃗

)
· B⃗

〉
, B(0,1)

f ;EB = −1

a

〈
fE⃗ ·

(
∇⃗ × B⃗

)〉
, (2.19)

with f = χ, χ̇ and n = {0, 1}. The two superscripts on the 3-point functions refer to the number
of curls acting on E⃗ and B⃗, respectively. The EOMs for these 3-point functions can be obtained
analogously from Eqs. (2.5) and (2.6) and are given explicitly in App. A. Importantly, we note here the
key approximations which enter in their derivation: Firstly, we keep only 3-point functions containing
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up to one spatial derivative. This is not a fundamental limitation of the proposed method but should
rather be seen as the first order in a gradient expansion series. Including higher order terms will lead
to more (and more lengthy) equations, with the number of equations scaling at most2 as n3

B with nB
the maximal number of derivatives appearing in the 3-point function. However, the overall structure of
the equations remains unchanged and we expect this to be numerically tractable. The results derived
in this way are reliable as long as the subsequent order in this expansion is sufficiently small, and as
discussed below, we will use this as a criterion to self-consistently check the validity of our method.
Secondly, we factorize the resulting 4-point functions appearing in the EOMs of the 3-point functions
into products of 2-point functions assuming Gaussian distributions for the electromagnetic fields.3 We
moreover set 4-point functions that involve one factor of ∇⃗χ to vanish since this leaves a spatial index
uncontracted within the 2-point function, which would be in violation of statistical isotropy.

Finally the 2-point functions of the axion fluctuations evolve as

Ṗ(0)
χ − 2P(0)

χχ̇ = 0 , (2.20)

Ṗ(0)
χχ̇ + 3HP(0)

χχ̇ +m2
ϕP(0)

χ +
β

MP
B(0)
χ;EB − P(0)

χ̇ = 0 , (2.21)

Ṗ(0)
χ̇ + 6HP(0)

χ̇ + 2m2
ϕP

(0)
χχ̇ +

2β

MP
B(0)
χ̇;EB = 0 , (2.22)

with

P(2n)
χ =

1

a2n
〈
χ∇2nχ

〉
, P(2n)

χ̇ =
1

a2n
〈
χ̇∇2nχ̇

〉
, P(2n)

χχ̇ =
1

a2n
〈
χ∇2nχ̇

〉
. (2.23)

2.2 Boundary terms and truncation

Two subtleties in the derivation above deserve a more detailed discussion: the boundary terms in
Eqs. (2.13) to (2.18) and the truncation of the gradient expansion series for the 2-point functions
at finite n. Both of these are a priori not related to the inclusion of the axion inhomogeneities as
they appear only in the EOMs of the 2-point functions. In fact, for a homogeneous axion field,
these are the only two approximations by which the GEF prescription deviates from an exact solution
and this is where the approximation of a slowly varying axion velocity enters. However, while for

a homogeneous axion field the gauge field power spectra P(0)
E,B,EB have been shown to be robustly

reproducing the results found solving the mode equations of the gauge field [30] and are moreover in
very good agreement with lattice results after setting the axion gradient terms to zero [35], we find the

impact of these approximations on the higher orders in the GEF tower P(n)
E,B,EB to be significant (see

also [34]). We will show that these difficulties can be mitigated by an improved truncation relation.
Including axion gradients, we observe that this ensures sufficient stability in the algorithm within the
perturbative regime of axion inhomogeneities.

2The scaling will be milder with suitable optimizing of the equations, using in particular integration by parts.
3Note that in the presence of axion gradients, the electric field is no longer divergence free. Defining D⃗ = E⃗ +

(β/MP )χB⃗, we can rewrite our expressions in terms of a divergence free quantity, ∇⃗ · D⃗ = 0. The price to pay is the
appearance of 5-point functions in the EOMs of the 3-point functions, whose factorization requires assumptions not only
on the gaussianity of the gauge fields but also of the axion perturbation χ. While for the former, this is in good agreement
with results found in lattice simulations (we thank Dani Figueroa and Ander Urio Garmendia for providing valuable input
and cross-checks on this point), the axion fluctuations are expected to be highly non-gaussian due to the non-linear source
terms. Therefore, under the approximations we employ we find it more convenient to work with original electric field,
taking into account that it is not divergence free.
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Boundary terms. In terms of the mode functions of the vector potential A, the gauge field 2-point
functions are given as

P(n)
E =

1

an+4

∫
d3k

(2π)3
θ(kh(t)− k)

∑
σ

(σk)n
∣∣∣∣dAσ

dτ

∣∣∣∣2 , (2.24)

P(n)
B =

1

an+4

∫
d3k

(2π)3
θ(kh(t)− k)

∑
σ

(σk)n+2 |Aσ|2 , (2.25)

P(n)
EB =

1

2an+4

∫
d3k

(2π)3
θ(kh(t)− k)

∑
σ

(σk)n+1 d

dτ
|Aσ|2 , (2.26)

where σ encodes the two gauge field polarizations and the Heaviside function ensures the vacuum
subtraction, i.e. that only modes with k < kh which have been exited out of their vacuum state
contribute to the regularized integral. To determine kh, we refer to the EOM for Ak(τ),

d2Aσ

dτ2
+ k (k − λσ2ξaH)Aσ = 0 , λ = sign(ϕ̇) , (2.27)

which encounters a tachyonic instability for the polarization σ = λ for

kh(t) = max
t′≤t

[
2ξ(t′)a(t′)H(t′)

]
with ξ = β|ϕ̇|/(2HMP ) . (2.28)

Here we assume that the axion inhomogeneity does not affect the gauge boson dynamics at the sub-
horizon scales. Since the gauge bosons are excited only after exiting the horizon, the axion inhomo-
geneity produced from the gauge bosons is also expected to be outside the horizon, justifying our
assumption. Taking this into account leads to boundary terms in the EOMs for the 2-point functions,
which are explicitly given as[

Ṗ(n)
E

]
b
=

k̇h
an+4

k2h
2π2

∑
σ

(σkh)
n

∣∣∣∣dAσ

dτ

∣∣∣∣2
k=kh

, (2.29)

[
Ṗ(n)
B

]
b
=

k̇h
an+4

k2h
2π2

∑
σ

(σkh)
n+2 |Aσ|2k=kh

, (2.30)

[
Ṗ(n)
EB

]
b
=

k̇h
an+4

k2h
2π2

∑
σ

(σkh)
n+1Re

[
A∗

σ

dAσ

dτ

]
k=kh

. (2.31)

To evaluate these, we follow the prescription given in [30] which is based on the solutions for the
mode functions for constant ξ. The boundary terms thus arise from the need to regularize the vacuum
contribution, and in this implementation, rely on an at most slowly varying axion velocity. The final
results are not particularly sensitive to the value of the cut-off kh since the change of the integration
range in Eqs. (2.24)–(2.26) by changing kh is compensated by the change of the boundary term. For
example, reducing kh by 25% induces changes which are smaller than 10% (and largely smaller than
1%) in ξ.

Truncation relation. The infinite tower of equations (2.10) to (2.12) needs to be truncated at some
finite n to implement the GEF numerically. The truncation relation employed in [30] is

P(nmax+1)
X ≃

(
kh
a

)2

P(nmax−1)
X , (2.32)
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where X = E,B or EB. This can be derived from Eqs. (2.29) to (2.31) assuming a power law spectrum
for |Aσ(k)|2 around kh, as proposed in Ref. [30]. However, both results from lattice simulations [35] as
well as the results obtained using solving the gauge field mode equations show that there can be a lot

of structure in the spectrum at this scale, leading to significant deviations in the ratio P(n+1)
X /P(n−1)

X ,
as shown in App. B. However, as we show in that appendix, Eq. (2.32) can also be obtained (without
invoking the power law approximation of the spectrum) as the asymptotic large-n limit under the
assumption that ξ is constant. As we show there, a value of n ∼ 55 is necessary for the relation (2.32)
to hold up to about 5%. To our understanding, this explains why values of n ∼ 100 are necessary to
achieve convergence in the GEF, whereas n ≫ 1 should have been sufficient based on the assumption
of power law spectrum around kh.

This in turn indicates that rapid changes in ξ will induce errors in this truncation relation, which
propagate through the coupled system of equations down to low n. This is supported by our observa-
tions in the numerical studies shown in App. B and was also recently observed in Ref. [34]. When the

axion velocity drops rapidly, the P(n)
X take (unphysically) large values at large n, which over time prop-

agate down to lower n modes. If the phase of rapidly changing (in particular dropping) axion velocity

is sufficiently long, this can in principle impact the observables, i.e. the P(0)
X power spectra. This calls

for an improvement of the truncation relation (2.32) in the further development of the GEF formalism.

We show in App. B results obtained using not only P(nmax−1)
X but instead a series of P(nmax+1−2l)

X to

determine P(nmax+1)
X ,

P̄(nmax+1)
X =

L∑
l=1

(−1)l−1

(
L
l

)
P̄(nmax+1−2l)
X , (2.33)

where P̄(n)
X = P(n)

X /H4
0 (kh/a)

n. For L = 1 we trivially recover Eq. (2.32). As we show in App. B for
L = 4 and L = 10 this improves the stability of the system to a point which is sufficient for the study
of the regime of perturbative axion inhomogeneities.

2.3 Validity of the axion gradient expansion

In the scheme described above we included only terms with up to one power of the axion gradient.
To ensure the consistency of this approach, we monitor the second order axion derivatives sourced in
this manner (without including their backreaction on the truncated system described above). More
precisely, we monitor the ratio of the gradient to the kinetic energy,

Rχ ≡
∣∣∣∣∣
〈
(∇χ)2

〉
ϕ̇2 + ⟨χ̇2⟩

∣∣∣∣∣ . (2.34)

As long as this quantity is small, it is justified to drop higher powers of the axion gradients, whereas Rχ

above O(0.1 – 1) indicates that the axion gradients can no longer be treated perturbatively, calling for
a full lattice simulation. To compute

〈
(∇χ)2

〉
= −

〈
χ∇2χ

〉
, the relevant EOMs for the axion 2-point

functions to second order in the gradient expansion are

Ṗ(2)
χ + 2HP(2)

χ − 2P(2)
χχ̇ = 0 , (2.35)

Ṗ(2)
χχ̇ + 5HP(2)

χχ̇ +m2
ϕP(2)

χ +
β

MP
B(2;0,0)
χ;EB − P(2)

χ̇ = 0 , (2.36)

Ṗ(2)
χ̇ + 8HP(2)

χ̇ + 2m2
ϕP

(2)
χχ̇ +

2β

MP
B(2;0,0)
χ̇;EB = 0 , (2.37)
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Figure 1: Evolution of ξ assuming a homogeneous axion field (dashed black) and perturbatively including axion
gradients (red) for different values of β. The light (dark) gray region indicates that the gradient energy of the
axion exceeds 1% (50%) of the kinetic energy, while the gray vertical line corresponds to 5%. Wherever possible
we compare to the result of the lattice simulation [35].

which in turn require the evaluation of the 3-point function B(2;0,0)
f ;EB , whose definitions and equations are

again given in the App. A. The breakdown of this perturbative expansion scheme Rχ > 0.5 is indicated
by the dark gray region in the figures below.

3 Numerical results

Figs. 1 and 2 show the results of the methodology described in Sec. 2 for values of the coupling β ranging
from 15 to 25. The six panels of Fig. 1 focus on the evolution of the parameter ξ = β|ϕ̇|/(2HMP ).
In all panels, the dotted black lines show the result for the GEF assuming a homogeneous axion and
the solid red lines are new results including perturbatively the axion gradients to first order. Where
available, we show for comparison the lattice results obtained in Ref. [35] in dashed blue. The gray
regions and horizontal lines indicate the quality of the perturbative expansion. In the dark gray
region the axion gradient energy exceeds 50% of the axion kinetic energy, Rχ > 0.5, indicating the
non-perturbative regime. For all panels, we show only 0.25 e-folds of this non-perturbative regime,
though we stress that lattice results have shown that inflation can last several e-folds longer. Defining
∆N = Nend − N (Rχ = 0.5) leads to ∆N ≃ 1.5 for β = 15, ∆N ≃ 3.5 for β = 18, and ∆N ≃ 4.5
for β = 20 [35]. The light gray region indicates the regime in which the gradient energy is sizeable,
i.e. 0.01 < Rχ < 0.5, but our perturbative treatment is still valid. The vertical gray line indicates
Rχ = 0.05. We observe that below this value, we recover the full lattice results to good agreement
(while the deviation from the homogeneous approximation is already significant). Above this value the
leading order correction implemented here is insufficient to fully reproduce the lattice results, but since
Rχ ≪ 1 a systematic expansion to higher orders in the axion gradients might conceivably achieve this
(within the light gray region).

Fig. 2 shows the evolution of the kinetic (ρK), potential (ρV), electromagnetic (ρEM) and axion
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Figure 2: Evolution of the energy densities for different values of β. Gray bands as in Fig. 1. Results from lattice
simulations for β = 15, 18 and 20 from Ref. [35] are shown in dashed.

gradient energy (ρG) defined as

ρK =
1

2

(
ϕ̇2 + P(0)

χ̇

)
, ρV =

m2
ϕ

2

(
ϕ2 + P(0)

χ

)
, ρEM =

1

2

(
P(0)
E + P(0)

B

)
, ρG = −1

2
P(2)
χ , (3.1)

for the same values of β. Here we include ρG in the total energy density, ρtot = ρK + ρV + ρEM + ρG,
although we do not include ρG in the Friedmann equation as we explained above.4 This figure gives a
more detailed view of the importance of the axion gradient energy, showing that in many cases (e.g.
β = 20, 22, 25) there is a prolonged regime in which the axion gradient energy remains at the percent
level or below. The opposite is observed for β = 15, where once it becomes relevant, the axion gradient
energy rapidly becomes comparable to the other components. The efficiency of the method discussed
in Sec. 2 allows us to study a wide range of couplings β, confirming that diverse and complex dynamics
occurring in the strong backreaction regime. In particular, possible observable signatures related to
the different energy components depend on the coupling β in a non-monotonic way.

As one example of possible observable consequences we show the scalar power spectrum sourced by

the axion fluctuations, ∆2
ζ = (H/ϕ̇)2P(0)

χ in Fig. 3.5 Note that this contains only the contribution from
the axion fluctuations, and not the contribution from the gauge field energy density fluctuations or
metric fluctuations. We note that even within the perturbative regime of axion gradients we significantly
exceed the threshold for primordial black hole (PBH) formation which is estimated to lie around
∆2

ζ ∼ 10−2 for a Gaussian distribution and around ∆2
ζ ∼ 10−4 for the non-Gaussian spectrum assumed

in Ref. [5] for axion inflation. PBHs generated in the last few e-folds of inflation are very light and
decay rapidly through Hawking radiation leaving no traces in our cosmological history. However, as we

4Including this term, despite spoiling the consistency of the Friedmann equation, does not affect our result in the
regime where we can trust our perturbative treatment of the axion gradient.

5Strictly speaking P(0)
χ is an integrated quantity and we do not have access to the power spectrum for each different

momentum k in our formalism (unless we compute the axion 2-point functions with sufficiently high powers of the spatial
derivatives). However, we expect that at each given time the modes with k ∼ kh dominate the integral and the time

evolution of P(0)
X roughly corresponds to the spectrum.
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Figure 3: Power spectrum of axion perturbations, ∆2
ζ = (H/ϕ̇)2P(0)

χ , for β = 15 (left) and β = 20 (right). Large
values imply PBH formation, see text for details. Gray bands as in Fig. 1.

see from Fig. 3, even for a moderate coupling of β = 15 the non-perturbative regime of axion gradients
is reached before the end of inflation, making a precise prediction of the PBH spectrum impossible
with perturbative methods. It is nevertheless interesting to note that even for such small values of
β (which, in particular, do not produce excessive gravitational waves during preheating [41, 42]) our
results indicate a phase of PBH formation. Increasing the coupling β will typically extend this phase,
leading to more massive PBHs with longer lifetimes. Interestingly, for some parameter choices such
as β = 20, displayed in the right panel, we find indication for scalar perturbations above the PBH
formation threshold for a significant range of e-folds within the perturbative regime.

4 Discussion and outlook

The key result of this work is the extension of the gradient expansion formalism (GEF) to perturbatively
include axion gradients when evaluating the dynamics of axion inflation. This involves applying the
GEF not only to the 2-point functions but also to higher p-point functions, resulting in an expansion
in (i) the number of derivatives n acting on the gauge fields in the 2-point function as in the original
GEF, (ii) the order of p of the highest correlation function which is not factorized into lower p-point
functions and (iii) the number np of derivatives in those p-point functions. Here we consider the leading
order correction due to axion gradients, which requires p = 3 and n3 = nB = 1.

This captures several important aspects of the dynamics of the system. For very small values of the
expansion parameter Rχ we recover the results of the homogeneous GEF approximation (i.e. assuming
the axion field to be perfectly homogeneous but allowing for gradients in the gauge fields) which in
this regime agree with the lattice results capturing the full non-linear dynamics. For Rχ ≳ 1%, the
homogeneous GEF results and the lattice results start to diverge, with our perturbative expansion
recovering the lattice results. For Rχ ≳ 5% the leading order corrections included here no longer suffice
to accurately track the system, though given the smallness of Rχ a systematic inclusion of higher order
terms might conceivably achieve this. We see no fundamental obstruction to this in this regime. In
particular, the number of the 3-point functions scales as n3

B (or milder by using e.g. the integration
by parts) and this eventually limits the inclusion of higher order terms. However, this happens only
when nB is sufficiently large and the computational time does not change drastically by a mild increase
of nB (note that the number of the 2-point functions we numerically follow is ∼ 750 for our choice
of nmax = 250). Finally, for Rχ ≳ 0.5 perturbativity is violated and a full lattice simulation seems
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unavoidable. Our method allows to very efficiently identify the regions and provide accurate initial
conditions for them, thereby enabling future lattice simulations to focus their computational power on
these non-perturbative regimes.

An accurate calculation of the strong backreaction regime in axion inflation is crucial to exploit its
rich phenomenology and conclusively test this inflation model. This includes the remaining duration of
inflation once the system enters the strong backreaction regime (see Ref. [35]), the magnitude of peaks
in the scalar power spectrum as well their position with regards to the end of inflation which are crucial
to determine if a sizable amount of primordial black hole are formed and their mass distribution (see
Ref. [5]) as well as the anisotropic component of the gauge field energy momentum tensor which will
determine the gravitational wave spectrum (see Ref. [18]). Such results will need to be contrasted with
model constraints coming from the gravitational wave production in the preheating era [41, 42]. As-
suming a simple shape of the scalar potential throughout the inflation and preheating era, these impose
stringent bounds on the axion gauge field coupling, which however still allow for an inflationary phase
within the strong backreaction regime. Currently, only costly lattice simulations can give quantitative
answers to all these questions.

The method proposed here provides a first step towards an efficient way of studying these questions
across the parameter space of axion inflation. Several extensions of the scheme proposed here deserve
further study, e.g. the inclusion of higher order p-point functions and/or derivatives therein as well as
including a correction algorithm as proposed in [34]. We hope that this work will trigger some of these
developments.
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A Equations of motion for 3-point functions

The main goal of this paper is to extend the GEF and include the axion inhomogeneity χ(t, x⃗). Once
we include χ, the EOMs become non-linear in terms of the inhomogeneous quantities, χ, E⃗ and B⃗. As
a result, the EOMs of the electromagnetic 2-point functions no longer form a closed system and we
need to include the evolution of the 3-point functions. The EOM of the 3-point functions then depends
on 4-point functions and a similar structure persists for higher-point functions. To truncate this tower
of p-point functions, we factorize the 4-point functions as products of the 2-point functions. Moreover,
for simplicity, we include the 3-point functions with only up to one spatial derivative in the full system.
The latter approximation is expected to be valid when the axion gradient energy is suppressed, and
to check the quality of our approximation, we compute the axion gradient energy by treating it as a
perturbation and monitor its size.

In the following, we list the time evolution equations of the 2-point and 3-point functions that we
need in our numerical computation. These are derived by the repeated use of Eqs. (2.4)–(2.6). In this
appendix we use the following notation for 3-point functions in the GEF,

B(2l;n,m)
f ;X =

1

an+m+2l

〈
∇2lf(∇⃗×)nX⃗ · (∇⃗×)mX⃗

〉
, B(2l;n,m)

f ;XY = − 1

an+m+2l

〈
∇2lf(∇⃗×)nX⃗ · (∇⃗×)mY⃗

〉
,

(A.1)

with X,Y = {E,B} and f = {χ, χ̇}. These are related to the simplified notation used in the main text
(which does not include axion gradients) as

B(n)
f ;E = B(0;n,0)

f ;E , B(n)
f ;B = B(0;n,0)

f ;B , B(0)
f ;EB = B(0;0,0)

f ;EB , B(1,0)
f ;EB = B(0;1,0)

f ;EB , B(0,1)
f ;EB = B(0;0,1)

f ;EB . (A.2)

Notice that

B(2l;n,m)
f ;E = B(2l;m,n)

f ;E , B(2l;n,m)
f ;B = B(2l;m,n)

f ;B , (A.3)

by definition, but in general

B(2l;n,m)
f ;EB ̸= B(2l;m,n)

f ;EB , (A.4)

for n ̸= m.

A.1 Equations of motion up to one spatial derivative

As we stated above, we include the 3-point functions with only up to one spatial derivative. With this
in mind, the electromagnetic 2-point functions evolve as

Ṗ(n)
E + (n+ 4)HP(n)

E + 2P(n+1)
EB − 2β

MP

(
ϕ̇P(n)

EB + B(0;n,0)
χ̇;EB

)
+

2β

MP

(
B(0;n+1,0)
χ;E − B(0;n,1)

χ;E

)
=

[
Ṗ(n)
E

]
b
,

Ṗ(n)
B + (n+ 4)HP(n)

B − 2P(n+1)
EB =

[
Ṗ(n)
B

]
b
, (A.5)

Ṗ(n)
EB + (n+ 4)HP(n)

EB − P(n+1)
E + P(n+1)

B − β

MP

(
ϕ̇P(n)

B + B(0;n,0)
χ̇;B

)
− β

MP

(
B(0;1,n)
χ;EB − B(0;0,n+1)

χ;EB

)
=

[
Ṗ(n)
EB

]
b
,

where it is understood that

B(2l;n,m)
f ;XY = 0, for n+m+ 2l > 1 , (A.6)
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in these equations. The axion 2-point functions with no spatial derivatives are given by

Ṗ(0)
χ − 2P(0)

χχ̇ = 0 ,

Ṗ(0)
χχ̇ + 3HP(0)

χχ̇ +m2
ϕP(0)

χ +
β

MP
B(0;0,0)
χ;EB − P(0)

χ̇ = 0 ,

Ṗ(0)
χ̇ + 6HP(0)

χ̇ + 2m2
ϕP

(0)
χχ̇ +

2β

MP
B(0;0,0)
χ̇;EB = 0 . (A.7)

The time evolution equations of the 3-point functions are given as follows. For (2l;n,m) = (0; 0, 0), we
obtain

Ḃ(0;0,0)
χ;E + 4HB(0;0,0)

χ;E + 2B(0;0,1)
χ;EB − 2β

MP

(
ϕ̇B(0;0,0)

χ;EB + P(0)
χχ̇P

(0)
EB

)
− B(0;0,0)

χ̇;E = 0 ,

Ḃ(0;0,0)
χ;B + 4HB(0;0,0)

χ;B − 2B(0;1,0)
χ;EB − B(0;0,0)

χ̇;B = 0 ,

Ḃ(0;0,0)
χ;EB + 4HB(0;0,0)

χ;EB − B(0;1,0)
χ;E + B(0;1,0)

χ;B − β

MP

(
ϕ̇B(0;0,0)

χ;B + P(0)
χχ̇P

(0)
B

)
− B(0;0,0)

χ̇;EB = 0 , (A.8)

and

Ḃ(0;0,0)
χ̇;E + 7HB(0;0,0)

χ̇;E +m2
ϕB

(0;0,0)
χ;E + 2B(0;0,1)

χ̇;EB − 2β

MP

(
ϕ̇B(0;0,0)

χ̇;EB + P(0)
χ̇ P(0)

EB

)
+

2β

3MP
P(0)
EBP

(0)
E = 0 ,

Ḃ(0;0,0)
χ̇;B + 7HB(0;0,0)

χ̇;B +m2
ϕB

(0;0,0)
χ;B − 2B(0;1,0)

χ̇;EB +
2β

3MP
P(0)
EBP

(0)
B = 0 ,

Ḃ(0;0,0)
χ̇;EB + 7HB(0;0,0)

χ̇;EB +m2
ϕB

(0;0,0)
χ;EB − B(0;1,0)

χ̇;E + B(0;1,0)
χ̇;B

− β

MP

(
ϕ̇B(0;0,0)

χ̇;B + P(0)
χ̇ P(0)

B

)
+

β

3MP

[(
P(0)
EB

)2
+ P(0)

E P(0)
B

]
= 0 . (A.9)

Notice, in particular, that the equations contain the products of the electromagnetic 2-point functions.
This is a result of the factorization of the 4-point functions. Assuming the isotropy and Gaussianity of
the electromagnetic fields, we can factorize e.g.〈

(E⃗ · B⃗)2
〉
≃ 4

3

(
P(0)
EB

)2
+

1

3
P(0)
E P(0)

B , (A.10)

and so on. For (2l;n,m) = (0; 1, 0), (0; 0, 1), we obtain

Ḃ(0;1,0)
χ;E + 5HB(0;1,0)

χ;E − βϕ̇

MP

(
B(0;1,0)
χ;EB + B(0;0,1)

χ;EB

)
− 2β

MP
P(0)
χχ̇P

(1)
EB − B(0;1,0)

χ̇;E = 0 ,

Ḃ(0;1,0)
χ;B + 5HB(0;1,0)

χ;B − B(0;1,0)
χ̇;B = 0 ,

Ḃ(0;1,0)
χ;EB + 5HB(0;1,0)

χ;EB − β

MP

(
ϕ̇B(0;1,0)

χ;B + P(0)
χχ̇P

(1)
B

)
− B(0;1,0)

χ̇;EB = 0 ,

Ḃ(0;0,1)
χ;EB + 5HB(0;0,1)

χ;EB − β

MP

(
ϕ̇B(0;1,0)

χ;B + P(0)
χχ̇P

(1)
B

)
− B(0;0,1)

χ̇;EB = 0 , (A.11)
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and

Ḃ(0;1,0)
χ̇;E + 8HB(0;1,0)

χ̇;E +m2
ϕB

(0;1,0)
χ;E

− β

MP

(
ϕ̇
(
B(0;1,0)
χ̇;EB + B(0;0,1)

χ̇;EB

)
+ 2P(0)

χ̇ P(1)
EB

)
+

β

3MP

(
P(0)
EBP

(1)
E + P(0)

E P(1)
EB

)
= 0 ,

Ḃ(0;1,0)
χ̇;B + 8HB(0;1,0)

χ̇;B +m2
ϕB

(0;1,0)
χ;B +

β

3MP

(
P(0)
B P(1)

EB + P(0)
EBP

(1)
B

)
= 0 ,

Ḃ(0;1,0)
χ̇;EB + 8HB(0;1,0)

χ̇;EB +m2
ϕB

(0;1,0)
χ;EB − β

MP

(
ϕ̇B(0;1,0)

χ̇;B + P(0)
χ̇ P(1)

B

)
+

β

3MP

(
P(0)
B P(1)

E + P(0)
EBP

(1)
EB

)
= 0 ,

Ḃ(0;0,1)
χ̇;EB + 8HB(0;0,1)

χ̇;EB +m2
ϕB

(0;0,1)
χ;EB − β

MP

(
ϕ̇B(0;1,0)

χ̇;B + P(0)
χ̇ P(1)

B

)
+

β

3MP

(
P(0)
E P(1)

B + P(0)
EBP

(1)
EB

)
= 0 .

(A.12)

Finally, the background EOM is given by

0 = ϕ̈+ 3Hϕ̇+m2
ϕϕ+

β

MP
P(0)
EB ,

H2 =
1

6M2
P

[
ϕ̇2 + P(0)

χ̇ +m2
ϕ

(
ϕ2 + P(0)

χ

)
+ P(0)

E + P(0)
B

]
,

Ḣ = − 1

6M2
P

[
3ϕ̇2 + 3P(0)

χ̇ + 2
(
P(0)
E + P(0)

B

)]
. (A.13)

These equations are consistent, even after our approximations, in the sense that we can derive the last
equation from the others.

A.2 Equations of motion with two spatial derivatives

To monitor the size of the axion inhomogeneity, we follow the time evolution of the axion gradient

energy, i.e., P(2)
χ . For this purpose, we need to follow some of the 3-point functions with two spatial

derivatives. We treat these quantities as perturbations, by treating the quantities with only up to one
spatial derivative as the source term and ignoring the backreaction of the axion gradient energy. The
relevant equations are given by

Ṗ(2)
χ + 2HP(2)

χ − 2P(2)
χχ̇ = 0 ,

Ṗ(2)
χχ̇ + 5HP(2)

χχ̇ +m2
ϕP(2)

χ +
β

MP
B(2;0,0)
χ;EB − P(2)

χ̇ = 0 ,

Ṗ(2)
χ̇ + 8HP(2)

χ̇ + 2m2
ϕP

(2)
χχ̇ +

2β

MP
B(2;0,0)
χ̇;EB = 0 . (A.14)

Obviously we need to compute B(2;0,0)
f ;EB . For this, it is enough to consider only the following equations:

Ḃ(2;0,0)
χ;B + 6HB(2;0,0)

χ;B − B(2;0,0)
χ̇;B = 0 ,

Ḃ(2;0,0)
χ;EB + 6HB(2;0,0)

χ;EB − β

MP

(
ϕ̇B(2;0,0)

χ;B + P(2)
χχ̇P

(0)
B

)
− B(2;0,0)

χ̇;EB = 0 , (A.15)
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and

Ḃ(2;0,0)
χ̇;B + 9HB(2;0,0)

χ̇;B +m2
ϕB

(2;0,0)
χ;B − 2β

3MP

(
P(0)
EBP

(2)
B + P(0)

B P(2)
EB − P(1)

EBP
(1)
B

)
= 0 ,

Ḃ(2;0,0)
χ̇;EB + 9HB(2;0,0)

χ̇;EB +m2
ϕB

(2;0,0)
χ;EB − β

MP

(
ϕ̇B(2;0,0)

χ̇;B + P(2)
χ̇ P(0)

B

)
(A.16)

− β

3MP

[
P(0)
B P(2)

E + P(0)
E P(2)

B + 2P(0)
EBP

(2)
EB − P(1)

B P(1)
E −

(
P(1)
EB

)2
− β2

3M2
P

P(2)
χ

(
P(0)
B

)2
]
= 0 ,

where we used the factorization〈
∂i(E⃗ · B⃗)∂i(X⃗ · Y⃗ )

〉
≃ 1

3

(〈
E⃗(1) · X⃗(1)

〉
+

〈
(∇⃗ · E⃗)(∇⃗ · X⃗)

〉)〈
B⃗ · Y⃗

〉
− 1

6

〈
E⃗(1) · Y⃗

〉〈
B⃗ · X⃗(1)

〉
+ (X ↔ Y ) + (E ↔ B) + (X ↔ Y,E ↔ B) . (A.17)

Here we use the short-hand notation X⃗(n) = (∇⃗×)nX⃗. These are closed by themselves, and hence we

do not need to compute e.g. B(2;0,0)
f ;E nor B(0;2,0)

f ;EB .

A.3 Numerical implementation

The system of the equations described above has to be solved numerically. It is then convenient to
apply the following variable re-definition

ϕ̄ =
ϕ

Mp
, P̄(n)

X =
P(n)
X

H4
0 (kh/a)

n , t̄ = H0t , H̄ =
H

H0
, m̄ =

m

H0
,
k̄h
ā

=
kh
aH0

,

P̄(n)
χ =

P(n)
χ

M2
p (kh/a)

n , P̄(n)
χ̇ =

P(n)
χ̇

M2
pH

2
0 (kh/a)

n , P̄(n)
χχ̇ =

P(n)
χχ̇

M2
pH0 (kh/a)

n ,

B̄(2l;n,m)
χ;X =

B(2l;n,m)
χ;X

MpH4
0 (kh/a)

2l+n+m
, B̄(2l;n,m)

χ̇;X =
B(2l;n,m)
χ̇;X

MpH5
0 (kh/a)

2l+n+m
,

(A.18)

where H0 is the Hubble parameter at the beginning of the simulation. The normalization of the
power spectra and bispectra by respective powers of (kh/a) is found to be crucial to numerically evolve
the tower of the 2-point functions of Eqs. (2.29)–(2.31) to high n. Indeed, we empirically know that
(kh/aH0) ∼ O(0.01) at the end of inflation, and hence a different normalization (e.g. by H0 instead
of kh/a) can cause an extremely tiny numerical value for high enough n. Our normalization ensures
that each term of the gradient expansion of a given p-point function is of the same order, resulting in
a more numerically stable system.

We use the multistep Adams method of the GNU scientific library implemented in C++ which
integrates the full system in O(1 s). For all plots in this paper we take the initial conditions and
parameters following Ref. [30], i.e.,

ϕ = −15.55MP , ϕ̇ =

√
2

3
mϕMP , a = 1 , P(n)

X = 0 , B(2l;n,m)
f ;X = 0 , (A.19)

at the beginning of our simulation, with the reduced Planck mass Mp = 2.435 × 1018GeV. We take
the axion mass as

mϕ

MP
= 6.16× 10−6 , (A.20)
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Figure 4: For constant values of ξ the truncation relation (2.32) holds asymptotically for large n, see Eq. (B.6).
The left (right) panel depicts the exemplary case of ξ = 4 (ξ = 6), the horizontal line indicates the truncation
relation assumed in the GEF in [30].

following Ref. [35]. The initial Hubble parameter H0 is computed as

H0 =

√
ϕ̇2 +m2

ϕϕ
2

6M2
P

. (A.21)

Throughout this paper, we follow the electromagnetic 2-point function up to n = nmax = 250, and
express those with n = nmax + 1 by the truncation relation.

B Truncation relation

One of the key approximations in the gradient expansion formalism is the truncation of the tower of
equations (2.10)-(2.12) through the relation (2.32). In this appendix we demonstrate that this relation
holds asymptotically for large n and approximately constant ξ. In contrary to the derivation given in
Ref. [30], this does not rely on approximating the gauge field spectra by a power law around kh, and
explains why values of n = O(100) are required to obtain accurate results in the GEF. It also illustrates
how when ξ changes rapidly, imposing this truncation relation introduces sizable errors, as observed
also in Ref. [34]. Finally, we will introduce an improved truncation relation which mitigates some of
these effects. For simplicity, the discussion in this appendix is focused on the application of the GEF
assuming a homogeneous axion field, as in Ref. [30]. The arguments can immediately be extended to
include axion gradients as described in Sec. 2.

Let us begin by studying the truncation relation assuming constant ξ. In the slow-roll approximation
with constant ξ the gauge field Ak(τ) mode function can be determined analytically by solving(

∂2
x + 1± 2ξ

x

)
ω∓ = 0 , (B.1)

where we defined ω± =
√
2kA±

k (τ) and x = −kτ , see Eq. (2.27). Matching to the Bunch-Davies vacuum
fixes

A+
k (τ) =

1√
2k

eπξ/2W−iξ,1/2(2ikτ) . (B.2)
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The mode A−
k does not experience a tachyonic enhancement and can thus be safely neglected. A

reasonable approximation of the mode function A+
k in the IR regime (x → 0), which dominates the

contribution to the n-point functions, is given by

A+
k (τ) ∼

1√
2k

eπξ/2

Γ(1 + iξ)
e−ξ

√
−kτ . (B.3)

For the n-point function of the E-field, see Eq. (2.24), the relevant quantity is∣∣∣∣dA+
k (τ)

dτ

∣∣∣∣ = ∣∣∣∣ 1

Γ(1 + iξ)

∣∣∣∣ 1

2
√
2

ξeπξ/2√−τ
e−ξ

√
−kτ . (B.4)

The integral of Eq. (2.24) can then be done analytically and evaluates to

P(n)
E =

4−4−nH4+n

2π2|Γ(1 + iξ)|2 e
πξξ−2(2+n)

(
Γ(6 + 2n)− Γ(6 + 2n, 2ξ

√
−kτ)

)
. (B.5)

The ratio of P(n+2)
E /P(n)

E is thus

P(n+2)
E

P(n)
E

a2

k2h
=

P̄(n+2)
E

P̄(n)
E

=
1

(2ξ)6
Γ(10 + 2n)− Γ(10 + 2n, 2

√
2ξ3/2)

Γ(6 + 2n)− Γ(6 + 2n, 2
√
2ξ3/2)

, (B.6)

where as in the main text, we have introduced the notation P̄(n)
X ≡ P(n)

X /H4
0 (kh/a)

n. For large n, and
any ξ, the ratio of Eq. (B.6) asymptotically reaches unity,

limn→∞
P̄(n+2)

E

P̄(n)
E

= 1 , (B.7)

with a deviation of 5% for n = 45 (n = 55) for ξ = 4 (ξ = 6), see Fig. 4. This, on the one hand
confirms the truncation relation chosen in [30] in the constant ξ limit, while on the other hand explains
why large values of n are required in order for this truncation relation to become relatively accurate.

Similar conclusion can also be drawn for P̄(n)
B and P̄(n)

EB.
The truncation relation remains a good approximation for slowly varying ξ, as can be seen in

Fig. 5 which displays the result of a fully numerical solution of the GEF. In particular, we show the

ratio of P̄(n+1)
E /P̄(n−1)

E for fixed e-fold N and β = 15. The left panel shows an example from the
weak backreaction regime, where ξ changes only slowly and hence the truncation relation is relatively
accurate at large n. On the other hand, the right panel shows the situation when the inflaton field
velocity begins to undergo a more rapid change. In this case, we observe that the truncation relation
remains a good approximation for a large range of n ≳ 50, although at n ∼ nmax = 250 the onset of a
violation of this relation can be observed.

This violation becomes more dramatic when inflaton velocity changes, and in particular drops,

rapidly. This is displayed by the dotted black curve in Fig. 6 which shows P̄(2n)
E at a slightly later

point in time, N = 62 for different values of n. For 50 ≲ 2n ≲ 150 we observe a plateau in P̄(2n)
E ,

indicating that the truncation relation (2.32) is well satisfied. However, at larger values of n we see
very large deviations from the truncation relation, propagating over time down to lower values of n.
If left unchecked, this will finally affect the n = 0 components of the GEF tower. Similar effects were
recently observed in Ref. [34], and similarly to those results we find that these difficulties occur when
ξ drops rapidly and kh features a plateau, see Eq. (2.28), and the boundary terms are zero.
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when the backreaction is weak (left panel) and mild (right panel). The horizontal line indicates the truncation
relation assumed in the GEF.
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Figure 6: GEF tower for rapidly changing ξ using the truncation relation (2.32) (dotted black) and the improved
truncation relation (2.33) with involving the highest four (solid blue) and ten (dashed red) even powers of the
GEF tower.

To counter this issue, we propose the improved truncation relation (2.33). Averaging over several

P̄(n+1−2l)
E to determine the truncation relation for P̄(n+1)

E ,

P̄(nmax+1)
X =

L∑
l=1

(−1)l−1

(
L
l

)
P̄(nmax+1−2l)
X

gives a more robust procedure, as shown by the colored curves in Fig. 6. Compared to the original
truncation relation (dotted black), we see that the striking and unphysical feature (‘bump’) at large n
has largely disappeared, at no additional computational cost.

Nevertheless, smaller unphysical features (‘wiggles’) remain, which over time can numerically desta-

bilize the system (see right panel). In particular, P(2n)
E should always be positive, while the ‘wiggles’

contain negative valued P(2n)
E . Similar observations hold for the other 2-point functions P̄(n)

B and P̄(n)
EB

as well as for odd powers of gradients (although in the latter two cases positivity is not necessarily
required). We were not able to conclusively determine the origin of these ‘wiggles’ nor find a strategy to
remove them. To illustrate their relevance, the grey shaded regions Fig. 7 indicate the regions in which
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Figure 7: Evolution of ξ for β = 15 (left) and β = 22 (right), assuming a homogeneous axion field. The gray regions
indicate a violation of the truncation relation above 10%, see text for details.

(even with the use of Eq. (2.33) with L = 10) we obtain |P̄(2n+2)
X /P̄(2n)

X − 1| > 0.1, i.e. a significant
violation of the truncation relation, for some values of 50 ≤ n ≤ 75 with X = {E,B}. As can be
seen, this typically happens after a sharp drop in ξ. For a milder evolution of ξ, e.g. for β = 18 or
20, this issue does not arise. In this context, it may be interesting to further study the proposal given
in Ref. [34] based on re-initializing the GEF through the mode-by-mode method (which in turn only
requires the input of the n = 0 mode). Since it takes some time for these unphysical effects to propagate
to the n = 0 mode, this procedure might further improve the situation. To our understanding, this
method was initially proposed to remove the ‘bump’ feature, which Eq. (2.33) achieves more efficiently.
However, a similar method may prove useful to address the remaining issue of the ‘wiggles’.

So far, the discussion in this appendix has focused on the homogeneous axion case. Despite the
difficulties mentioned above, in practice, for the quadratic scalar potential studied here, the numerical
issues in the higher orders of the GEF tower do not propagate to the lowest orders for any coupling
β considered here before the end of inflation (see however [34] for different background dynamics).
Moreover, including the axion gradients, the remaining difficulties with maintaining a stable truncation
relation only occur in the non-perturbative regime, i.e. for Rχ > 0.5, for all values of β considered, and
do hence not seem to pose a problem within the region of validity of the perturbative method proposed
here. In this sense, the methods employed here ensure sufficient stability of the GEF scheme to study
the perturbative regime of axion gradients which is the main goal of this work.

In summary, this appendix clarifies the origin of the truncation relation of the GEF as the asymp-
totic limit of the GEF tower for large n and approximately constant ξ. This sheds some light on the
limitations of the GEF formalism for rapidly varying ξ, and prompts the introduction of an improved
truncation relation. This increases the stability and range of validity of the GEF approach. We point
out a remaining instability which however in practice does not impact the results of this work as it
does not occur within the perturbative regime of axion inhomogeneities.
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