

Radiation damage effects in the ATLAS Pixel detector at the LHC: (or how to face operation and performance challenges induced by high radiation)

Marcello Bindi

on behalf of the ATLAS Collaboration IPRD2023 25-29 September – Siena - Italy

28/09/2023

Marcello Bindi - IPRD23 – Siena

The Pixel (+ ||) detector

	Pixel (3 layers)		IBL (1 layer)
Sensor Technology	<i>n</i> +-in <i>-n</i> (only planar)		<i>n</i> ⁺-in- <i>n</i> and n⁺-in-p (planar and 3D)
Sensor Thickness	250 µ	ım	200/230 μm
Front End Technology	FE- 250 nm (I3 CMOS	FE-I4 130 nm CMOS
Pixel Size	50 x 400 μm² (short side along R-φ)		50 x 250 μm² (short side along R-φ)
Radiation Hardness	50 Mrad (500 kGy) ~ 1 x 10 ¹⁵ n _{eq} ·cm⁻²		250 Mrad ~ 5 x 10¹⁵ n _{eq} ·cm⁻²
Barrel	B-Layer	5.05 cm	
<radius></radius>	Layer 1	8.85 cm	2 25 om
EndCaps	Layer 2	12.25 cm	5.55 CH
Radius _{Min}	EndCaps	8.88 cm	

~2000 modules, ~92 M channels, ~2 m² of silicon

"ATLAS pixel detector electronics and sensors"

28/09/2023

"Production and Integration of the ATLAS Insertable B-Layer"

Insertable B-Layer (IBL) added before Run 2

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

LHC conditions: a long history.

28/09/2023

Pixel operation challenges at LHC

Particle hit rate

driven by high number of p-p collisions (pile up) per time unit (25 ns bunch crossing)

- Occupancy (hit/pixel/event) scales linearly with pile up (µ)
- → big event size and typically high trigger rate (~100 kHz for high luminosity)
- → high link bandwidth usage, up to 80%!

Accumulated radiation

driven by the integrated luminosity

Signal reduction is the most important radiation damage effect on silicon

decrease of charge collection efficiency

→ decrease of hit occupancy (2017)

Accumulated Fluence and Dose

Integrated Luminosity for Pixel (all but innermost layer) : $\sim 260 \text{ fb}^{-1}$ IBL (innermost layer since 2014): $\sim 230 \text{ fb}^{-1}$ Run 3 plans (till end of 2025): $+ \sim 160 \text{ fb}^{-1}$

Pixel B-Layer will exceed the design values for both sensor (Fluence) and Front-End electronics (Dose) !

Layer	IBL			B-Layer		
time	Int. Lumi [fb ⁻¹]	Fluence [n _{eq} /cm²]	Dose [Mrad]	Int. Lumi [fb ⁻¹]	Fluence [n _{eq} /cm²]	Dose [Mrad]
End of Run2	161	~ 9x10 ¹⁴	~ 53	190	~ 7x10 ¹⁴	~ 28
Till now	230	~ 12x10 ¹⁴	~ 76	260	~ 10x10 ¹⁴	~ 38
End Run3 (proj.)	395	~ 21x10 ¹⁴	~ 130	425	~ 15x10 ¹⁴	~ 63
Max by design	-	~ 50x10 ¹⁴	~ 250	-	~ 10x10 ¹⁴	~ 50
28/09/2023		Marcello	Bindi - IPRD	23 – Siena		6

- Performance degradation mostly originating from non-ionizing energy loss (NIEL)
 → displacement damage in silicon bulk (defects with energy levels in the bandgap).
- Macroscopic effects:
 - 1. Increase of leakage current (Proportional to particle fluence)
 - 2. Change of depletion voltage (Change of space charge distribution)
 - 3. Decrease of charge collection efficiency (Signal reduction due to Trapping)

Depletion voltage/leakage current

- Higher bias voltages needed to guarantee a full depletion region.
- Bias voltage scans with collisions regularly performed at the begin/end of each year to confirm/prepare set points.
- Keep the detector cold (also during shutdown) to prevent reverse annealing.

- Leakage currents quite well described by Hamburg model (annealing, temperature)
 - slightly overestimated towards the end of Run 2.
- Extrapolation till end of Run 3 within the power supply limits.

Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents

electronics chip

bump

collecting

electrode

diode-

implant (n+)

n-type bulk

pitch: 50 x

(250-400) um²

local coordinates

- Development of new radiation damage (digitizer) MC.
 - Charge carriers will drift toward the collecting electrode due to **electric field**, which is deformed by radiation damage.
 - Their path will be deflected by magnetic field (Lorentz angle) and diffusion.
 - Due to radiation damage, they can be trapped and induce/screen a fraction of their charge (Ramo potential).

for details, Modelling radiation damage to pixel sensors in the ATLAS detector

Extensive validation of the new digitizer:

→ now officially included in ATLAS MC as the new default for Run 3!

28/09/2023

Marcello Bindi - IPRD23 – Siena

depletion

Input parameters for the digitizer

• Electric field map from TCAD simulations (Bias voltage, Fluence, Temperature..)

• Ramo potential from TCAD simulations

 $\label{eq:basic} \begin{array}{l} \text{Trapping rate interpolated from literature:} \\ \beta_e = (4.5 \pm 1.5) \times 10^{\text{-16}} \, \text{cm}^2/\text{ns} \\ \beta_h = (6.5 \pm 1.5) \times 10^{\text{-16}} \, \text{cm}^2/\text{ns} \end{array}$

28/09/2023

28/09/2023

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cluster properties: data vs MC

at the start of Run 3 in LHC Collisions at s $\sqrt{-900}$ (GeV

Charge collection efficiency: data vs MC

- Charge collection efficiency reduced by ~35% respect to the start of LHC in IBL Planar and B-Layer.
- IBL 3D shows a smaller reduction, ~20% (partially coming from lower fluence)
 → Excellent agreement over almost two order of magnitudes of fluence.
 → Different sensors type, and rad damage models (Planar vs 3D) involved here.
- Predictions indicates we still have a good margin for the end of Run 3.

N.B. Uncertainties in the input parameter (vertical band dominated by the error on the trapping constants)28/09/2023Marcello Bindi - IPRD23 - Siena12

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Modelling electric field and trapping

- Charge collection efficiency as a function of the estimated depth of charge generation in the bulk.
- Very strong test for the radiation damage model
 - → fully exploited by training Neural Networks (cluster position determination) on radiation damage MC samples.

Amount of collected charge increases also above the full depletion voltage \rightarrow reduction of the charge trapping effect with the increasing charge carrier velocity.

- Electron trapping rate extracted using the HV scan data from fits to the cluster charge or to the slope of the cluster charge increase above depletion
- Trapping value extracted consistent with input value (limited sensitivity)

- Spatial resolution (r-phi and z) computed using the overlap region:
 - well reproduced by new Radiation Damage MC.
 - data improvements by using NN training on Rad. Dam. MC samples.
 - IBL spatial resolution for 50 μm pitch projection measured at 10 μm (Run 3 start)

<u>Performance of ATLAS Pixel Detector and Track Reconstruction</u> at the start of Run~3 in LHC Collisions at sv=900 \GeV

Impact of radiation on electronics

MOS TID **Bipolars** Cumulative **IBL** front-end Effects Bipolars Displacement aka FE-I4 Optoel. (130 nm CMOS SEU/Transient — MOS technology) **Single Event Effects (SEE)** SEBO Catastrophic, SEGR SEE SEL

from F. Faccio, Cern

So far, these effects were only noticed (and quantified) in IBL front-end chip.

Outer Pixel layers (FE-I3 chip, 250 nm CMOS) don't show the same symptoms.

28/09/2023

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Cumulative effects on IBL front-end

• Total Ionising Dose (TID) effect in front-end electronics (FE-I4)

→ regular (~weekly) re-tuning!

Luckily, the size of the effect decreased with time but still present after 230 fb⁻¹!

GEORG-AUGUST-UNIVERSITÄT

SEE in IBL front-end

Big charge deposit (heavy particles recoil) in FE

- electronics can flip the state of global/local memory cells
- IBL FE global registers affected by SEE (2017)

GÖTTINGEN

- → periodical reconfiguration of FE global registers improved the operation stability/data quality.
- As LHC started delivering fills with higher integrated luminosity (2018):
 - **noisy pixels** (pixels firing in the empty bunches)
 - quiet pixel (pixels not firing in colliding bunches)

→ due to SEE in **local pixel latches!**

Both Single Event Upset (SEU), errors overwriting information stored by the circuit, and Single Event **Transient (SET)**, spurious signals propagating in the circuit, were observed and quantified.

For details see paper \rightarrow Measurements of Single Event Upset in ATLAS IBL

Results of FE-I4 SEE studies

Cross section calculations for both front-end (global) and single pixel registers (local)

Solved by adding the periodical reconfiguration of the single pixel latches

N.B. 12 Mpixel x 13 latches, reconfigured completely every ~10 minutes without extra deadtime!

- <u>Clear gain observed during</u>
 <u>test run in 2018</u>.
- Fully deployed in Run 3
 (complex Sw/Fw task):
 → Very important due to the
 higher radiation (luminosity)
 per fill in Run 3 vs Run 2.

- ATLAS Pixel inherited several challenges from Run 2:
 - strong effort lasted a few years to consolidate the detector stability (Sw, Fw) in difficult conditions (high radiation and hit rate environment)
 - FE thresholds and bias voltages changed almost yearly
 - FE regular reconfiguration during data taking is now a default feature.
- So far, Run 3 was harvest time for Pixel: data taking efficiency/data quality reached top values despite the LHC conditions/detector aging.
- Clear impact of radiation in innermost layers even if with small implications for **tracking/vertexing**.
- Vital to mitigate and possibly forecast the effects of radiation on electronics and sensors:
 - new digitization model developed (default in ATLAS Run 3 MC)
 - ~1% agreement reached with data for various layers/sensor type.
- Radiation damage demonstrated to be a key ingredient to plan the near future (Run 3)..and the not-so-near (High Lumi LHC).

Back-up

- IBL Total Ionizing Dose (TID) effect causing relevant increase of FE-I4 currents
 - Induced by the usage (~Millions) of 130 nm IBM transistor technology
 - Known to have a special leakage current evolution

<u>"Production and Integration of the ATLAS Insertable B-Layer"</u> JINST paper for more info about IBL

GÖTTINGEN

- The Run 1 Pixel read-out system went through a series of upgrades using the new IBL read-out:
 - (2015/2016 Winter Shutdown) Layer2
 - Layer1 (2016/2017 Winter Shutdown)
 - B-Layer/Disks (2017/2018 Winter Shutdown)

- Overcome bandwidth limitations but also enhance debugging capability and Sw/Fw flexibility.
- Finally in 2018, one unified read-out system that should bring Pixel many advantages on a longer term:
 - the operation of different type of FEs will always be there but...transparent for most of the operations!

The Pixel metamorphosis

Readout electronics upgrades and changes of the configuration parameters to accommodate for bandwidth limitations and radiation damage.

Sensor Bias Voltage (HV)

- Sensor bias voltage (HV)
- FE Analog/Digital thresholds
- Read out speed
- Front-end latency
- TOT target point for a MIP
- Threshold modulation vs eta

Run 2					Run 3	
Layer\Year	2015	2016	2017	2018	2022	202
IBL Planar	80 V	150 V	350 V	400 V	450 V	450
IBL 3D	20 V	20 V	40 V	40 V	60 V	60
B-Layer	250 V	350 V	350 V	400 V	450 V	450
Layer1	150 V	200 V	200 V	250 V	300 V	350
Layer 2	150 V	150 V	150 V	250 V	300 V	350
EndCaps	150 V	150 V	150 V	250 V	300 V	350

Front End Analog/Digital thresholds

		Run 2				
Layer\Year	2015	2016	2017	2018	2022	2023
IBL	2500e	2500e	2500e	2000e	1500e	1500e
B-Layer	3500e	3500e-5000e	5000e	4300e/5000e	3500e/4300e	4700e
	TOT>3	TOT>3-5	TOT>5	TOT>3	TOT>3	TOT>3
Layer 1	3500e	3500e	3500e	3500e	3500e	4300e
	TOT>3	TOT>5	TOT>5	TOT>5	TOT>5	TOT>5
Layer 2	3500e	3500	3500e	3500e	3500e	4300e
	TOT>3	TOT>5	TOT>5	TOT>5	TOT>5	TOT>5
Endcaps	3500e	3500e	4500e	3500e	3500e	4300e
	TOT>3	TOT>5	TOT>8	TOT>5	TOT>5	TOT>5

28/09/2023

Marcello Bindi - IPRD23 - Siena

V

ATLAS Preliminary

400

Pixel performance in Run 2

- ع(d₀) [µm] 350 Data 2012, vs = 8 TeV 0.0 < n < 0.2Data 2015, \s = 13 TeV 300 250 200 **150** 100 50F 2015/2012 0.8 4×10⁻¹ 5678910 2 3 20 p_T [GeV] efficiency BL Overlap r-φ Resolution [μm 0.995 0.99 Hit-On-Track 0.985 0.98 er 7 fb⁻¹ Avg=98.706±0.004% ATLAS Preliminary 0.975 Run-2 Data After 11.5 fb⁻¹ Avg=98.637±0.005% 0.97 Pixel B-Laver 0.965 After 20 fb⁻¹ Avg=98.439±0.005% 0.96 After 35 fb⁻¹ Avg=98.403±0.006% 0.955 10 Track p₊ [GeV]
 - Impact parameter resolution improvements after IBL insertion (2015)
 - B-Layer Hit-on-track efficiency > 98% (2016)
 - IBL **spatial resolution** (transverse R-φ plane) ~< 10 µm over Run 2.

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Fighting the reverse annealing

- Keeping the detector cold during LS2 to prevent reverse annealing, despite the warm periods due to the ID maintenance.
 - → keep the depletion voltage under control, mostly a concern for B-layer and IBL.
- Target to be warm for < 60 days during LS2.
 - Warm for 43 (23) days in Pixel (IBL)

 Exploring colder operating set points (-25°C/-30°C) for last years of Run 3 if needed.

28/09/2023

Pixel Leakage currents

- Measured leakage currents quite well described (annealing, temperature dependence) by the Hamburg Model but:
 - scaling factor per layer and z bin is required
 - towards the end of Run 2, the leakage currents seem overestimated.
- **Pixel:** Leakage current per module expected at the end of Run 3 within the power supply limitation (< 2 mA per sensor).

z-dependence comparisons

Fluence-to-luminosity conversion factors extracted from the leakage current, Lorentz angle and Depletion Voltage measurements:

- less fluence at at high |z| on IBL data respect to Pythia + FLUKA/Geant4 predictions
- more flat distributions for outer Pixel layers.

GEORG-AUGUST-UNIVERSITÄT

Opto-Board replacement during LS2

- Relevant number of VCSEL (laser array) failures during Run 2 (~3%).
 - humidity being the main suspect.
- New Opto-Board production (with new VCSELs) → >400 qualified.
- Selective replacement done (178 OBs) in February 2021.
 - replacement of OBs hosting dead VCSELs
 (25 modules recovered) or VCSEL alive
 with a shifted optical spectrum.
- Sealing of Optoboxes (hosting OBs) to keep the boards dry (humidity concern).
 - ➔ no failures observed so far!

28/09/2023

- Detector kept **OFF (and cold)** most of the time.
 - Pixel (C_3F_8 evaporative) and IBL (CO_2 bi-phase) cooling very stable.
- Successful yearly maintenance of cooling systems
 - a few weeks at room temperature, 43 (23) days in Pixel (IBL).
- A new thermosiphon system will serve as ID Run 3 official cooling.

Temp set point (LS2)	PIXEL	IBL
Detector OFF	-5 °C	-7.5°C
Detector ON (Cosmics)	-20 °C	-20°C

• Turn ON two weeks every two months

- Calibrations and cosmic data taking
- Monitoring noise and depletion voltage (annealing negligible)
- Test of Run 3 configs

Vth	Run 2 (End Of)	Run 3 (Start of)	ster Ch
IBL	2000 e	1500 e	Clu
B-Layer	4300 e/ 5000 e	3500 e/ 4300 e	Laver
Layer 1	3500 e	3500 e	ф
Layer 2	3500 e	3500 e	
Disks	3500 e	3500 e	

28/09/2023

Radiation damage studies

- Charge carriers will drift toward the collecting electrode due to electric field, which is deformed by radiation damage (double peak).
- Their path will be deflected by magnetic field (Lorentz angle) and diffusion.
- Electron and hole lifetime inversely proportional to fluence:
 - → charge trapping,
 - → reduction of the collected charge.
- Available for both **Planar** and **3D** sensors.
 - → due to performance constraints (CPU), not used in IBL 3D and Pixel Disks

HV evolution

 HV settings have been adjusted to ensure a well depleted sensor:

RUN-2 HV				
HV	2015	2016	2017	2018
IBL	80V 🗖	🔈 150V 🗖	눶 350V 🗖	→ 400V
B-layer	250V	350V	350V	400V
Layer-1	150V	200V	200V	250V
Layer-2	150V	150V	150V	250V
Endcap	150V	150V	150V	250V

 To avoid to run with an under depleted detector, Pixel should be kept cooled as long as possible during the LS2 (2 years long).

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Sensor type inversion

- 18 mm × 62 mm tile of diffusion oxygenated float-zone silicon.
- High-resistivity n-type bulk material with an array of 47232 implanted diodes: n+ implantations on the readout side; back-plane of the sensor tile highly p+ doped to form the *pn*-junction needed for sensor depletion.
- The *n*⁺-in-*n* sensor has the depleted region forming on the sensor backside before the radiation-damage induced type-inversion of the bulk material.
- After a non-ionizing dose of ~3 · 10¹³ n_{eq}/cm², concentration of acceptor-like defects exceeds the donor concentration in the bulk(effectively p-type).

28/09/2023

28/09/2023

Marcello Bindi - IPRD23 - Siena

33

Luminosity-to-Fluence

34

28/09/2023