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Unification of Gravity and Internal Interactions

Spyros Konitopoulos, Danai Roumelioti,* and George Zoupanos

In the gauge theoretic approach of gravity, general relativity is described by
gauging the symmetry of the tangent manifold in four dimensions. Usually the
dimension of the tangent space is considered to be equal to the dimension of
the curved manifold. However, the tangent group of a manifold of dimension
d is not necessarily SOd. It has been suggested earlier that by gauging an
enlarged symmetry of the tangent space in four dimensions one could unify
gravity with internal interactions. Here, such a unified model is considered by
gauging the SO(1,17) as the extended Lorentz group overcoming in this way
some difficulties of the previous attempts of similar unification and eventually
obtained the SO10 GUT, supplemented by an SU2 × SU2 global symmetry.

1. Introduction

An ultimate aim of many theoretical physicists is the existence
of a unification picture in which all known fundamental interac-
tions are involved. A huge amount of serious research activity has
been carried out, including works that elaborate the very interest-
ing notion of extra dimensions. The earliest unification attempts
of Kaluza and Klein[1,2] included gravity and electromagnetism,
which were the established interactions at that time. The pro-
posal was to reduce a pure gravity theory from five dimensions
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to four, which led to a U1 gauge the-
ory, identified with electromagnetism,
coupled to gravity. A revival of interest
in the Kaluza-Klein scheme started af-
ter realizing[3–5] that non-abelian gauge
groups appear naturally when one fur-
ther extends the spacetime dimensions.
With the assumption that the total space-
time manifold can be written as a di-
rect product MD = M4 × B, where B is a
compact Riemannian space with a non-
abelian isometry group S, dimensional
reduction of the theory leads to gravity
coupled to a Yang-Mills theory with a
gauge group containing S and scalars in

four dimensions. The main advantage of this picture is the ge-
ometrical unification of gravity with the other interactions and
also the explanation of gauge symmetries. There exist serious
problems though in the Kaluza-Klein framework, e.g., there is no
classical ground state corresponding to the direct product struc-
ture of MD. However, the most serious obstacle in obtaining a
realistic model of the low-energy interactions seems to be that
after adding fermions to the original action it is impossible to
obtain chiral fermions in four dimensions.[6] Eventually, if one
adds suitable matter fields to the original gravity action in partic-
ular Yang-Mills then most of the serious problems are resolved.
Therefore one is led to introduce Yang-Mills fields in higher di-
mensions. In case the Yang-Mills are part of a GrandUnified The-
ory (GUT) together with a Dirac one,[7,8] the restriction to obtain
chiral fermions in four dimensions is limited to the requirement
that the total dimension of spacetime should be 4k + 2 (see e.g.,
ref. [9]). During the last decades the Superstring theories (see
e.g., refs. [10–12]) dominated the research on extra dimensions
consisting a solid framework. In particular the heterotic string
theory[13] (defined in ten dimensions) was the most promising,
since potentially it admits experimental compatibility, due to the
fact that the Standard Model (SM) gauge group can be accom-
modated into those of GUTs that emerge after the dimensional
reduction of the initial E8 × E8. It is worth noting that even be-
fore the formulation of superstring theories, an alternative frame-
workwas developed that focused on the dimensional reduction of
higher-dimensional gauge theories. This provided another venue
for exploring the unification of fundamental interactions.[9,14–22]

The endeavor to unify fundamental interactions, which shared
common objectives with the superstring theories, was first in-
vestigated by Forgacs-Manton (F-M) and Scherk-Schwartz (S-S).
F-M explored the concept of Coset Space Dimensional Reduction
(CSDR),[14] which can lead naturally to chiral fermions while S-
S focused on the group manifold reduction,[17] which does not
admit chiral fermions. Recent attempts towards realistic mod-
els that can be confronted with experiment can be found in
refs. [22–24].
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On the gravity side diffeomorphism-invariant gravity theory
is obviously invariant with respect to transformations whose pa-
rameters are functions of spacetime, just as in the local gauge the-
ories. Then, naturally, it has been long believed that general rela-
tivity (GR) can be formulated as a gauge theory[25–27] with the spin
connection as the corresponding gauge field which would enter
in the action through the corresponding field strength. This idea
was used heavily in supergravity (see e.g., ref. [28]) while recently
it was employed in non-commutative gravity too.[29–31] Along the
same lines rather recently was suggested a new idea for unifica-
tion of all known interactions in four dimensions. Usually the
dimension of the tangent space is taken to be equal to the di-
mension of the curved manifold. However, the tangent group of
amanifold of dimension d is not necessarily SOd.

[32] It is possible
to embed the coordinate tangent space in a higher-dimensional
space, and therefore promote the gauge symmetry to a higher
isometry group. In refs. [33–39], the authors have considered
higher-dimensional tangent spaces in 4−dimensional spacetime
and managed in this way to achieve unification of internal in-
teractions with gravity. The geometric unification of gravity and
gauge internal interactions in refs. [38, 39] is realized by writ-
ing the action of the full theory in terms only of the curvature
invariants of the tangent group, which contain the Yang-Mills ac-
tions corresponding to the gauge groups describing in this way
together the GR and the internal GUT in a unified manner. The
best model found so far that unifies gravity and a chiral GUT
is based on SO(1,13) in a 14-dimensional tangent space leading to
unification of gravity with SO10. However as a drawback was con-
sidered the fact that fermions appear in double representations of
the spinor 16 of SO10, which only means that fermions appear in
even families though.[40] Trying to resolve this problem by impos-
ing Majorana condition in addition to Weyl in refs. [35, 36] was
proposed instead as a unifying group the SO(3,11), which leads to
the unavoidable appearance of ghosts due to the more than one
time-like coordinates of the Lorentz group. Here instead we pro-
pose as a unifying group the SO(1,17), in which one can impose
both Weyl and Majorana conditions and the final group obtained
in four dimensions is the ordinary SO10 GUT,

[8] followed by a
global SU2 × SU2 symmetry.

2. The SO(1,17) as Unifying Group

2.1. Geometrical Construction

Starting with SO(1,17) as the initial gauge symmetry group, we
wish to produce symmetry breakings that will lead to the prod-
uct of two symmetries, one describing gravity as a gauge the-
ory, and the other describing the internal interactions. These
breakings can occur via a SSB mechanism, or by imposing con-
straints to the theory. In order for the presentation of the model
to be self-contained and amplify the latter (let’s call it “soldering
mechanism”) over the well-known SSB mechanism, here we lay
out and follow the analysis of refs. [38, 39], implemented for a
18−dimensional extended tangent space. The breakings of the
present model via the usual Higgs mechanism is also described
in Subsection 2.3.
At every point of a curved 4−dimensional Lorenzian metric

space, we erect an 18−dimensional extended tangent space, fol-
lowing a construction analogous to refs. [38, 39]. The extended

tangent space is spanned by the vectors vA, where A = 0,… , 17
in such a way that the coordinate tangent space, spanned by the
coordinate vectors e𝜇 ≡ 𝜕∕𝜕x𝜇 , 𝜇 = 0,… , 3, is fully embedded.
Having chosen SO(1,17) as the structure group of the extended
tangent homomorphisms, the scalar product of the basis vectors
{vA} should be orthonormal with respect to the extended, 18−dim
Minkowskian metric, 𝜂AB = diag(−1,+1,… ,+1),

vA ⋅ vB = 𝜂AB. (1)

It is clear that the orthogonality of the basis vectors {vA} is pre-
served under the extended SO(1,17) Lorentz transformations.
It will prove convenient to separate the tangent space spanned

by the basis vectors {vA} into two orthogonal subspaces. The first
is identified with the coordinate tangent space and spanned by
the coordinate basis vectors {e𝜇}, which are orthonormal with re-
spect to the metric of the base manifold,

e𝜇 ⋅ e𝜈 = g𝜇𝜈(x). (2)

The second, that will be called internal tangent space, will be
the orthogonal complement to the first and spanned by the set of
14 basis vectors {ni}, where i = 4,… , 17, which are orthonormal
with respect to the Euclidean metric,

ni ⋅ nj = 𝛿ij. (3)

The projections of the extended tangent space basis vectors,
{vA}, onto the embedded coordinate tangent space basis vectors
{e𝜇}, are performed via the soldering forms eA

𝜇
,

e𝜇 = vAe
A
𝜇. (4)

Then, with the aid of (1) one obtains

eA𝜇 = vA ⋅ e𝜇. (5)

Multiplying both sides of (5) with g𝜇𝜈 yields,

eA
𝜇 = vA ⋅ e𝜇 , (6)

where the vA are now projected onto the co-tangent basis, {e𝜇} ≡
{dx𝜇}. Naturally, the soldering forms for which both indices are
coordinate, we have, e𝜈

𝜇 = 𝛿𝜈
𝜇.

The projections of the extended tangent space basis vectors
{vA}, onto the basis vectors {ni} are performed via nAi,

ni = vAn
A
i, (7)

which with the aid of (3) lead to

nAi = vA ⋅ ni. (8)

By multiplying both sides of (8) with 𝛿ij one obtains,

nA
i = vA ⋅ ni. (9)

Hence, a vector vA can be decomposed into the basis vectors
e𝜇 and ni as

vA = eA
𝜇e𝜇 + nA

ini. (10)
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Using (2) and (3) we obtain expressions for the base manifold
metric exclusively in terms of the soldering forms eA𝜇 ,

g𝜇𝜈 = 𝜂ABe
A
𝜇e

B
𝜈 = eA𝜇eA𝜈 , (11)

and, respectively, for the Euclidean metric exclusively in terms of
the forms nAi,

𝛿ij = 𝜂ABn
A
in

B
j = nAinAj. (12)

As remarked in ref. [38], attention should be paid to the fact
that e 𝜇

A is not inverse to eA
𝜇
when the dimensions of the tangent

space and the base manifold do not match1. In other words, al-
though it is obvious from (11) that

eA
𝜇eA𝜈 = 𝛿𝜇

𝜈
, (13)

when contracting with respect to the tangent indices, it is also
clear from (1) and (10), that

eA
𝜇eB𝜇 = 𝛿AB − nA

jnBj, (14)

given the orthonormality relations

nAj e
𝜇

A = 0, nAj n
i
A = 𝛿ij . (15)

Parallel transport is defined via the action of affine and spin
connections, on the coordinate and extended tangent space basis
vectors, respectively,

∇𝜈e𝜇 = Γ𝜆𝜈𝜇e𝜆, ∇𝜈vA = −𝜔𝜈ABvB, (16)

where ∇𝜈 is the covariant derivative along the direction of the
tangent basis vector e𝜈 .
By defining the parallel transport of the coordinate basis vec-

tors as above, a constraint has actually been imposed to the ge-
ometrical construction, as the most general form of it would be
∇𝜈e𝜇 = Γ𝜆𝜈𝜇e𝜆 + Bi

𝜈𝜇ni. The imposed constraint,Bi
𝜈𝜇 = 0, causes

the breaking

SO(1,17) → SO(1,3) × SO14. (17)

Having imposed this constraint, can be shown[39] that the co-
variant derivative of the internal basis vectors is also an element
of the internal subspace. Hence we have as well,

∇𝜈ni = −A𝜈i jnj. (18)

The covariant derivative when acting on scalars, naturally coin-
cides with the ordinary derivative2. Therefore, the metricity con-
dition,

∇𝜈𝜂AB = 0, (19)

1 Recalling the definition of eA𝜇 as a projector of 18-dimensional vectors
onto the 4-dimensional tangent space, it is clear that eA

𝜇 cannot be
considered as a reversed projector operator, since a lower dimensional
vector cannot be projected onto a space of higher dimensionality. As
already stated, eA

𝜇 are projections of the vectors vA onto the co-tangent
space {ea}.

2 In the current analysis, tensor components are considered scalar func-
tions. See also ref. [41].

must hold. Following (16), the action of the covariant derivative
operator on a tangent vector V = V𝜇e𝜇 is,

∇𝜈

(
V𝜇e𝜇

)
=

(
𝜕𝜈V

𝜇
)
e𝜇 + V𝜇∇𝜈e𝜇 =

(
𝜕𝜈V

𝜇 + V𝜆Γ𝜇𝜈𝜆
)
e𝜇

=
(
∇𝜈V

)𝜇
e𝜇. (20)

It is convenient to use a different symbol to express the total
action of the covariant derivative on a vector as an action upon its
components3. Guided from the above equation we define,

D𝜈V
𝜇 ≡ (

∇𝜈V
)𝜇 = 𝜕𝜈V

𝜇 + Γ𝜇𝜈𝜆V𝜆. (21)

Similarly, for co-vectorsW = W𝜇dx
𝜇 , we should have,

D𝜈W𝜇 = 𝜕𝜈W𝜇 −W𝜆Γ𝜆𝜈𝜇. (22)

Analogous equations hold for the action of the covariant
derivative on the components of an extended tangent space
spinor, 𝜓 = 𝜓AvA, now with the spin connection performing par-
allel transportation,

D𝜈𝜓
A = 𝜕𝜈𝜓

A − 𝜓B𝜔𝜈B
A, (23)

and for the the action of the covariant derivative on the compo-
nents of coordinate space spinors,

D𝜈X
i = 𝜕𝜈X

i − XjA𝜈j
i. (24)

Simultaneous validity of (1) and (19), implies that the spin con-
nection is antisymmetric under the interchange of its extended
tangent space indices,

𝜔𝜈AB = −𝜔𝜈BA. (25)

Covariant differentiation of (5) and taking into account (16) im-
plies,

𝜕𝜈eA𝜇 = −𝜔𝜈ABeB𝜇 + Γ𝜆𝜇𝜈eA𝜆. (26)

In perfect analogy, covariant differentiation of (8) yields the
equation

𝜕𝜇nAi = −𝜔𝜇ABnBi − A𝜇i
jnAj. (27)

Equation (26) is 4 × 18 × 4 = 288 in number and should be
solved for the affine and spin connection components, in terms
of the given soldering forms. In a torsion-free base manifold, the
affine connection is symmetric over the interchange of its lower
indices,

Γ𝜆𝜇𝜈 = Γ𝜆𝜈𝜇. (28)

3 In general, the∇ operator performs parallel transport in a passive way,
acting on the basis vectors as denoted in (16) and (18), treating the
tensor components as scalar functions. In contrast, theD operator per-
forms parallel transport in an active way, acting as a covariant derivative
upon the tensor components leaving the basis vectors intact, i.e., (21),
(22).
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This means that the number of independent affine connection
components are 4 × 10 = 40 and can be determined separately.
Let us first operate with the covariant derivative ∇𝜆 on (11),

∇𝜆g𝜇𝜈 = 𝜕𝜆g𝜇𝜈 = 𝜕𝜆
(
eA𝜇eA𝜈

)
=
(
𝜕𝜆e

A
𝜇

)
eA𝜈 + eA𝜇𝜕𝜆eA𝜈 . (29)

Then, combining (26) and (29), we obtain

Γ𝜌𝜇𝜆g𝜌𝜈 + Γ𝜌𝜈𝜆g𝜇𝜌 = 𝜕𝜆g𝜇𝜈 , (30)

whichwhen inverted, gives the explicit expression for the torsion-
free Christofell connection in terms of the metric,

Γ𝜆𝜇𝜈 =
1
2
g𝜆𝜌

(
g𝜇𝜌,𝜈 + g𝜌𝜈,𝜇 − g𝜇𝜈,𝜌

)
. (31)

What we have actually done here was to employ 40 out of the
288 equation (26) to fully determine Γ𝜆𝜇𝜈 . Therefore, we are now
left with 248 equations to determine the components of the spin
connection which is antisymmetric over its last two indices (25).
Since the 𝜈 index runs over the four base manifold dimensions,
and the indices A, B over the 18 extended tangent space dimen-
sions, we see that there are 612 components to be determined,
while there are only 248 equations in our disposal. This implies
that we are left with 612 − 248 = 364 undefined spin connec-
tion components, a number whichmatches the SO14 gauge fields
(multiplied by 4).
The above results confirm that the initial group, SO(1,17), is de-

fined to have an inner structure related to the geometry of the
coordinate manifold. Its first four dimensions correspond to the
tangent space of the manifold, while the rest 14 remain unmixed
with them, showing that the initial gauge group has been reduced
to the direct product SO(1,3) × SO14. By the first group, SO(1,3), we
are going to describe the spacetime geometry, while by SO14 the
internal interactions.
The local Lorentz transformation law of a basis vector, vA, is

vA → ṽA = ΛA
BvB, (32)

thus the soldering forms transform covariantly, as

eA
𝜇 → ẽA

𝜇 = ΛA
BeB

𝜇. (33)

Using the local Lorentz transformation, (32), and the parallel
transportation rule, (16), of the basis vectors, we can also show
that

𝜔𝜈A
B → 𝜔̃𝜈A

B =
(
Λ𝜔𝜈Λ−1)

A
B +

(
Λ𝜕𝜈Λ−1)

A
B, (34)

which explicitly shows that the spin connection transforms under
local Lorentz transformations as a Yang-Mills field, with SO(1,17)
in the role of the gauge group.

2.2. Constructing the Total Action

Taking into account the expressions (21) and (22), we can derive
the explicit form for the affine curvature tensor, following the def-
inition,

[D𝜈 , D𝜆]V
𝜇 = V𝜌R𝜇𝜌𝜈𝜆. (35)

Indeed, after some straightforward algebra we obtain,

[D𝜈 , D𝜆]V
𝜇 = V𝜌

(
𝜕𝜈Γ𝜇𝜌𝜆 − 𝜕𝜆Γ𝜇𝜌𝜈 + Γ𝜎𝜌𝜆Γ𝜇𝜎𝜈 − Γ𝜎𝜌𝜈Γ𝜇𝜎𝜆

)
, (36)

thus, it is clear that we can identify the affine curvature tensor,

R𝜇𝜌𝜈𝜆 = 𝜕𝜈Γ𝜇𝜆𝜌 − 𝜕𝜆Γ𝜇𝜈𝜌 + Γ𝜇𝜈𝜎Γ𝜎𝜆𝜌 − Γ𝜇𝜆𝜎Γ𝜎𝜈𝜌. (37)

Similarly, following the definition for the spin curvature ten-
sor,

[D𝜇 , D𝜈 ]𝜓
A = 𝜓BR𝜇𝜈

A
B, (38)

and employing (23) we obtain,

R𝜇𝜈
AB = 𝜕𝜇𝜔𝜈

AB − 𝜕𝜈𝜔𝜇AB + 𝜔𝜇AC𝜔𝜈CB − 𝜔𝜈AC𝜔𝜇CB. (39)

Finally, following the definition for the coordinate curvature
tensor,

[D𝜇 , D𝜈 ]X
i = XjF𝜇𝜈

i
j, (40)

and employing (24) we get,

F𝜇𝜈
ij = 𝜕𝜇A𝜈

ij − 𝜕𝜈A𝜇 ij + A𝜇
i
kA

kj
𝜈
− A𝜈

i
kA𝜇

kj. (41)

Taking the partial derivative 𝜕𝜌 of (26) and substracting the
same result but with the indices 𝜈 and 𝜌 interchanged, we end
up to a relation between the spin and affine curvature tensors,

R𝜇𝜈
AB(𝜔)eB𝜆 = eA𝜌R𝜇𝜈

𝜌
𝜆(Γ). (42)

Following analogous procedure in (27) we end up to a relation
among the spin and coordinate curvature tensors,

nB
iR𝜇𝜈A

B(𝜔) = nA
jF𝜇𝜈j

i(A). (43)

Employing (14), Equation (42) can be rewritten as an expan-
sion on the basis vectors of the two subspaces of the extended
tangent space,

R𝜇𝜈
AB(𝜔) = R𝜇𝜈

AC(𝜔)nC
inBi + R𝜌𝜆𝜇𝜈(Γ)eA𝜌eB𝜆. (44)

Substituting (43) in the equation above, we obtain

R𝜇𝜈
AB(𝜔) = nAin

B
jF𝜇𝜈

ij(A) + eA𝜌e
B𝜆R𝜇𝜈

𝜌
𝜆(Γ). (45)

We see that the spin curvature has been completely decom-
posed into the coordinate and affine curvatures. From this ex-
pression, all the invariants of the theory up to second order will
be produced.
For the first order, the only contraction possible is

R𝜇𝜈
AB(𝜔)eA

𝜇eB
𝜈 = R(Γ), (46)

which produces the Ricci scalar of the theory. The second order
invariants are

R2(Γ), R𝜇𝜈(Γ)R𝜇𝜈(Γ), R𝜇𝜈𝜆𝛿(Γ)R𝜇𝜈𝜆𝛿(Γ), (47)
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which get produced by various combinations of soldering forms
acting on the curvature 2-form. The kinetic terms are going to be
produced by the contraction

g𝜇𝜆g𝜈𝛿R𝜇𝜈
AB(𝜔)R𝜆𝛿AB(𝜔)

= g𝜇𝜆g𝜈𝛿
(
F𝜇𝜈

ij(A)F𝜆𝛿ij(A)
)
+ R𝜇𝜈𝜆𝛿(Γ)R𝜇𝜈𝜆𝛿(Γ). (48)

Now we have produced all the curvature invariants up to sec-
ond order. In the general action, 512−dimensional Dirac spinor
fields also have to be included,

∫ d4x
√
−g𝜓̄ iΓAeA

𝜇D𝜇𝜓 , (49)

where ΓA matrices satisfy the Clifford algebra{
ΓA,ΓB

}
= 2𝜂AB, (50)

and

D𝜇 ≡ 𝜕𝜇 +
1
4
𝜔𝜇

ABSAB, (51)

where SAB = 1
2
[ΓA,ΓB] are the generators of the SO(1,17) algebra.

Hence, the expression of the general action of the theory is

ISO(1,17)
= ∫ d4x

√
−g

[ 1
16𝜋G

R𝜇𝜈
AB(𝜔)eA

𝜇eB
𝜈

+ R𝜇𝜈
ABR𝜆𝛿

CD

×
(
aeA

𝜇eB
𝜈eC

𝜆eD
𝛿 + beA

𝜇eC
𝜈eB

𝜆eD
𝛿 + ceC

𝜇eD
𝜈eA

𝜆eB
𝛿
)

(52)

−1
4
g𝜇𝜆g𝜈𝛿R𝜇𝜈

AB(𝜔)R𝜆𝛿AB(𝜔) + 𝜓̄ iΓAe𝜇AD𝜇𝜓

]
⇒

ISO(1,3)×SO14
= ∫ d4x

√
−g

[ 1
16𝜋G

R(Γ) + aR2(Γ) − bR𝜇𝜈 (Γ)R𝜇𝜈 (Γ)

+(c − 1
4
)R𝜇𝜈𝜆𝛿(Γ)R𝜇𝜈𝜆𝛿(Γ) −

1
4
g𝜇𝜆g𝜈𝛿F𝜇𝜈

ij(A)F𝜆𝛿ij(A)

+𝜓̄SO(1,3)
iΓ𝜇D𝜇𝜓SO(1,3)

+ 𝜓̄SO14
iΓjej𝜇D𝜇𝜓SO14

]
, (53)

where a, b, c are dimensionless constants, and the Weyl repre-
sentation has been chosen for the Gamma matrices. The above
action consists of SO(1,3) and SO14 invariants, as expected. By set-

ting a = b
4
= c − 1

4
, the curvature terms form the integrand of

the Gauss-Bonnet topological invariant, hence they do not con-
tribute to the field equations, avoiding in this way the appearance
of ghosts.[42] By the SO(1,3) part we are able to retrieve Einstein’s
gravity as a gauge theory,[25–27] while by the SO14 we are going to
describe internal interactions.

2.3. Breakings

According to Subsection 2.1, the original gauge symmetry,
SO(1,17), of the theory, is being reduced to SO(1,3) × SO14 by
employing the soldering mechanism presented above, i.e., the
CSO(1,17)

(SO(1,3)) = SO14 remains as the gauge group that will de-
scribe the internal interactions. The same breaking can occur via

Higgs mechanism, by introducing a scalar field in the 170 repre-
sentation4 of SO18,

[45] and with the help of a Lagrange multiplier
we can break the gauge symmetry non-linearly,[31,46]

SO18 → SU2 × SU2 × SO14

170 = (1, 1, 1) + (3, 3, 1) + (2, 2, 14) + (1, 1, 104).
(54)

In order to break further the resulting SO14 gauge symmetry to
a symmetry of amore familiar GUT, such as SO10, we can employ
a second Higgs mechanism by using the 104 representation of
SO14,

[47,48]

SO14 → SU2 × SU2 × SO10

104 = (1, 1, 1) + (3, 3, 1) + (2, 2, 10) + (1, 1, 54).
(55)

Of the rest SU2 × SU2 × SU2 × SU2 symmetry that remains,
one part SU2 × SU2 should be used for describing gauge grav-
ity, while the other SU2 × SU2 should be broken. The irreducible
spinor representation of SO18 is 256, which under SU2 × SU2 ×
SO14, decomposes as

256 = (2, 1, 64) + (1, 2, 6̄4), (56)

while the irreducible spinor representation of SO14 is 64, that un-
der SU2 × SU2 × SO10 decomposes as

64 = (2, 1, 16) + (1, 2, 1̄6). (57)

By introducing further two scalars in the 256 representation
of SO18, when they take VEVs in their (⟨2⟩, 1, 16) and (1, ⟨2⟩, 1̄6)
components of SO14 under the SU2 × SU2 × SO10 decomposi-
tion, the final unbroken gauge symmetry is SO10. The final total
symmetry that we are left with is

[SU2 × SU2]Lorentz × [SU2 × SU2]Global × SO10Gauge group. (58)

3. Weyl and Majorana Spinors

A Dirac spinor, 𝜓 , has 2D∕2 independent components in D
dimensions. The Weyl and Majorana constraints each divide
the number of independent components by 2. The Weyl con-
dition can be imposed only for D even, so a Weyl-Majorana
spinor has 2(D−4)∕2 independent components (when D is even).
Weyl-Majorana spinors can exist only for D = 4n + 2; real Weyl-
Majorana spinors can exist for D = 2 modulo 8, and pseudoreal
Weyl-Majorana spinors can exist for D = 6 modulo 8.
The unitary representations of the Lorentz group SO(1,D−1)

are labeled by a continuous momentum vector k, and by a
spin “projection”, which in D dimensions is a representation
of the compact subgroup SO(D−2). The Dirac, Weyl, Majorana,
andWeyl-Majorana spinors carry indices that transform as finite-
dimensional non-unitary spinor representations of SO(1,D−1).
It is well-known (see e.g., ref. [49] for a review, or ref. [50] for a

more concise description) that the type of spinors one obtains for

4 The representation 3060 can be also used for that purpose. The two
breakings differ on the presence of a remaining unbroken parity sym-
metry in the case of 170, of which the SO10 analogous is discussed in
detail in refs. [43, 44].

Fortschr. Phys. 2023, 2300226 2300226 (5 of 7) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202300226 by C

ern L
ibrary, W

iley O
nline L

ibrary on [22/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

SO(p,q) in the real case is governed by the signature (p − q) mod 8.
Among even signatures, signature 0 gives a real representation,
signature 4 a quaternionic representation, while signatures 2 and
6 give complex representations. In the case of SO(1,17) the signa-
ture is zero, and the imposition of the Majorana condition on the
spinors is permitted, in addition to Weyl.
Let us recall for completeness and fixing the notation, the oth-

erwise well-known case of 4 dimensions. The SO(1,3) spinors in
the usual SU2 × SU2 basis transform as (2, 1) and (1, 2), with rep-
resentations labeled by their dimensionality. The 2−component
Weyl spinors, 𝜓L and 𝜓R, transform as the irreducible spinors,

𝜓L ∼ (2, 1), 𝜓R ∼ (1, 2), (59)

of SU2 × SU2 with “∼” meaning “transforms as”. A Dirac spinor,
𝜓 , can be made from the direct sum of 𝜓L and 𝜓R,

𝜓 ∼ (2, 1)⊕ (1, 2). (60)

In 4-component notation the Weyl spinors in the Weyl basis
are (𝜓L, 0) and (0,𝜓R), and are eigenfunctions of 𝛾

5 with eigen-
values +1 and −1, respectively.
The usual Majorana condition for a Dirac spinor has the form,

𝜓 = C𝜓̄T , (61)

where C is the charge-conjugation matrix. In 4 dimensions C
is off-diagonal in the Weyl basis, since it maps the components
transforming as (2, 1) into (1, 2). Therefore, if one tries to impose
(61) on a Weyl spinor, there is no non-trivial solution and there-
fore Weyl-Majorana spinors do not exist in 4 dimensions.
For D even, it is always possible to define a Weyl basis where

ΓD+1 (the product of all D Γmatrices) is diagonal, so

ΓD+1𝜓± = ±𝜓±. (62)

We can express ΓD+1 in terms of the chirality operators in 4
and extra d dimensions,

ΓD+1 = 𝛾5 ⊗ 𝛾d+1. (63)

Therefore the eigenvalues of 𝛾5 and 𝛾d+1 are interrelated. How-
ever, clearly the choice of the eigenvalue of ΓD+1 does not impose
the eigenvalues on the interrelated 𝛾5 and 𝛾d+1.
Since ΓD+1 commutes with the Lorentz generators, then each

of the 𝜓+ and 𝜓− transforms as an irreducible spinor of SO(1,D−1).
For D even, the SO(1,D−1) always has two independent irreducible
spinors; for D = 4n there are two self-conjugate spinors 𝜎D and
𝜎D

′, while for D = 4n + 2, 𝜎D is non-self-conjugate and 𝜎̄D is the
other spinor. By convention is selected 𝜓+ ∼ 𝜎D and 𝜓− ∼ 𝜎D

′ or
𝜎̄D. Accordingly, Dirac spinors are defined as direct sum of Weyl
spinors,

𝜓 = 𝜓+ ⊕𝜓− ∼
{
𝜎D ⊕ 𝜎D

′ for D = 4n
𝜎D ⊕ 𝜎̄D for D = 4n + 2.

(64)

When D is odd there are no Weyl spinors, as already men-
tioned.

The Majorana condition can be imposed in D = 2, 3, 4 + 8n
dimensions and therefore the Majorana and Weyl conditions are
compatible only in D = 4n + 2 dimensions.
Let us limit ourselves here in the case that D = 4n + 2, while

for the rest one can consult refs. [9, 15]. Starting with Weyl-
Majorana spinors inD = 4n + 2 dimensions, we are actually forc-
ing a representation fR of a gauge group defined in higher dimen-
sions to be the charge conjugate of fL, and we arrive in this way
to a 4-dimensional theory with the fermions only in the fL repre-
sentation of the gauge group.
In our case, we have for the Weyl spinor of SO(1,17):

SO(1,17) → [SU2 × SU2]Lorentz × SO14Gauge group

𝜎18 = 256 = (2, 1; 64) + (1, 2; 6̄4). (65)

Then, the Majorana condition maps the (2,1; 6̄4) into the (1,2;
64). Therefore in 4 dimensions, only the (2,1; 64) remains from
the spinor 256 of SO18, after imposing the Majorana condition,
i.e., we obtain SO14 with 64L.
On the other hand, the spinor of SO14, 64L, has the following

decomposition after the SSB of SU2 × SU2, as described in 2.3
under [SU2 × SU2]Global × SO10:

SO14 → [SU2 × SU2]Global × SO10Gauge (66)

64 = (2, 1; 16) + (1, 2; 1̄6). (67)

Therefore, after imposing Weyl (by choosing 𝜎18) and Majo-
rana conditions in 4 dimensions, we obtain fL = (2, 1, 16)L and
(1, 2, 1̄6)L = (1, 2, 16)R = gR. The fL, gR are eigenfunctions of the 𝛾

5

matrix with eigenvalues +1 and −1 respectively, as already men-
tioned. Keeping only the +1 eigenvalue, i.e., imposing an addi-
tional discrete symmetry, we are left with (2, 1, 16)L.

4. Conclusions

In the present work we have constructed a realistic model based
on the idea that unification of gravity and internal interactions
in four dimensions can be achieved by gauging an enlarged tan-
gent Lorentz group. The enlarged group used in our construction
is originally the SO(1,17), which eventually, in the broken phase,
leads to GR and the SO10 GUT accompanied by an SU2 × SU2
global symmetry. The latter leads to even number of families.
In the phenomenological analysis that will be presented in a

future work, obviously we will include appropriate scalar fields
that will i) break the SO10 to the SM and ii) make the fourth gen-
eration of fermions heavy in the minimal setting of fermions in
the model.
The unifying group SO(1,17) does not contain the whole

Poincaré group, but rather the Lorentz rotations, SO(1,3). There-
fore, a conflict with the Coleman-Mandula (C-M) theorem,
which states that internal and spacetime symmetries cannot be
mixed,[51] is avoided. Recall that the C-M theorem has several hy-
potheses with the most relevant being that the theory is Poincaré
invariant. It might be a challenge of a further study to start with a
unifying group that includes translational symmetry and exam-
ine consistency with the C-M theorem.
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Another point concerning the phenomenological analysis is
that in the present scheme we will do a RG analysis, in which,
in addition to considering the various spontaneous symmetry
breakings of SO10, the fact that the unification scale is the Planck
scale should also be taken into account. Finally, we note that the
use of the RG analysis is legitimate based on the theorem[52] stat-
ing that if an effective 4−dimensional theory is renormalizable
by power counting, then it is consistent to consider it as renor-
malizable a la Wilson.[53–55]
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