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Abstract: We study the vacuum dynamics of pseudo-Nambu-Goldstone bosons (pNGBs)
for SO(N + 1) → SO(N) spontaneous and explicit symmetry breaking. We determine the
magnitude of explicit symmetry breaking consistent with an EFT description of the effective
potential at zero and finite temperatures. We expose and clarify novel additional vacuum
transitions that can arise for generic pNGBs below the initial scale of SO(N +1) → SO(N)

spontaneous symmetry breaking, which may have phenomenological relevance. In this
respect, two phenomenological scenarios are analyzed: thermal and supercooled dark sector
pNGBs. In the thermal scenario the vacuum transition is first-order but very weak. For
a supercooled dark sector we find that, depending on the sign of the explicit symmetry
breaking, one can have a symmetry-restoring vacuum transition SO(N−1) → SO(N) which
can be strongly first-order, with a detectable stochastic gravitational wave background
signal.
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1 Introduction

PNGBs [1, 2] arise in nature, as phonons, magnons, pions and in a broad range of theoretical
scenarios. It is no surprise that they are abundant. It is a theorem that whenever a
continuous global symmetry is spontaneously broken that NGBs will arise [2]. Furthermore,
it is widely believed that there can be no exact continuous global symmetries in nature (more
precisely, in gravitational theories [3–7]), in which case any NGB will, in reality, be a pNGB.
Thus, while the effective field theory (EFT) description of the low-energy behaviour of exact
NGBs is an interesting object for theoretical study, it is likely that in nature the physics
below the scale of spontaneous symmetry breaking is dominated by the scalar potential
generated for pNGBs, since it contains the most relevant operators.

Since the structure of the pNGB potential determines the vacuum dynamics it is well-
motivated to map the connections between explicit symmetry breaking sources in a UV
theory and the vacuum structure and dynamics in the IR, since this aspect is physically
relevant for pNGBs that are realised in nature. Once this map is firmly established one can
then determine and/or classify the plausible phases of pNGB vacua and their dynamics.

Ref. [8] established the first part of this programme for an SO(N+1) → SO(N) sponta-
neous and explicit symmetry breaking pattern. The fundamental building blocks of explicit
symmetry breaking were found to be the irrep spurions of SO(N + 1) which preserve an
SO(N) subgroup. Each such spurion gives rise, in the IR, to a unique Gegenbauer scalar
potential which is an eigenfunction of the Laplacian on the N -sphere. Any general pNGB
potential for SO(N + 1) → SO(N) can thus be decomposed as a sum of Gegenbauer poly-
nomials. Note that this is strongly analogous to the solution of the Hydrogen wavefunction
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in quantum mechanics. The angular momentum |j, 0⟩ eigenstates correspond to a non-zero
expectation value for the spin-j irrep of SO(3) which gives rise to the jth Legendre polyno-
mial, which is simply an SO(3) → SO(2) Gegenbauer polynomial. Any wavefunction which
is a superposition of angular momentum eigenstates may be written as a sum of Legendre
polynomials. Thus what we are familiar with for angular momentum in Hydrogen maps to
the pNGBs of SO(N + 1) → SO(N) breaking, where the spatial rotation global symmetry
becomes an internal global symmetry.

With this organisation of pNGB potentials complete the next logical step, which is to
understand the vacuum dynamics, is the focus of this work. Throughout we are concerned
with the same SO(N + 1) → SO(N) spontaneous and explicit symmetry breaking pattern.
We focus for the most part, as a benchmark, on a single Gegenbauer pNGB potential, in
the understanding that the lessons learned will map, in a straightforward way, into a sum
of Gegenbauer potentials for any form of pNGB potential.

We begin by ascertaining the conditions under which the EFT description of the poten-
tial is valid, both at zero and finite temperature (specifically in the region of an interesting
vacuum transition). This effectively places a quantitative constraint on the magnitude of
the explicit symmetry breaking tolerable. Violation of this constraint implies a potential
for which one does not have a controlled series expansion in the explicit symmetry breaking,
whether at tree-level or at higher loop orders.

Subject to this constraint we then explore the vacuum dynamics for pNGBs, which we
find to be rich and varied. It should be noted that throughout there is explicit SO(N +

1) → SO(N) breaking thus, in terms of exact global symmetries, there is no formal phase
transition, since only SO(N) is an exact symmetry of the Lagrangian. However, since this
explicit symmetry breaking is small, one does have a sense in which the fields, which play
the role of order parameters, undergo vacuum transitions.

In this work we find that below the scale of spontaneous SO(N+1) → SO(N) breaking,
which is driven by the development of a non-zero value for the SO(N + 1) radial mode,
there are generically additional pNGB vacuum transitions. There is an additional critical
temperature at which the pNGBs themselves develop a vacuum expectation value, triggering
a further stage of spontaneous SO(N) → SO(N − 1) breaking. This breaking is due to
the explicit symmetry breaking, but the change in order parameter is independent of the
magnitude of the explicit symmetry breaking. The reverse can also occur, with a pattern
of SO(N + 1) → SO(N − 1) breaking followed by a further stage of SO(N − 1) → SO(N)

symmetry restoration at lower temperatures.

It follows to determine the nature of these pNGB vacuum transitions. There are two
classes to consider, namely thermal and supercooled. In the thermal case we find that the
transition is generically weakly first-order. On the other hand, when the pNGB sector is
supercooled we find that the vacuum transition, leading to symmetry restoration, can be
strong enough to generate detectable GW signatures. We finish with conclusions and future
speculations.
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2 pNGB Potential Regime of Validity

We consider an EFT containing the pNGBs ψ arising from the spontaneous breaking of an
approximate global symmetry at the scale f . We define the action at zero temperature as

L = 1
2gij(ψ)∂µψ

i∂µψj +O(∂4)− εVε(ψ)− ε2Vε2(ψ)−O(ε3) + ...+ LCT , (2.1)

where we have Taylor expanded in derivatives and in ε, which is, by assumption for pNGBs,
a small parameter associated with a source of explicit symmetry breaking. LCT represents
the counterterms required for renormalisation.

Before commencing with any concrete calculations some considerations are in order
concerning the validity of this EFT. To be effective, it must be valid for some range of
energies and field scales. For the former, scattering amplitudes involving derivatives will
scale as (p2/M2)j , where j is some integer and M is the cutoff energy of the EFT, often
associated with the mass of the radial mode of spontaneous symmetry breaking or some
other UV scale such as the mass scale of intermediate vector resonances. In any case, the
EFT description breaks down, by assumption, whenever |p2| ∼M2.

Equally important is the parameter ε. In order to be considered pNGBs there must
be some range of field values over which there is some sensible notion of perturbative
calculability within the EFT and of a scale separation with the UV. For pNGBs the field
range is periodic in the spontaneous symmetry-breaking scale ∼ 2πf . Due to this periodicity
we will require that the EFT description is valid and affords a degree of perturbative
calculability over all pNGB field values.

To determine the potential limits on the magnitude of ε it is helpful to consider the
case of pions. Were the quark masses to be comparable to the QCD scale, or the QED
gauge coupling to be e ∼ 4π in the vicinity of the QCD scale, there would be no sense
in which one would have had light pions at all, as they would naturally have mass at the
QCD scale. Following this, it is tempting to diagnose EFT validity using the pNGB masses.
However, mass-scale separation alone seems insufficient. For instance, in a scenario with two
large sources of explicit symmetry breaking ε1, ε2 ∼ 1 one could in principle fine-tune their
independent contributions to a pNGB potential to give a small mass-squared in the global
vacuum, generating a scale separation m2

ψ ≪ M2. However, one would have no control
over perturbative corrections to the form of the pNGB potential, either at tree-level at the
matching scale or in the IR at higher loops, due to the underlying magnitude of explicit
symmetry breaking. We must therefore be more pragmatic in determining the requirement
on ε for the EFT description to be valid. The condition cannot simply be that m2

ψ ≪M2,
which is seemingly necessary but not sufficient. Therefore we opt for the imprecise, but
practical, condition that the pNGB potential at O(ε) must be a good approximation to
the full potential with all quantum corrections included. In other words, while O(ε2) and
higher terms will exist, they must not qualitatively alter the form of the pNGB potential.

The one-loop Coleman-Weinberg potential provides a useful diagnostic in this respect.
For pNGBs this is given by [8–10]

V CW =
1

2
Tr

∫
d4p

(2π)4
log

[
p2 + εg−1

(
δ2Vε
δψ2

− δVε
δψ

Γ

)]
, (2.2)
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where Γ are the Christoffel symbols. The field-dependent curvature (or mass-squared)
entering this expression is

M2
ε(ψ) = εg−1

(
δ2Vε
δψ2

− δVε
δψ

Γ

)
, (2.3)

whose trace is simply the Laplace-Beltrami operator acting on the space spanned by the
pNGBs. Notably, this depends on the geometry of the manifold on which the pNGBs live.
In all of our applications we will be interested in the scenarios in which the spontaneous
symmetry breaking pattern is

SO(N + 1)

SO(N)
∼= SN , (2.4)

which we recall consists of the set of points a fixed distance from the origin in RN+1. For the
sake of illustration, we focus on scenarios in which the explicit symmetry breaking follows
the same pattern, preserving the SO(N) subgroup. As a result, we may parameterise the
N Goldstone bosons on this manifold through the unit vector living in RN+1 as

ϕ = f sin
Π

f




n1

n2
...

nN
cot Π

f




, (2.5)

where n · n = 1. Thus, in this picture, Π/f essentially corresponds to the angle between
the Goldstone boson direction and a given arbitrarily chosen axes in RN+1.

In these coordinates we have that the relevant mass-squared matrix is

M2
ε(Π) = ε

(
cot(Π

f
)

f V ′
ε1N−1 0

0 V ′′
ε

)
. (2.6)

where

V ′
ε ≡ ∂Vε

∂Π
and V ′′

ε ≡ ∂2Vε
∂Π2

. (2.7)

Thus, considering the traces of products of this matrix which will arise in perturbative
calculations, it suffices to consider the Laplace-Beltrami operator

∆SNVε = V ′′
ε + (N − 1) cot

Π

f

V ′
ε

f
. (2.8)

As a result, truncating the momentum integral at the UV-cutoff, the zero-temperature
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effective potential at one-loop is

V = V (0) + V CW + V CT (2.9)

= ε

[
Vε +

M2

32π2
∆SNVε + V CT

ε

]
+

ε2
[
Vε2 +

1

64π2

{(
V ′′
ε

)2
(
log
( ε

M2
V ′′
ε

)
− 1

2

)

+(N − 1)

(
cot Π

f

f
V ′
ε

)2(
log

(
ε

M2

cot Π
f

f
V ′
ε

)
− 1

2

)}

+
M2

32π2
∆SNVε2 + V CT

ε2

]
+O(ε3) + ...

Here the terms denoted V CT represent the counterterms required to renormalise the pNGB
potential and V (0) is the tree-level scalar potential. Thus we see that if ∆SNVε has a very
different functional form to Vε, the counterterm potential cannot be similar in form to Vε,
implying some level of fine-tuning between UV/threshold corrections, which must exist,
and the bare potential in order to realise the form of Vε. If, however, they are of a similar
functional form then the O(ε) corrections will not destabilise the pNGB potential at that
order. We will return to this possibility in due course.

More immediately relevant is that the O(ε2) effective potential corrections may signifi-
cantly modify the qualitative nature of the potential. This would signify the breakdown of
the effective description of the pNGB potential. Thus we will only work with EFTs for the
pNGBs in which ε is sufficiently small that the physics of the zero-temperature potential is
well described at leading order in ε, hence

V ≈ ε

(
Vε +

M2

32π2
∆SNVε + V CT

ε

)
, (2.10)

is a reasonable approximation to the pNGB potential at zero temperature. This can only
be diagnosed on a case-by-case basis, and so we leave further discussion of this aspect until
a specific model has been chosen.

Now moving to finite temperature and following by analogy with the Coleman-Weinberg
potential, under the same set of assumptions, the full finite-temperature potential at one-
loop is, to a leading approximation,

V (T ) = V (0) + V CW + V CT + V T , (2.11)

where [11]

V T =
T 4

2π2
TrJB

(M2(Π)

T 2

)
, (2.12)

=
T 4

2π2


JB

(
εV ′′

ε

T 2

)
+ (N − 1)JB



ε cot

(
Π
f

)
V ′
ε

fT 2




 , (2.13)
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and the function JB is

JB(x) =

∫ ∞

0
dyy2 log

(
1− exp−

√
y2+x

)
. (2.14)

Since we now have a new energy scale in the theory, T , we ought to reconsider the con-
ditions under which one has an appropriate description of the physics. For T → 0 we
have that V T → 0, as expected, thus at very low temperatures we may simply use the
zero-temperature effective potential already described.

At high temperatures we may also perform an expansion, in which case

V T ≈ −N π2

90
T 4+ε

T 2

24
∆SNVε−

T

12π

(
εV ′′

ε

)3/2− (N −1)
T

12π

(
ε cot

Π

f

V ′
ε

f

)3/2

+ ... . (2.15)

The validity of this expansion rests on two separate aspects. The first is that the high-
temperature expansion should be convergent, hence when the system lies at high enough
temperatures we require that the physics is, to a good approximation, described by the
second term alone, with the third remaining a subleading correction. The second aspect
concerns the non-analyticity of the JB function, and hence of the third term of eq. (2.15).
This non-analyticity generates imaginary terms in the effective potential in regions where
∂2V (0)(Π)/∂Π2 < 0. Since the effective potential is, by definition, a real scalar quantity
this signals a breakdown in the effective description of the physics.

Without committing to a specific model in which one can calculate the magnitude of
the various terms this is as far as we may proceed, thus we now commit to a specific class
of scenarios.

3 Gegenbauer Goldstones

Experience with many physical systems, including electrostatics and thermodynamics, sug-
gests that when one encounters the Laplacian the natural functions to work with are the
eigenfunctions, satisfying an equation of the form ∆SNVε(Π) ∝ Vε(Π). This is an eigen-
function problem and the solutions which are analytic in Π are the well-known Gegenbauer
polynomials [8]

∆SNG
N−1

2
n (cosΠ/f) = −n(n+N − 1)

f2
G

N−1
2

n (cosΠ/f) , (3.1)

where the eigenvalues and eigenfunctions are characterised by the two integers, N ≥ 1 and
n ≥ 0. In the application to the pNGB potential, these integers are related to the explicit
symmetry breaking pattern SO(N +1) → SO(N) realised by a symmetry-breaking spurion
in the n-index symmetric irrep of SO(N + 1) [8].

Motivated by this we will thus consider a zero-temperature pNGB potential of the form

V (Π, 0) ≈ εnVεn +O(ε2)

≈ εnf
2M2G

N−1
2

n (cosΠ/f) +O(ε2) + ... . (3.2)
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whose generic functional form is shown in Fig. 1. The typical shape of the Gegenbauer
potential at zero temperature (T = 0) is shown in the left ("n < 0) and right ("n > 0)
panels of Fig. 1. Note that for positive "n the global minimum is at a scale h⇧i ⇠ 5.1f/n [8],
whereas for negative "n the global minimum is at the origin. Importantly, this potential is
radiatively stable, since at leading order in this spurion only this term can arise irrespective
of the UV physics.

Since any general potential may be constructed from a linear sum of Gegenbauer poly-
nomials the lessons learnt from studying the single polynomial case will, in generic cases,
extend to more general pNGB potentials that can arise for the SO(N + 1) ! SO(N) case.
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Figure 1. A cartoon picture showing the functional form of the Gegenbauer potential in the tem-
perature regime T ⌧ TF and T � TF when the symmetry-breaking parameter, "n, is either positive
or negative. Cooling down will lead to SO(N) symmetry restoration or breaking depending on
the the sign of "n. Kazuki: The resolution of some letters is poor. Can you improve it? Since
this figure is referred immediately below Eq. (3.2), where the finite temperature and TF have not
been introduced yet, it’d be better to write T = 0 insteaad of T ⌧ TF . Also should we change
T � TF ! �f
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Figure 1. A cartoon picture showing the functional form of the Gegenbauer thermal effective
potential given by eq. (3.8), for the temperature asymptotics T = 0 and T � 0, when the symmetry-
breaking parameter, "n, is either positive or negative. The high-temperature limit terminates below
the radial mode mass M , otherwise the original, approximate, symmetry is restored and the effective
description of the model in terms of pNGBs is lost. Cooling down will lead to SO(N) symmetry
restoration or breaking depending on the sign of "n. Matthew: Again, we have these ⇡f/2 factors
everywhere. First, this is dimensionally incorrect, since f does not have the same units as temper-
ature. Second, we make no reference to this special value. I vote we remove it in the caption and
figures.
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from the general pNGB case of eq. (2.10). No summation over the index n is implied. The
typical shape of the Gegenbauer potential at zero temperature (T = 0) is shown in the left
("n < 0) and right ("n > 0) panels of Fig. 1. Note that for positive "n the global minimum
is at a scale h⇧i ⇠ 5.1f/n [8], whereas for negative "n the global minimum is at the origin.
Importantly, this potential is radiatively stable, since at leading order in this spurion only
this term can arise irrespective of the UV physics. Since any general potential may be
constructed from a linear sum of Gegenbauer polynomials the lessons learnt from studying
the single polynomial case will, in generic cases, extend to more general pNGB potentials
that can arise for the SO(N + 1) ! SO(N) case.
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perature regime T ⌧ TF and T � TF when the symmetry-breaking parameter, "n, is either positive
or negative. Cooling down will lead to SO(N) symmetry restoration or breaking depending on
the the sign of "n. Kazuki: The resolution of some letters is poor. Can you improve it? Since
this figure is referred immediately below Eq. (3.2), where the finite temperature and TF have not
been introduced yet, it’d be better to write T = 0 insteaad of T ⌧ TF . Also should we change
T � TF ! �f

2 > T � TF ?

("n > 0,
⇡f

2
> T � TF )

("n < 0, T = 0)

("n > 0, T = 0)

("n < 0,
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Figure 1. A cartoon picture showing the functional form of the Gegenbauer thermal effective
potential given by eq. (3.8), for the temperature asymptotics T = 0 and T � 0, when the symmetry-
breaking parameter, "n, is either positive or negative. The high-temperature limit terminates below
the radial mode mass M , otherwise the original, approximate, symmetry is restored and the effective
description of the model in terms of pNGBs is lost. Cooling down will lead to SO(N) symmetry
restoration or breaking depending on the sign of "n. Matthew: Again, we have these ⇡f/2 factors
everywhere. First, this is dimensionally incorrect, since f does not have the same units as temper-
ature. Second, we make no reference to this special value. I vote we remove it in the caption and
figures.

where note that from now on " would carry the subscript n to distinguish the above choice
from the general pNGB case of eq. (2.10). No summation over the index n is implied. The
typical shape of the Gegenbauer potential at zero temperature (T = 0) is shown in the left
("n < 0) and right ("n > 0) panels of Fig. 1. Note that for positive "n the global minimum
is at a scale h⇧i ⇠ 5.1f/n [8], whereas for negative "n the global minimum is at the origin.
Importantly, this potential is radiatively stable, since at leading order in this spurion only
this term can arise irrespective of the UV physics. Since any general potential may be
constructed from a linear sum of Gegenbauer polynomials the lessons learnt from studying
the single polynomial case will, in generic cases, extend to more general pNGB potentials
that can arise for the SO(N + 1) ! SO(N) case.

("n > 0, T � 0)

("n < 0, T � 0) (3.3)
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potential given by eq. (3.8), for the temperature asymptotics T = 0 and T � 0, when the symmetry-
breaking parameter, "n, is either positive or negative. The high-temperature limit terminates below
the radial mode mass M , otherwise the original, approximate, symmetry is restored and the effective
description of the model in terms of pNGBs is lost. Cooling down will lead to SO(N) symmetry
restoration or breaking depending on the sign of "n. Matthew: Again, we have these ⇡f/2 factors
everywhere. First, this is dimensionally incorrect, since f does not have the same units as temper-
ature. Second, we make no reference to this special value. I vote we remove it in the caption and
figures.

where note that from now on " would carry the subscript n to distinguish the above choice
from the general pNGB case of eq. (2.10). No summation over the index n is implied. The
typical shape of the Gegenbauer potential at zero temperature (T = 0) is shown in the left
("n < 0) and right ("n > 0) panels of Fig. 1. Note that for positive "n the global minimum
is at a scale h⇧i ⇠ 5.1f/n [8], whereas for negative "n the global minimum is at the origin.
Importantly, this potential is radiatively stable, since at leading order in this spurion only
this term can arise irrespective of the UV physics. Since any general potential may be
constructed from a linear sum of Gegenbauer polynomials the lessons learnt from studying
the single polynomial case will, in generic cases, extend to more general pNGB potentials
that can arise for the SO(N + 1) ! SO(N) case.

("n > 0, T � 0)

("n < 0, T � 0) (3.3)

3.1 pNGB Potentials at Zero Temperature

With this model we may now return to our general requirement of eq. (2.10). We consider
the zero-temperature potential at one-loop

V (1)(⇧, 0) ⇡ "n

✓
1 � n(n + (N � 1))M2

32⇡2f2

◆
V"n + V CT

"n

�

+"2n

"
V"2n + V CT

"2n
� 1

128⇡2

 ⇣
V 00
"n

(⇧)
⌘2

+ (N � 1)
cot2 ⇧

f

f2

⇣
V 0
"n

(⇧)
⌘2
!

+ ...

#
,

(3.4)
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Figure 1. A cartoon picture showing the functional form of the Gegenbauer thermal effective
potential given by eq. (3.7), for the temperature asymptotics T = 0 and T ≫ 0, when the symmetry-
breaking parameter, εn, is either positive or negative. The high-temperature limit terminates below
the radial mode mass M , otherwise the original, approximate, symmetry is restored and the effective
description of the model in terms of pNGBs is lost. Cooling down will lead to SO(N) symmetry
restoration or breaking depending on the sign of εn.

where note that from now on ε would carry the subscript n to distinguish the above choice
from the general pNGB case of eq. (2.10). No summation over the index n is implied. The
typical shape of the Gegenbauer potential at zero temperature (T = 0) is shown in the left
(εn < 0) and right (εn > 0) panels of Fig. 1. Note that for positive εn the global minimum
is at a scale ⟨Π⟩ ∼ 5.1f/n [8], whereas for negative εn the global minimum is at the origin.
Importantly, this potential is radiatively stable, since at leading order in this spurion only
this term can arise irrespective of the UV physics. Since any general potential may be
constructed from a linear sum of Gegenbauer polynomials the lessons learnt from studying
the single polynomial case will, in generic cases, extend to more general pNGB potentials
that can arise for the SO(N + 1) → SO(N) case.

3.1 pNGB Potentials at Zero Temperature

With this model we may now return to our general requirement of eq. (2.10). We consider
the zero-temperature potential at one-loop

V (1)(Π, 0) ≈ εn

[(
1− n(n+ (N − 1))M2

32π2f2

)
Vεn + V CT

εn

]

+ε2n

[
Vε2n + V CT

ε2n
− 1

128π2

((
V ′′
εn(Π)

)2
+ (N − 1)

cot2 Π
f

f2

(
V ′
εn(Π)

)2
)

+ ...

]
,

(3.3)

where the ellipses denote the logarithmic terms. We see that at O(εn) the quadratic di-
vergence may be absorbed into a counterterm of the same functional form as the initial
potential, reflecting the radiative stability of this potential. However, we also see that,
regardless of the form of the potential at O(ε2n), there are calculable terms proportional to
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ε2n. In order for the EFT to be valid it is necessary that these terms are subdominant to
the leading one.

Since it is the point at which the second derivative of the potential is maximal in
magnitude, to establish the maximal permitted value of εn we now focus our discussion
around the origin of field space. The Gegenbauer potential and its derivatives scale there
as

Vεn(0) = f2M2 (n+N − 2)!

n!(N − 2)!
,

V ′′
εn(Π)

∣∣∣
Π=0

= cot
Π

f

V ′
εn(Π)

f

∣∣∣
Π=0

= −M2(N − 1)
(n+N − 1)!

(n− 1)!N !
. (3.4)

Thus we find the condition

ε2n
128π2

N
(
V ′′
εn(0)

)2
≪ εnVεn(0) , (3.5)

which, under eq. (3.4), is reduced to

|εn| ≪ 128π2
f2

M2

N !(n− 1)!

(n+N − 1)!n(N − 1)(n+N − 1)
≡ ε0n,max , (3.6)

as a necessary condition for the EFT expansion to be valid at zero temperature, hence the
upper-script 0 in εn,max refers to the zero-temperature case.

3.2 pNGB Potentials at Finite Temperature

After renormalization, for this class of potentials the high (enough) temperature form is
approximately

V (Π, T ) ≈ εnf
2M2

(
1− n(n+N − 1)

24

T 2

f2

)
G

N−1
2

n (cosΠ/f) +O(ε2) + ... . (3.7)

Thus, for temperatures satisfying

T 2 ≳ T 2
F =

24

n(n+N − 1)
f2 , (3.8)

where we refer to TF as the “Flipping Temperature”, the overall sign of the scalar potential
has changed, indicating a transition in the position of the global minimum relative to the
zero-temperature potential, see Fig. 1. The functional form of the scalar potential remains
unchanged up to the overall factor. We must, however, determine whether we may trust
the EFT expansion at this temperature by checking the magnitude of the next term in the
finite-temperature expansion.

We proceed as for the zero-temperature case, but now using the thermal potential in
eq. (2.15). The effective potential becomes

V (Π, T ) ≈ −N π2T 4

90
+ εn

[
1− n(n+N − 1)T 2

24f2

]
Vεn(Π)

− T (εnV
′′
εn(Π))

3
2

12π
− (N − 1)

T (cot Π
f εnV

′
εn(Π))

3
2

12πf3/2
+O(εn

2) . (3.9)
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Focusing around the origin of the field space and noting that the second derivative of the
Gegenbauer polynomial is negative there, the relevant constraint reads

∣∣∣T
2

24
εn∆SNVεn(0)

∣∣∣≫
∣∣∣N T

12π

(
εnV

′′
εn(0)

)3/2 ∣∣∣ . (3.10)

This is a necessary condition for the validity of the EFT expansion at a given temperature.
For T ≈ TF we get

|εn| ≪ 6π2
f2

M2

N !(n− 1)!

(n+N − 1)!n(N − 1)(n+N − 1)
≡ εTFn,max . (3.11)

This is a stronger bound than at zero temperature, since

εTFn,max =
3

64
ε0n,max . (3.12)

The condition eq. (3.10) is necessary for validity at any temperature but not sufficient. A
stronger bound is obtained for T = TCrit, the ‘Critical Temperature’, at which the vacuum
transition is initiated. In general TCrit > TF , with the former defined as the temperature
where the potential energy of the two relevant phases becomes degenerate (or the two phases
have equal free energy density)

V (0, TCrit) = V (⟨Π⟩ , TCrit) , (3.13)

where ⟨Π⟩ is the pNGB value at the degenerate vacuum. From Fig. 1 note that no matter
which cooling-down picture we consider, the potential admits one global minimum around
the field-space origin justifying our choice of V (0, TCrit) as the free energy of one of the
degenerate phases.

Using the effective potential of eq. (3.9), assuming for now εn > 0, the above equality
gives

T 2
Crit + [BεT

2
F ]
TCrit

f
− T 2

F = 0 , (3.14)

with the solution

TCrit =
1

2

[
−Bε +

√
4f2

T 2
F

+B2
ε

]
T 2
F

f
. (3.15)

Bε is a dimensionless parameter defined as

Bε =
f∆Vε,3/2

12π∆Vε
≈ f

TF

{
TFN

(
εnV

′′
εn(0)

) 3
2

12π εnVεn(0)

}
− f

(
εnV

′′
εn(⟨Π⟩)

) 3
2

12πεnVεn(0)
(3.16)

where we have defined

∆Vε,3/2 = N
(
εnV

′′
εn(0)

) 3
2 −

(
εnV

′′
εn(⟨Π⟩)

) 3
2 , (3.17)

and

∆Vε = εnVεn(0)

(
1− Vεn(⟨Π⟩)

Vεn(0)

)
≈ εnVεn(0) > 0 . (3.18)
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Figure 2. Schematic phase diagram for radiatively and thermally stable pNGB potentials, for
εn > 0 (left) and εn < 0 (right). Throughout there is explicit breaking SO(N + 1) → SO(N). At
high temperatures, above the mass of the radial mode, an approximate SO(N + 1) is restored. For
εn > 0 at lower temperatures, SO(N+1) is spontaneously broken and at some lower temperature the
exact SO(N) is also spontaneously broken. Whereas for εn < 0 at lower temperatures, SO(N + 1)

is spontaneously broken to SO(N − 1) and at some lower temperature the exact SO(N) is restored.

The notion of TCrit and the validity of the EFT breaks down if Bε has large imaginary part.
Note that the term included in {· · · } above, which is purely imaginary, has been used in
eq. (3.10) to derive the ε bound of eq. (3.11). However, that bound is not sufficient to make
the left hand side of eq. (3.13) (and as a consequence Bε) to a good approximation real.
It is found that only for an |εn| which is at least O(10−2) smaller than εTFn,max the f

TF
{· · ·}

term can safely be neglected from Bε and the latter then becomes

Bε ≈ −f
(
εnV

′′
ε (⟨Π⟩)

) 3
2

12πεnVεn(0)
< 0 and |Bε| ≪ 1 , (3.19)

and is real so we can safely evaluate the critical temperature. This stronger bound is used in
this paper as the sufficient condition for the validity of the EFT in the whole relevant range
of temperatures. Under that condition we obtain that TCrit ≳ TF within a few percent. The
two temperatures are sometimes identified in our qualitative discussion but kept distinct in
the numerical calculations.

To summarise, we see that for this class of pNGB potentials there are hierarchies of
vacuum transitions. Starting from zero temperature as the temperature is raised there will
be a vacuum transition in the vicinity of the flipping temperature. Depending on the sign
of the spurion this will be from zero pNGB vev to a non-vanishing one, with ⟨Π⟩ ∝ f/n, or
vice-versa. The nature of this transition is not yet clear from this analysis, yet its existence
is clear. Going to even higher temperatures, above the mass scale of the radial mode in
the UV completion the standard symmetry-restoring transition occurs. These scenarios are
illustrated in Fig. 2.

It is surprising and rather non-trivial that for a single spontaneous symmetry breaking
scenario, with a single explicit symmetry-breaking spurion in a symmetric irrep one has a
hierarchy of vacuum transitions at hierarchical scales. It remains to determine the nature
of this new vacuum transition.
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4 Cosmological Gegenbauer Phases

Having outlined the general phase structure of pNGB potentials it remains to determine
any potential observable consequences of the additional pNGB vacuum transitions. We
consider a dark sector (DS) containing pNGBs with two initial conditions after the end of
inflation; thermal and supercooled, however in both cases colder than the visible sector.
Given the natural origins and ubiquity of light pNGBs in quantum field theories, and given
the clear evidence for the existence of dark matter, a DS scenario is well motivated and
plausible. In both cases we also investigate potential stochastic GW Background signatures
arising from the vacuum transitions.

4.1 Hot Dark Sector

We assume that the early universe dynamics is governed by the inflaton which, at the
end of inflation, starts to oscillate about the minimum of its potential thus, due to its
coupling to the Standard Model fields, the universe enters the reheating period. At the
same time we consider a DS of pNGBs which is completely decoupled from (or may have
an extremely small coupling to) the SM, such that it will not thermalize with the SM fields.
The DS temperature, Th, could be above or below the visible one, Tv, depending on how
strongly each sector couples to the inflaton. The ratio of temperatures after reheating,
ξDS = Th/Tv, is heavily constrained by Big Bang Nucleosynthesis (BBN) and Cosmic
Microwave Background (CMB) measurements [12, 13].

As noted, we assume ξDS < 1. This type of scenario has been investigated in [14, 15].
The case of ξDS > 1 is more delicate since it requires an out-of-equilibrium mechanism to
inject entropy back into the SM before BBN, see e.g. [16]. For model-independent studies
regarding the constraints on DS vacuum transition parameters see also [17, 18].1

A general investigation of the nature of the transition is challenging and essentially
beyond the reach of standard computations. However, subject to the requirement of small
enough εn, discussed in the previous section, we may have some control in the vicinity of
the flipping temperature.

To proceed let us recall that the scalar potential in the DS is a Gegenbauer polynomial.
The vacuum structure of such a potential is non-trivial given that different local minima
coexist for a wide range of temperatures (see Fig. 1). Analysing its thermal history in the
following, a vacuum transition is expected to occur. Particularly, for εn > 0, Π obtains a
non-zero vacuum expectation value and spontaneously breaks the SO(N) symmetry.

Before getting into a description of the phase transition details let us present an analytic
estimate for the transition strength α, assuming it takes place around T ≈ TF . To quantify
α we use the latent heat released normalized to the radiation energy density, which can be
written as

α(T ) ≡ 1

ρR

(
∆V (Π, T )− T

4
∆
∂V (Π, T )

∂T

)
, (4.1)

1Here we will not deal with the case where ξDS = 1, which could happen either by thermalization of the
DS with the SM thermal bath or due to specific initial conditions where the inflaton couples democratically
to both sectors. We escape the former by assuming the DS has a negligible interaction or never comes into
contact with SM and the latter by considering a different evolution of the two sectors during reheating.
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where the difference between the false and true vacuum is taken. The energy density is

ρR =
π2 g∗ΠT

4
h

30
+
π2 g∗SM(Tv)T

4
v

30

=
π2 T 4

h

30

(
N +

g∗SM(Tv)

ξ4DS

)
(4.2)

Since we consider a phase transition within the DS, the Hubble rate and the other relevant
parameters are functions of Th. We keep Tv as a fixed initial parameter and the number
of degrees of freedom in the DS corresponds to the number of pNGBs, i.e., g∗Π = N . We
evaluate the radiation degrees of freedom of the SM, g∗SM, from tabulated data in [19] and
we keep them constant for temperatures in the vicinity of the phase transition.

Making use of the high-temperature expansion we have that the potential energy dif-
ference between false and true vacua is

∆V (Π, T ) ≈ V (0, T )− V (⟨Π⟩ , T ) =
[
1− T 2

T 2
F

]
∆Vε −

T ∆Vε,3/2

12π
, (4.3)

while the partial derivative with respect to temperature becomes

T

4
∆
∂V (Π, T )

∂T
=
T

4

[
∂V (Π, T )

∂T

∣∣∣
Π=0

− ∂V (Π, T )

∂T

∣∣∣
Π=⟨Π⟩

]

≈ −1

2

T 2

T 2
F

∆Vε −
1

4

T ∆Vε,3/2

12π
, (4.4)

thus

α(T ) ≈ ∆Vε
ρR

([
1− 1

2

T 2

T 2
F

]
− 3

4

T ∆Vε,3/2

12π∆Vε

)
. (4.5)

Focusing around TF , which is used as a proxy for the nucleation temperature Tn since we
have verified they are very close numerically, the second term in the above equation reduces
to the {· · ·} term of eq. (3.16) which, as follows from the discussion above eq. (3.19), has
to be very small for the validity of the EFT. Thus, the transition strength becomes

α(TF ) ≈
∆Vε
ρR

[
1− 1

2

T 2
F

T 2
F

]
=

∆Vε
2ρR

. (4.6)

By setting εn = 10−2εTFn,max we obtain

α(TF ) ≲
0.002(

1 +
g∗SM(Tv)

ξ4DSN

) . (4.7)

The phase transition is weak because of the strong upper bound on εn, which also controls
the magnitude of the explicit breaking of the original symmetry. This value of α corresponds
to, at most, a very weakly first-order transition and suppressed gravitatonal wave spectrum.

Since the phase transition occurs at finite temperature under the presence of a non-
negligible thermal plasma formed out of a system of pNGBs, the expanding bubble walls
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transmit a substantial energy density and pressure to the surrounding plasma. Hence, the
dominant source of GW production is the motion of the plasma itself, expressed in the form
of sound waves. As described in greater detail in an app. (A), for the GW spectrum, under
the assumption of small α, the peak of the spectrum is [20–23]

Ωsw(Peak)h2 ≈ 4× 10−7 (R∗H∗)
2 (κsw α)

3
2 , (4.8)

where κsw encodes kinetic energy normalized to vacuum energy. We evaluate the efficiency
factor κsw using the numerical fits of [24]. R∗ is the average bubble size at collision. As
described in app. (A), we find that numerically, at the time of the transition, one has
R∗H∗ ∼ 10−6. Hence we expect at most to have a spectral peak of magnitude

Ωsw(Peak)h2 ≲ 4× 10−23 , (4.9)

well below the expected reach of future gravitational wave detectors.

4.2 Supercooled Dark Sector

Let us now explore the extreme possibility that our pNGB DS is supercoooled, parame-
terized as ξDS ≈ 0. This may occur if, for instance, the DS is very weakly coupled to the
inflaton. We also discuss the role of εn’s sign. In the previous section we have assumed
that εn > 0. However, in principle, εn can be either positive or negative and, as we explain
in the following, the choice of sign impacts the cosmology of the DS.

It is possible that the expansion rate of the universe is initially much faster than the
bubble nucleation rate in a supercooled DS.2 As a consequence the DS can enter a period
of supercooling, remaining in a local minimum until quantum tunneling towards another
local or a global minimum takes place.

For εn ≳ 0 the vacuum dynamics of a supercooled DS is governed by the zero-
temperature potential of eq. (3.2). Such a scenario has interesting phenomenology as the
associated potential possesses various local minima and as a consequence the supercooled
DS could in principle exhibit successive vacuum transitions, depicted on Fig. 3, via tunnel-
ing. For an indicative example we consider the case when the DS is initially in the minimum
depicted by the purple dot in Fig. 3 with associated vev ⟨Πpurple⟩. We calculate the prob-
ability of tunneling towards its nearest neighbor blue dot with associated vev ⟨Πblue⟩. For
this transition it is clear that the barrier between the vacua is large compared to the energy
difference between them, therefore the thin wall approximation [25] is a well motivated
analytic approach. According to this approximation and following [15], the probability of
nucleating a critical bubble via quantum tunneling is

Γ4 = A4 e
−S4 ≡ 1

R4
0

(
S4
2π

)2

e−S4 (4.10)

where S4 is the O(4)-symmetric bounce solution and R0 is the size of the nucleating bubble.

2Since the DS is almost decoupled from the SM it will evolve independently, so we consider that the
visible sector is “frozen” to a given temperature Tv.
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Figure 3. Successive tunneling towards the true vacuum for the benchmark scenario n = 15, N = 4.
The colouring shows that we move from a higher ⟨Π⟩ (purple dot) down to smaller values until the
DS reaches the deepest minimum (red dot).

Moreover, following the cosine-like approximation to the Gegenbauer potential provided
in Eq. (2.12) of [8], and employing the triangle approximation to the cosine potential, for
which an anlytic expression was derived in [26], in the thin wall approximation the bounce
action S4 scales as

S4 ≈
32π2

3

(∆VMax(Π))
2(∆Π)4

(∆V (Π))3
, (4.11)

where ∆Π is the leading order change in vev between vacua, ∆V (Π) is the change in vacuum
energy between the two vacua and ∆VMax(Π) is the change in vacuum energy between the
vacuum and the top of the barrier between them.

The resulting expression for the bounce, in the large n limit, is

S4 ∼
23−n−Nn2π5Γ(n+N)

3(N − 1)4Γ
(
n+1
2

)
Γ
(
N
2

)
Γ
(
n+N−1

2

) ×
ε0n,max

εn
, (4.12)

which ultimately scales proportional to n!/((n/2)!)2, quickly becoming very large for large
n. We also have that

R4
0 ≈ S4

π2∆V (Π)
(4.13)

so substituting the above relations back to eq. (4.10) it becomes clear that for ε0n,max/εn
satisfying the criteria for a controlled EFT expansion the exponential becomes extremely
small. The condition for a successful completion of the vacuum transition is

Γ4 ≳ H4 , (4.14)
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Figure 4. The bounce solution S4 evaluated numerically as a function of ε for the green dot → red
dot transition as they are represented in Fig. 3.

which is difficult to fulfil. In conclusion, if the DS is for some reason localized at the purple
dot then it will face an extremely slow decay rate, compared with the expansion of the
universe, such that it will never completely tunnel to the blue dot in a time scale which is
relevant, leading to an eternally-inflating DS.

Naturally one is led to consider the other tunneling possibilities. Naïvely for transitions
closer to the true global minimum one, such as the green to red dot vacuum transition (see
Fig. 3), one does not expect a dramatic change since the difference in vacuum energy and
the height of the barrier grow in a correlated manner, however eq. (4.11) suggests that
the change in vacuum energy may ultimately dominate such that faster tunnelling may
be possible. In such transitions the energy difference is comparable to the barrier height,
hence the thin wall approximation cannot be trusted and a numerical analysis of the bounce
action is required. To this end we rely again on a modified version of CosmoTransitions [27]
code. The numerical analysis of the bounce solution as a function of εn, for the benchmark
scenario studied here, is shown in Fig. 4, demonstrating that only a case of a large εn, well
above the upper value for an effective description of the pNGB potential, admits values of
S4 which could allow the vacuum transition to complete.

To conclude, we find that a supercooled vacuum transition in a DS with a single Gegen-
bauer potential and εn > 0, is highly unlikely to successfully complete unless εn violates
the EFT bound, in which case calculability is called into question.

PT from a flipped potential

Now consider the case with εn < 0, as displayed in Fig. 5. We focus on the transition from
the second minimum to the origin. Notice that this process corresponds to a symmetry-
restoring phase transition since the pNGB order parameter Π has a zero vev in the true
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Figure 5. Inverted tree-level Gegenbauer potential. With the transition from the green dot to the
red dot considered.

vacuum. This transition is outside the validity of the thin-wall approximation thus we
compute the constant decay rate, eq. (4.10), numerically. To estimate the bubble radius at
nucleation, R0, we use the value at which the field profile function is halfway between the
two minima.

The Hubble rate is written as

H2 ≡ π2g∗SM (Tv)T
4
v

90M2
Pl

+
∆V (Π, 0)

3M2
Pl

, (4.15)

where the first term comes from the standard radiation degrees of freedom. The second term
above is the vacuum contribution and we have assumed that the DS temperature remains
negligibly small. For simplicity, we fix the value of εn = 10−2ε0n,max and the resonance mass
scale to M = 4πf . Thus only N , n and the symmetry breaking scale f are free parameters.

The tunnelling rate Γ4 is independent of the visible sector temperature and instead all
the temperature dependence is encoded in eq. (4.15). We also find that the polynomial
order n has a negligible impact on the decay rate. Once one fixes N , n and f , one has
that Γ4/H

4 ∝ 1/T 8
v for large Tv. As the temperature drops the vacuum contribution starts

dominating the Hubble rate and Γ4/H
4 ≈ const. This behavior is displayed in Fig. 6 for

N = 10 and n = 20 and several values of symmetry breaking scale f . One can observe from
this figure that the nucleation temperature is directly proportional to the compositeness
scale f , as expected on dimensional grounds. Notice that if a transition is too slow to occur
at Tv = 0 then it cannot start for any Tv. In addition, since the potential is effectively
temperature-independent, the strength parameter of the phase transition is approximately

α(Tv) ≈
∆V (Π, 0)

ρR
. (4.16)
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Figure 6. Ratio of nucleation rate to Hubble volume as a function of visible sector temperature
for different values of the compositeness scale. The horizontal line marks the nucleation condition
while the vertical lines help visualize the intersection point. At high temperatures Γ4/H

4 ∝ 1/T 8
v

while as the temperature drops the vacuum contribution begins dominating the Hubble rate and
Γ4/H

4 ≈ const.

In Fig. 7 we show this transition strength (colorbar) alongside the behavior of the
nucleation temperature as a function of symmetry breaking scale for two benchmark values
of N . The number of pNGBs, N , significantly impacts the possible range of nucleation
temperature due to the fact that, in our chosen parametrization, N affects the barrier
height and thus, through the bounce action, impacts the tunneling rate exponentially. The
lines terminate at the symmetry breaking scale f for which the nucleation rate matches the
minimum value Γ4 ≈ H4, as can be inferred from Fig. 6. Close to this point, the nucleation
condition becomes numerically ambiguous. For smaller values of f the lines are truncated
at values with extremely weak vacuum transitions. It can be observed that the strongest
phase transitions are associated with the largest possible symmetry breaking scale and can
attain values α ≈ O(1).

For very strong phase transitions the latent heat released accelerates the wall to rela-
tivistic velocities and the effects of the thermal plasma are suppressed. Thus the DS plasma
of pNGBs exerts negligible friction on the wall and one has vw ≈ 1. In this case the GW
signal is sourced by the collision of the walls and not by the sound waves, thus the treatment
differs from sect. 4.1. To estimate the time scale of the transition we consider the bubble
number density, which for a constant decay rate reads [28]3

1

R3∗
=

1

4

(
Γ4

vw

)3/4

Γ

(
1

4

)(
3

π

)1/4

=
1

8π

β3

v3w
. (4.17)

3In this expression, the gamma function Γ(x) should not be confused with the decay rate Γ4.
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Figure 7. Nucleation temperature as a function of symmetry breaking scale f with the colorbar
displaying the strength parameter α at the percolation temperature.

The GW spectrum from bubble collisions is estimated as [18]

ΩGW(f)h2 = Ω̃× S

(
fg
fcol

)
, (4.18)

where we write the amplitude in terms of mean bubble separation as
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NANOGrav 15 yr

N=8
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N=10

Figure 8. GW spectrum from bubble collisions for the strongest signals found. The red contours
are the violin curves for the NANOGrav 15 yr data obtained from [29] using the public tool [30].
The integrated sensitivity curves for LISA and BBO were obtained using [31].

Ω̃ ≈ 1.7× 10−5 Ω̃bw(HminR∗)2(8π)−2/3

(
κϕα(Tp)

1 + α(Tp)

)2(g∗(Tp)
100

)−1/3

, (4.19)
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where H2
min = ∆V/3M2

Pl, the coefficient κϕ is obtained from the detonation approximation
from [24] and the spectral function is given by

S(x) =
19x14/5

5 + 14x19/5
. (4.20)

After red-shifting the peak amplitude we have that

fcol = 1.7× 10−5(R∗Hmin)
−1(8π)1/3

(
Tp

100 GeV

)(
g∗(Tp)
100

)1/6(fpeak

β

)
Hz, (4.21)

with fpeak/β ≈ 0.2, Ω̃bw ≈ 0.08. In the expressions above we have used a slightly more
precise percolation temperature, at which the probability to find a region of space-time still
in the false vacuum has decreased to about P (Tp) ∼ e−1.

We show, in Fig. 8, the predicted GW spectrum from bubble collisions for three bench-
mark values of N where in each case we select the value of f which maximises the strength
of the phase transition. We display the sensitivities of the future detectors LISA [32, 33]
and BBO [34]. As we can observe from this figure, the case N = 9 could potentially explain
the recently observed common-red spectrum from the NANOGrav 15 yr data [29] which is
shown as the gray curves.

5 Summary and conclusions

The vacuum structure and dynamics of theories possessing pNGB fields in the IR is of
theoretical interest and physical importance. Indeed, the vacuum structure of QCD itself is
a rich subject rendered tractable by studying the vacuum structure of the pNGBs [35–38].
In this work we have explored a complementary facet of pNGB vacua which arises if explicit
symmetry breaking occurs due to a spurion in a non-minimal representation. Here, again,
there are metastable vacua, however they exist for different field values, as described in [8].
In this work, we have focused on the same SO(N+1) → SO(N) symmetry breaking pattern
and investigated the resulting vacuum dynamics, which are found to be much richer than
one might naïvely expect.

Our main result is that the ‘primary’ phase transition associated with spontaneous
SO(N + 1) → SO(N) breaking when the radial mode obtains a vacuum expectation value
is not the end of the story. Below this scale the pNGBs will typically undergo additional
vacuum transitions unless the sources of explicit symmetry breaking take the most minimal
form.

These vacuum transitions may occur in two ways. Thermally, there is a second critical
temperature scale, the ‘Flipping Temperature’, which scales proportional to TF ∝ f/n and
can thus naturally be well below the spontaneous symmetry breaking scale f . Crucially, at
this temperature the functional form of the pNGB potential remains the same, to leading
order in the spurion. However, the overall sign flips, such that the higher temperature min-
imum becomes the lower temperature maximum, and vice-versa for the higher temperature
maximum. As a result, in the vicinity of the flipping temperature an additional vacuum
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transition occurs. We find this is likely weakly first-order, at least for parameters consistent
with a controlled EFT.

The second possibility arises non-thermally, if the pNGB sector becomes supercooled in
a metastable state, which is not implausible given the existence of ∼ n different metastable
vacua. In this case multiple vacuum transitions can occur, with the most likely being to a
nearest neighbour. As the field approaches the global minimum the final vacuum transition
can be strong enough to generate observable GWs.

The vacuum structure of our universe is of prime importance and interest in physics.
It determines the ultimate fate of the observable universe and may carry lessons about the
deep UV and quantum gravity itself [39]. Spontaneous symmetry breaking is ubiquitous in
nature, for which Nambu-Goldstone bosons are the physical manifestation of the vacuum
structure. Similarly, pNGBs manifest, through their vacuum structure, patterns of explicit
symmetry breaking. As a result, physically relevant lessons concerning the vacuum structure
and cosmological dynamics of nature may be learned by studying pNGBs, perhaps even the
case in which the Higgs boson is a pNGB; a case we leave to further study.
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A Hot Sector Calculations

We now detail a numerical investigation of the phase transition for a hot DS. The theory
of the vacuum decay from a local false minima to the true global minima at zero and finite
temperature has been studied extensively [40–44]. When the temperature is non-negligible
the transition proceeds through thermal fluctuations by the nucleation of true vacuum
bubbles within the space filled with false vacuum energy. The probability of decay per unit
time and volume is

Γ3(T ) =

(
S3(T )

2πT

)3/2

T 4e−S3(T )/T , (A.1)

where S3(T )/T is the finite temperature Euclidean action of our pNGB model and is less
than the zero-temperature one, S4, around TF .

The true vacuum bubble nucleates when the decay rate becomes comparable to the
expansion rate of the universe. Namely, we define the bubble nucleation temperature by

Γ3 ≈ H4
∣∣
T≡Tn , (A.2)

where the Hubble rate is given by

H2 =
ρR

3M2
Pl

+
∆V (Π, T )

3M2
Pl

, (A.3)
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which includes the contribution from the potential energy difference between false and true
minima and MPl = 2.4× 1018 GeV is the reduced Planck mass.

As mentioned earlier, the hidden and visible sectors have independent temperatures
and cool at different rates. From eq. (4.2) above we can read off the total effective number
of degrees of freedom as

g∗ =
(
N +

g∗SM(Tv)

ξ4DS

)
. (A.4)

The time scale of the transition is given by

β

H
≡ T

d

dT

(
S3(T )

T

) ∣∣∣∣
T→Tn

. (A.5)

To compute the action we solve the equation of motion for the system, also known as the
bounce solution. This can be considerably simplified by considering the parametrization of
eq. (2.5) and allowing for a vev only in the Π direction such that

□Π− ∂V (Π, T )

∂Π
= 0 . (A.6)

We use a modified version of the publicly available code CosmoTransitions [27] to compute
the Euclidean action.

Finally, it is necessary to have an estimate for the bubble wall velocity. This requires
an out-of-equilibrium computation of the deviation from equilibrium of all the particle
distribution functions. While this is still a very active area of research [45–61], here we will
adopt the analytic estimate of [57, 58]

vw =





√
∆V
αρR

for
√

∆V
αρR

< vJ(α) ,

1 for
√

∆V
αρR

≥ vJ(α) ,
(A.7)

where α is the transition strength given in eq. (4.1) and vJ = 1√
3
1+

√
3α2+2α
1+α the Chapman-

Jouguet velocity which defines the upper limit for which hydrodynamic solutions can be
found. Although this result is valid for simple extensions of the SM, in our case, we expect
it to give us a realistic estimate. The reason is that we expect the friction force on the
bubble wall to become significant due to the mass of the pNGBs at the metastable vacuum.

The sound wave source template reads4 [20–23] as a function of the frequency, fg,

Ωsw(fg)h
2 = 4.13× 10−7 (R∗H∗)

(
1− 1√

1 + 2τswH∗

)(
κsw α

1 + α

)2(100

g∗

) 1
3

Ssw(fg) , (A.8)

where R∗ is the average bubble size at collision and the spectral function is

Ssw(fg) =

(
fg
fsw

)3
[
4

7
+

3

7

(
fg
fsw

)2
]− 7

2

, (A.9)

4We notice that there are several templates for the GW which derive from fits to different numerical
simulations. In particular the template we use do not match those of, e.g. [18] but we nevertheless expect
that our conclusion remain qualitatively the same regardless of which template is used.
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g∗ is given in eq. (A.4) and all the quantities of the GW spectrum are evaluated at the
nucleation temperature T∗ = Tn ≈ TF . The frequency at the peak of the spectrum is given
by

fsw = 2.6× 10−5Hz (R∗H∗)
−1

(
T∗

100GeV

)( g∗
100

) 1
6
, (A.10)

while the duration of the sound wave source reads [22, 62–64]

τswH∗ =
H∗R∗
Uf

, Uf ≈
√

3

4

α

1 + α
κsw . (A.11)

For the mean bubble separation we use

H∗R∗ ≈ (8π)
1
3

(
β

H

)−1

. (A.12)

For all the computations that follow in this subsection we have fixed the explicit symmetry
breaking parameter to εn = 10−2 × εTFn,max. For the UV scale at which we expect new
resonances to appear we have fixed M = 4πf . Lastly, since the details of the dynamics of
the finite temperature phase transition are to a good approximation controlled by the DS
flipping temperature TF , our only free parameters for this analysis are n, N , f , ξDS and Tv
where the visible sector temperature is fixed above TF .
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Figure 9. The GW spectrum for sound waves with n = 10 − 58 (orange curves). The explicit
symmetry breaking parameter has been set to ε = 10−2 × εTF

n,max. The symmetry breaking scale was
fixed to f = 1 TeV and the number of pNGBs to N = 4. The temperature of the visible sector was
fixed to Tv = 2TF for each benchmark.

We present the predictions of the GW spectrum in Fig. 9 and Fig. 10 below. In Fig. 9
we display the variation of the signal as a function of the Gegenabuer polynomial order,
n, while fixing N = 4, f = 1 TeV and Tv = 2TF . We notice that the amplitude of the

– 22 –



10−5 10−4 10−3 10−2 10−1 100 101 102

fg (Hz)

10−28

10−25

10−22

10−19

10−16

10−13

10−10

10−7

10−4

Ω
G
W

Tv =2 TF
Tv =4 TF
Tv =6 TF
Tv =8 TF
LISA

BBO

Figure 10. The GW spectrum from sound waves for n = 20. The explicit symmetry breaking
parameter has been set to εn = 10−2×εTF

n,max. The symmetry breaking scale was fixed to f = 1 TeV
and the number of pNGBs to N = 4. The temperature of the visible sector was fixed as specified on
the plot legends.

signal is very small compared with the expected experimental sensitivities, in particular
we find α ≈ 0.002 (in agreement with our analytic prediction for the transition strength
given in eq. (4.7)), β/H ≈ 106 and vw ≈ 0.06. We do not observe strong dependence on
the polynomial order n. Recall that Tn ≈ TF ∼ f/n, hence the flipping temperature is
numerically very close to the critical and the nucleation temperature.

In Fig. 10, we instead vary the ratio of hidden to visible temperatures by choosing
different values of Tv/TF while setting N = 4, n = 20 and f = 1 TeV. In this case we
notice a substantial reduction in the amplitude as we increase the temperature hierarchy.
This is expected as the amplitude formula eq. (A.8) is inversely proportional to the total
number of degrees of freedom, in agreement with the results of [14]. Furthermore we have
verified numerically that varying other parameters of the potential do not substantially
change the amplitude of the signal and, irrespectively of the adopted benchmark, we obtain
a strength parameter of about α ≈ 0.002 while for the inverse timescale β/H ≈ 106 and
vw ≈ 0.06. These numerical values are indicative of a very weak and quick transition, if not
a crossover, motivating our initial choice of using Tn in the GW template formula rather
than the percolation temperature.
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