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1 Introduction

In physics it is notoriously difficult to solve general quantum field theories. One of the
rare exceptions is a special class of theories called integrable field theories in two spacetime
dimensions, theories which have infinitely-many conserved changes and are “exactly solvable.”
We can extract a large amount of quantitative information about such theories thanks to
their exact solvability. Moreover, they often serve as useful stepping stones for analyzing
more general theories, and for extracting general physics lessons. One should quickly add,
however, that we expect a generic quantum field theory to be non-integrable.

The goal of this short note is to point out the existence of classical integrability for
a large class of effective field theories (EFTs) in two dimensions. Our EFTs are generic,
the only requirement being that the theory arises from the large-charge sector [1–11] of an
O(2)-symmetric asymptotically free theory.1 Since our discussion is within EFT, our analysis
automatically incorporates many examples of EFT arising via Renormalization-Group (RG)
flows from well-defined UV theories, such as non-linear sigma models.

The rest of this paper is organized as follows. After a summary of the large-charge EFT
with O(2) symmetry in section 2, we present a proof of existence of higher-spin conserved
currents in section 3. We end in section 4 with comments and discussions.

2 Large-charge EFT for asymptotically free theories

Let us consider an asymptotically-free QFT TUV with an O(2) global symmetry in D spacetime
dimensions. (We will restrict to D = 2 in the next section.) This theory can be regarded
as the “UV theory” in our discussion. Note that we do not need to assume that this theory
is integrable.

Since the theory is asymptotically-free, we expect the theory to generate a dynamical
scale, which we denote by M . For our considerations we also introduce an IR regulator
1/R, where R can be regarded as the size of the spatial sphere SD−1. We need a hierarchy

1This paper extends the analysis of the large-charge sectors, previously done in three and higher dimensions,
to two spacetime dimensions.
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M ≫ 1/R. In general these are the only mass scales we expect in the theory. In general we
expect the theory to be strongly coupled in the IR, where we do not expect perturbative
techniques to be applicable.

Let us now consider the setup with a very large O(2) charge Q ≫ 1. The crucial difference
from our previous discussion is that we now have a new mass scale µ, as determined by the
charge density ρ on the sphere: µD−1 ∼ ρ ∼ Q/RD−1. In practice we can regard this scale as
the chemical potential for the O(2) symmetry, i.e. the Vacuum Expectation Value (VEV)
⟨A0⟩ of the time component of the background O(2) gauge field Aµ.

Let us consider the situation where Q is very large such that µ is above the dynamical scale:

µ ≫ M ≫ 1/R . (2.1)

Due to the introduction of the chemical potential, the fields charged under the O(2)
symmetry will have a mass of O(µ), and hence can be integrated out below the scale µ. In
particular, we expect that the running of the coupling constant stops at the energy scale
µ, and when µ ≫ M we expect the theory to have a weakly-coupled EFT description. We
call this theory TEFT.2

Which degrees of freedom should be kept in the EFT? A natural candidate is obtained
by considering the complex “order parameter” Φ = |Φ|eiθ: its phase is shifted by the O(2)
symmetry transformation Aµ → Aµ + ∂µχ as θ → θ + χ, and θ represents the flat direction
respecting the O(2) symmetry.

Since we are introducing the chemical potential, we have the shift A0 → A0 + µ, which
can be traded for a shift θ → θ + µt. This means that we need to re-expand the theory
around a new vacuum as

θ = µt + θ′ , (2.2)

where θ′ represents a fluctuation around the new vacuum. The newly-chosen vacuum breaks
the O(2) symmetry, and θ can be light degrees of freedom (Nambu-Goldstone mode) of
the broken O(2) symmetry.

For the compatibility with the O(2) shift symmetry, we only expect derivatives of θ

to appear in the Lagrangian. Moreover, terms with higher derivatives will be suppressed
by the scale separation of the theory, which is 1/µ in this case. Finally, the Lagrangian
should be compatible with the underlying Lorentz symmetry. We can thus write down the
Lagrangian for the EFT TEFT to be the “free” (indeed free when D = 2) Lagrangian, up
to corrections suppressed by µ−1 ∝ Q−1/(D−1):

L = 1
g2

EFT
|∂θ|D + O

(
Q− 1

D−1
)

= 2
g2

EFT
K + O

(
Q− 1

D−1
)

, K ≡ 1
2 |∂θ|D , (2.3)

where |∂θ| ≡
√

∂µθ∂µθ and θ is to be expanded as in (2.2).
The EFT coupling constant gEFT does not run under the RG flow inside the EFT, since

we have already integrated out all the degrees of freedom other than θ. Its value can be
2In the literature one often takes the small radius limit R → 0, to create the hierarchy 1/R ≫ M , to appeal

to weakly-coupled descriptions. One might then hope to extrapolate back to the large-radius limit R → ∞.
Here the radius R is kept large, and we instead generate a new scale µ by focusing on the large-charge sector.
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matched with the gauge coupling gUV of the UV theory — for example, with the coupling
constant of the UV O(N) theory. Even though our theories are weakly-coupled, gUV has
RG running, which can be accounted by the one-loop and higher-loop computations, and
we can match the value of gEFT with that of gUV RG-evolved down to the energy scale µ.
Note that RG running can yield log(M/µ) corrections to gEFT which are large for µ ≫ M ,
in contrast to the small corrections in (2.3). Since the details will depend on the choice of
the UV theory, let us here express this as

L = f(ℓ)K + (subleading in 1/Q), where ℓ ≡ log
( 2K

M2

)
, (2.4)

where the coupling constant has been replaced by a function f(ℓ). We can write this more
concisely as

L = F(K) + (subleading in 1/Q) , (2.5)

where we make the dependence on the dynamical scale implicit.

3 Higher-spin currents in generic large-charge EFT

3.1 Construction of the higher-spin currents

In the rest of this paper we specialize to D = 2 spacetime dimensions. We will work with
the EFT Lagrangian at (exactly) leading order in the large charge expansion,

L = F(K) . (3.1)

This corresponds to taking all the possibilities for the perturbative corrections while ignoring all
non-perturbative corrections in gUV. We will use the light-cone coordinates ds2 = 2dx+dx−,
with metric g+− = g+− = 1, g++ = g−− = g++ = g−− = 0. This means, for example,
K = 1

2(∂θ)2 = (∂+θ)(∂−θ). The equation of motion of this theory is given by

θ,+− = G(K)
[

θ,−
θ,+

θ,++ + θ,+
θ,−

θ,−−

]
, (3.2)

where we defined

G(K) ≡ −1
2

KF ′′(K)
F ′(K) + KF ′′(K) . (3.3)

We claim that the most generic form of the effective Lagrangian (3.1) allows for an infinite
tower of higher-spin conserved currents: for any positive integer k we find a spin-2k current,
which is conserved on-shell.3 Since these currents have different spins it immediately follows
that these charges are linearly independent, and we have an infinite family of independent

3While these currents exist as formal objects for any complex value of k, single-valuedness of correlation
functions in the EFT restricts k to be integer or half-integer. More generally objects with arbitrary fractional
powers of the product ∂+θ∂−θ exist in the EFT but generically do not come from operators in the UV theory.
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conserved charges, making the EFT integrable.4 Since this is a statement about the EFT,
this holds irrespective of the choice of the UV theory.

Our discussion of integrability uses the equation of motion, and is purely classical.
However, it is also the case that our analysis applies to a general EFT, and we can thus
incorporate quantum effects from RG flows to the parameters in the classical Lagrangian.

We are interested in constructing a spin-2k conserved current with components
(T2k, Θ2k−2), satisfying the conservation condition

∂+T2k = ∂−Θ2k−2 . (3.4)

This will lead to spin-(2k − 1) conserved charges5

Q2k−1 =
∫

dx1 (T2k + Θ2k−2) . (3.5)

For k = 1 we have a spin-2 current, which we identify with the stress-energy tensor
as expected. In the following we will consider the case k > 1, since these are the charges
relevant for integrability.

The components T2k and Θ2k−2 of the current can be expressed as

T2k = A2k(ℓ)(∂−θ)2k , (3.6)
Θ2k−2 = B2k(ℓ)(∂+θ)(∂−θ)2k−1 , (3.7)

for ℓ-dependent functions A2k(ℓ), B2k(ℓ). Note that this form is by no means special (for
example, we have discarded terms including higher derivatives of θ). We will however see
that this special form is enough to construct one set of higher-spin currents by explicitly
finding a candidate for A and B which exactly satisfies the conservation law. For k > 1,
A2k(ℓ) is a solution to a second-order ODE

A′′
2k(ℓ)
h(ℓ) +

[2k − 1
h(ℓ) − 1 − h′(ℓ)

h2(ℓ)

]
A′

2k(ℓ) − k(2k − 1)A2k(ℓ) = 0 , (3.8)

and B2k(ℓ) is determined from A2k(ℓ) as

B2k(ℓ) = 1
k − 1

[
−kA2k(ℓ) + A′

2k(ℓ)
h(ℓ)

]
, (3.9)

where we defined

h(ℓ) ≡ d logF ′(K)
dℓ

= KF ′′(K)
F ′(K) = − 2G(K)

2G(K) + 1 . (3.10)

This means that a tower of higher-spin currents exists whenever there is a solution to A2k

for all values of k > 1.
The existence of a solution to the ordinary differential equation (3.8) is guaranteed at

least locally in ℓ, although solutions could in principle blow up at certain values of ℓ. In
section 3.3, we study a specific example and find solutions for A2k that are nonsingular away
from ℓ = ∞. Other examples must be treated on a case-by-case basis.

4More precisely we find integrability in the massless sector of the EFT. It is an interesting question to
extend the discussion to massive Goldstone sectors, see e.g. [12, 13] for related discussion.

5In our analysis integer and half-integer values of k appear on equal footing.
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3.2 Proof of conservation equations

Let us show the current conservation by explicit computations. We compute

∂+T2k = [2kA2k(ℓ) + A′
2k(ℓ)](θ,−)2k−1(θ,+−) + A′

2k(ℓ)(θ,−)2k θ,++
θ,+

, (3.11)

∂−Θ2k−2 = [(2k − 1)B2k(ℓ) + B′
2k(ℓ)](θ,−)2k−2(θ,+)(θ,−−)

+ [B2k(ℓ) + B′
2k(ℓ)](θ,−)2k−1(θ,+−) , (3.12)

and we obtain the conservation equation (3.4) by equating the two expressions.
Thanks to the equation of motion (3.2), we can eliminate θ,+− in terms of θ,++ and θ,−−,

to convert the conservation equations into two linear first-order ordinary differential equations:

A′
2k(ℓ) = −(2k − 1)B2k(ℓ) − B′

2k(ℓ) , (3.13)
G(K)[2kA2k(ℓ) + A′

2k(ℓ)] + A′
2k(ℓ) = G(K)[B2k(ℓ) + B′

2k(ℓ)] . (3.14)

Note that the first (second) equation is independent of (depends on) the function F [K],
and hence of the choice of the EFT.

From these equations we can eliminate the functions B2k(ℓ), B′
2k(ℓ) as

B2k(ℓ) = 1
k − 1

[
−kA2k(ℓ) + A′

2k(ℓ)
h(ℓ)

]
, (3.15)

B′
2k(ℓ) = 1

k − 1

[
−

(
k + h′(ℓ)

h2(ℓ)

)
A′

2k(ℓ) + A′′
2k(ℓ)
h(ℓ)

]
. (3.16)

After plugging these expressions back into (3.13), we obtain the ODE for A2k(ℓ) as in (3.8).

3.3 Examples

While the existence of solutions to the ODE (3.8) is sufficient for the integrability of the
EFT, one might be tempted to find analytic expressions for the conserved current. Here
we give several examples where this is possible.

Let us start with the free theory F(K) = K. Here the equations (3.13) and (3.14)
lead to the holomorphic current

T2k = (∂−θ)2k, Θ2k−2 = 0. (3.17)

After integrating over x1, we find a charge which acts nontrivially (and nonlinearly) on
the Hilbert space. We expect that when interactions are added, the action of the charges
remains nontrivial.

A slightly more complicated example is the “leading-log” EFT, for which the Lagrangian
takes the form

L = F [K] = β

(
log 2K

M2 − 1
)

K , (3.18)

which leads to F ′[K] = βℓ and h[ℓ] = 1/ℓ.
In this case, the ODE for A2k(ℓ) reads

ℓA′′
2k(ℓ) + (2k − 1)ℓA′

2k(ℓ) − k(2k − 1)A2k(ℓ) = 0 . (3.19)
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One of the solution to this equation is

A2k(ℓ) = L
(−1)
k [−(2k − 1)ℓ] , (3.20)

where L
(α)
k [x] is a generalized Laguerre polynomial of order k and argument x (for α = 0 this

reduces to the ordinary Laguerre polynomial).6 For example, we have

A4(ℓ) = ℓ(3ℓ + 2) ,

A6(ℓ) = ℓ(25ℓ2 + 30ℓ + 6) ,

A8(ℓ) = ℓ(343ℓ3 + 588ℓ2 + 252ℓ + 24) .

(3.21)

4 Discussions

In the standard discussion of integrability, it is often stated that classical integrability implies
factorization of the tree-level S-matrix, at least in the integrable subsector. In particular,
the theory allows for no particle production, and this severely constrains the form of the
Lagrangian, at least order by order in perturbation theory (see [14–17]). This is in apparent
contradiction with our statement that integrability exists for a generic large-charge EFT.

One should note, however, that the connection between classical integrability and fac-
torization of the tree-level S-matrix is in general broken for integrable two-dimensional field
theories with massless excitations [18]: our EFT applies to a massless mode θ associated
with the symmetry breaking. Related to this, our theory is an EFT and its kinetic term
is non-canonical, contrary to what is often assumed in the literature. In short, we do not
in general expect factorization of the tree-level S-matrix in our theories. In fact, it is not
obvious whether the S-matrix in these theories is well-defined, due to the presence of IR
divergences.7 It would be interesting to understand whether one can construct an S-matrix
for the EFT, or if there is some other dynamical implication of the infinite family of charges.

There are several directions for future research. First, it is natural to extend our
analysis to large-charge EFTs associated with more general theories, such as EFTs with
O(N) symmetries with N ≥ 2. Second, it would be interesting to compare our analysis with
detailed analysis of specific UV integrable field theories, such as the O(N) model [20, 21].
It would also be interesting to see how the integrability of EFT fits into the framework of
four-dimensional Chern-Simons theory [22, 23].
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