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Abstract. Detailed detector simulation is the major consumer of CPU re-
sources at LHCb, having used more than 90% of the total computing budget
during Run 2 of the Large Hadron Collider at CERN. As data is collected by the
upgraded LHCb detector during Run 3 of the LHC, larger requests for simulated
data samples are necessary, and will far exceed the pledged resources of the
experiment, even with existing fast simulation options. The evolution of tech-
nologies and techniques for simulation production is then mandatory to meet
the upcoming needs for the analysis of most of the data collected by the LHCb
experiment. In this context, we propose Lamarr, a Gaudi-based framework
designed to offer the fastest solution for the simulation of the LHCb detector.
Lamarr consists of a pipeline of modules parameterizing both the detector re-
sponse and the reconstruction algorithms of the LHCb experiment. Most of the
parameterizations are made of Deep Generative Models and Gradient Boosted
Decision Trees trained on simulated samples or alternatively, where possible, on
real data. Embedding Lamarr in the general LHCb Gauss Simulation frame-
work allows combining its execution with any of the available generators in
a seamless way. Lamarr has been validated by comparing key reconstructed
quantities with Detailed Simulation. Good agreement of the simulated distribu-
tions is obtained with two order of magnitude speed-up of the simulation phase.

1 Introduction

The LHCb experiment [1] has been originally designed to study rare decays of particles con-
taining b and c quarks produced at the Large Hadron Collider (LHC). The LHCb detector
is a single-arm forward spectrometer covering the pseudorapidity range of 2 < η < 5, that
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includes a Tracking system and a Particle Identification (PID) system [2]. The Tracking sys-
tem provides high-precision measurements of the momentum p of charged particles and the
position of primary vertices. The PID system counts two ring-imaging Cherenkov (RICH) de-
tectors, an electromagnetic calorimeter (ECAL), a hadron calorimeter (HCAL), and a system
specialized in the identification of muons called MUON. The separation of charged hadrons
mostly relies on the RICH detectors, while the calorimeter system is used to reconstruct pho-
ton and electron candidates, and provides additional information for hadrons identification.

Interpreting signal, rejecting background contributions and performing efficiency studies
requires a full understanding of the data sample, from the high-energy pp collisions to the
set of physics processes responsible for the detector high-level response, namely the set of
variables used by analysts. These studies greatly benefits from the use of simulated samples.
At LHCb, the simulation production relies mainly on the Gauss framework [3], which im-
plements the generation and simulation phases, and is based on the Gaudi processing frame-
work [4]. High-energy collisions and all the decay products (e.g., muons, pions, kaons or
protons) are simulated during the generation phase using software such as Pythia8 [5] and
EvtGen [6]. The radiation-matter interactions between the detector materials and the travers-
ing particles are reproduced during the simulation phase that aims to compute the energy
deposited in the active volumes and relies on the Geant4 toolkit [7]. Then, a separate appli-
cation converts the energy deposits into raw data compatible with the real one collected by
LHCb.

The simulation of particle interactions with the detector material is the major consumer
of CPU resources at LHCb, having used more than 90% of the total computing budget during
LHC Run 2. The upgraded version of the experiment is designed to collect one-order-of-
magnitude larger data samples during Run 3. Meeting the upcoming and future requests for
simulated samples is not sustainable relying only on the traditional detailed simulation. For
this reason, the LHCb Collaboration putting a lot of effort in modernizing the simulation
software stack through the novel experiment-independent framework Gaussino1 [8, 9] on
which a newer version of Gauss will be built on, and in developing faster simulation options,
some of which also powered by machine learning algorithms [10–13].

2 Fast simulation VS. ultra-fast simulation

Simulating all the decay processes of interest for the LHCb physics program is extremely
expensive in terms of computing resources, especially the Geant4-based step that is the ma-
jor CPU-consumer. Speeding up the computation of the energy deposits or, more generally,
the detector response is mandatory to satisfy the demand for simulations expected for Run 3
and those that will follow. Actually, this is a common problem faced by the High Energy
Physics (HEP) community. The latest achievements in Computer Science are therefore ex-
ploited and deep generative models are typically adapted by various experiments [14–16]
to parameterize the detectors low-level response, namely the energy deposited in the active
volumes. The literature refers to this kind of strategies with the term fast simulation. Fast
simulations share their data processing scheme and the reconstruction step with the detailed
simulation (as depicted in Figure 1), and have proven to be capable of reducing the computa-
tion cost of a simulated sample up to a factor of 20.

To meet the upcoming and future requests for simulated samples, the LHCb Collabora-
tion is also considering a more radical approach based on the so-called ultra-fast simulation
paradigm. In this case, the aim is to directly reproduce the high-level response of the detector

1Visit https://gaussino.docs.cern.ch for additional details.
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Figure 1. Schematic representation of the data pro-
cessing flow in detailed (top), fast (center) and ultra-
fast (bottom) simulation paradigms.

relying on a set of parameterizations developed to transform generator-level particles infor-
mation into reconstructed physics objects, as schematically represented in Figure 1 (bottom).
Such parameterizations can be built using generative models, like Generative Adversarial
Networks (GAN), that have proven to succeed in reproducing the high-level response of the
LHCb detector [17] and offering reliable simulated samples [18]. Following pioneering stud-
ies on the ultra-fast simulation of the electromagnetic calorimeter based on GANs [19], the
CMS Collaboration has recently started developing a full-scope ultra-fast simulation based
on Normalizing Flow, named FlashSim [20].

3 Lamarr: the LHCb ultra-fast simulation framework

Lamarr [12, 13] is the official ultra-fast simulation framework of the LHCb experiment,
which is able to offer the fastest options for simulation. Originating from an attempt of a
LHCb-tuned version of Delphes [21, 22], Lamarr became an independent project retaining
only the inspiration of its modular layout from Delphes. In particular, the Lamarr framework
consists of a pipeline of modular parameterizations, most of which are based on machine
learning algorithms, designed to take as input the particles generated by the physics genera-
tors and provide as output the high-level response of the various LHCb sub-detectors.

The Lamarr pipeline can be logically split in two separated chains according to the charge
of the generated particles. We expect that charged particles leave a mark in the Tracking sys-
tem that Lamarr characterizes in terms of acceptance, efficiency and resolution, as described
in Section 3.1. The reconstructed tracking variables are then used to compute the response
of the PID system for a set of traversing charged particles (muons, pions, kaons or protons),
as detailed in Section 3.2. In case of neutral particles (e.g., photons), the calorimeters play a
key role and, since multiple photons can concur to the energy of a single calorimetric clus-
ter, parameterizing particle-to-particle correlation effects is of major relevance. The solutions
under investigation are reported in Section 3.3. The Lamarr pipelines described above are
shown in Figure 2.

3.1 Tracking system

One of the aims of the LHCb Tracking system is to measure the momentum p of charged
particles (i.e., electrons, muons, pions, kaons and protons), exploiting the deflection of their
trajectories due to the dipole magnet located in between the tracking detectors. Hence, the
first step of the charged chain reported in Figure 2 is the propagation of charged particles
provided by physics generators through the magnetic field. Lamarr parameterizes the particle
trajectories as two rectilinear segments with a single deflection point (inversely proportional
to the transverse momentum pT ), implementing the so-called single pT kick approximation.
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The next step requires to select the subset of tracks that fall within the LHCb geometrical
acceptance and that have any chance to be reconstructed. To this end, Lamarr uses Gradient
Boosted Decision Trees (GBDT) trained to learn the fraction of candidates that are in the
acceptance of the detector as a function of the kinematic information provided by physics
generators. Given a generated track in acceptance, we ask whether it will be reconstructed
and, in case of positive answer, which tracking detectors will be involved in the reconstruction
procedure. Lamarr statistically infers such information, namely the tracking efficiency, rely-
ing on neural networks trained to perform a multi-class classification according to the track
kinematics. A major effort is ongoing to improve the performance of the efficiency model on
the basis of the type of tracks and particle species (i.e., electrons, muons or hadrons).

At this point, Lamarr disposes of the subset of the generated particles that can be con-
sidered as reconstructed tracks, but their kinematics and geometry are still identical to those
provided by physics generators. Smearing of these features, mimicking the effect of the
reconstruction algorithms, is achieved using GANs. Driven by a binary cross-entropy loss
function and powered by skip connections [23], GANs are able to describe the resolution
effects only relying on track kinematic information at generator-level as input conditions.
A similar GAN-based architecture is used to provide the correlation matrix obtained from
the Kalman filter adopted in the reconstruction algorithm to define the position, slope and
curvature of each track.

Stacking the parameterizations described above, Lamarr is able to provide the high-level
response of the LHCb Tracking system. The resulting reconstructed quantities can be further
processed using the LHCb analysis software to combine the parameterized tracks into decay
candidates, as depicted by the green slot in Figure 1 (bottom).

3.2 Particle identification system

To accomplish the LHCb physics program, a high-performance PID system is crucial since
it allows for discriminating various particle species that traverse the detector. Lamarr pro-
vides parameterizations for the majority of charged particles for which the PID detectors are
relevant (i.e., muons, pions, kaons or protons). Specialized parameterizations for electrons,
encoding multiple scattering and Bremsstrahlung emission contributions in the interaction
with the detector materials, is planned as a future development.

Identifying these particles involves mainly the RICH and MUON detectors, while the
role played by the calorimeters is minor. In general, we expect that the response of the PID
system depends only on the specie of the traversing particle, its kinematics, and the detector
occupancy. According to these dependencies, Lamarr parameterizes the high-level response
of the RICH and MUON detectors using GAN-based models properly conditioned [11, 18].
Given the particle specie from the physics generators, its analysis-level kinematic information
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results from the Lamarr Tracking modules, while the detector occupancy is described by the
total number of tracks traversing the detector.

In real data, the combination of responses from RICH detectors, calorimeters, MUON
system and a binary muon-identification criterion implemented via Field Programmable Gate
Array (FPGA) devices and named isMuon [24], allows to compute the higher-level response
of the PID system, referred to as GlobalPID variables. The parameterization of these vari-
ables relies on conditioned GANs (GlobalPIDGAN), adding as input what results from the
RichGAN and MuonGAN models. The binary output of a neural-network-based implementa-
tion of isMuon is used as additional input feature, while no explicit calorimeters contribution
is defined, leaving the missing information problem to the generator latent space.
RichGAN and MuonGANmodels, driven by a Wasserstein distance loss function and trained

using a Lipschitz-constrained discriminator [25], succeed in describing the high-level re-
sponse of the RICH and MUON systems. Chaining together different GANs, Lamarr al-
lows to provide the higher-level response of the LHCb PID system using the GlobalPIDGAN
model, that injects an implicit contribution from the calorimeters adopting the same training
strategy of RICH and MUON parameterizations.

3.3 Electromagnetic calorimeter

Providing a parameterization for electrons requires describing the response to
Bremsstrahlung photons by the LHCb ECAL detector. Since interested in a large
number of secondary particles, detailed simulation of the calorimeter system is the most
computationally expensive step in the simulation pipeline. It is a common problem in the
HEP community, that is investing great efforts in tuning deep generative models to properly
parameterize the energy deposited in the calorimeter cells [10, 14–16]. Such studies belong
to the fast simulation paradigm that aims to reduce the Geant4 use by providing models for
the low-level response of the various experiments.

The current version of Lamarr provides a simplified parameterization for the LHCb
calorimeter, designed for detector studies and based on a fast simulation approach. Retrieving
information at the calorimeter cell level requires running reconstruction algorithms that may
become rather CPU-expensive for high-multiplicity events. In addition, since non-physical
strategies are used to simulate the energy deposits (as in the case of GANs), there is no
certainty that the reconstruction software stack can correctly reproduce the expected distri-
butions for the high-level variables [26]. Hence, the Lamarr project is actively working to
provide an ultra-fast solution for the ECAL detector.

Reproducing the calorimeter high-level response is a non-trivial task since traditional
generative models rely on the hypothesis that there is an unambiguous relation between the
generated particle and the reconstructed object2. Instead, the presence of merged π0 and
Bremsstrahlung photons may lead to having n generated particles responsible for m recon-
structed objects (in general with n , m). A strategy to face this particle-to-particle correlation
problem can be built using techniques designed in the context of Language Modeling, de-
scribing the calorimeter simulation as a translation problem. For this purpose, Graph Neural
Network (GNN) [27] and Transformer [28] models are currently under investigation.

Both the models are designed to process a sequence of n generated photons and infer the
kinematics of a sequence of m reconstructed clusters. The non-trivial correlations between
any particles of the source sequence (photons) and the target one (clusters) rely on the at-
tention mechanism [28, 29]. To improve the quality of the resulting parameterizations, the

2To a first approximation, the response of the Tracking and PID systems satisfy this condition.
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training of both GNN-based and Transformer-based models is driven by an adversarial pro-
cedure (similarly to GANs). The discriminator is currently implemented through a Deep Sets
model [30], while further studies are ongoing to replace it with a second Transformer [31].
Considering the complexity of the problem, the preliminary results are promising, as depicted
in Figure 3, where the joint action of Transformer and Deep Sets succeeds in deriving the en-
ergy distribution on the ECAL face. The center of the calorimeter has no active material as it
is used to host the LHC beam pipe. It should be pointed out that no constraints are applied to
the model output to reproduce such conditions, and that the empty space shown in Figure 3
(right) is the result of the adversarial training procedure.

Figure 3. Distribution of the (x, y)-position of the reconstructed clusters on the LHCb ECAL face for
a 2000 × 1500 mm2 frame placed around the center. The geometrical information is combined with the
energy signature by properly weighting each bin entry. The results obtained from detailed simulation
are reported on the left, while the predictions of an adversarial trained Transformer model are shown on
the right. The corresponding LHCB-FIGURE is in preparation.

4 Validation campaign and timing performance

The ultra-fast philosophy at the base of the Lamarr framework is being validated by com-
paring distributions obtained from machine-learnt models trained on detailed simulation and
distributions resulting from standard simulation strategies. In particular, we will briefly dis-
cuss the validation studies performed for the charged particles using simulatedΛ0

b → Λ
+
c µ
−ν̄µ

decays with Λ+c → pK−π+. The semileptonic nature of the Λ0
b decay requires an interface

with dedicated generators, in this case EvtGen. Deeply studied by LHCb, this decay channel
includes in its final state the four charged particle species parameterized in the current version
of Lamarr, namely muons, pions, kaons and protons.

The validation of the Lamarr Tracking modules is depicted in Figure 4 (left) where the
agreement between the Λ+c invariant mass distribution resulting from the ultra-fast paradigm
and the one obtained from detailed simulation proves that the decay dynamics is well repro-
duced and the resolution effects correctly parameterized. To demonstrate good performance
of the Lamarr PID models, a comparison between the selection efficiencies for a tight re-
quirement on a multivariate proton classifier is shown in Figure 4 (right).

Comparing the CPU time spent per event by Geant4-based production of Λ0
b → Λ

+
c µ
−ν̄µ

samples and the one needed by Lamarr, we estimate a CPU reduction of two order of magni-
tude only for the simulation phase. Interestingly, since the generation of b-baryons is excep-
tionally expensive, Pythia8 becomes the major consumer of CPU resources in the ultra-fast
paradigm. Further speed-up can be reached by reducing the generation time, for example by
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Figure 4. Validation plots for Λ0
b → Λ

+
c µ
−ν̄µ decays with Λ+c → pK−π+ simulated with Pythia8,

EvtGen and Lamarr (orange markers) and compared to detailed simulation samples relying on Pythia8,
EvtGen and Geant4 (cyan shaded histogram). Reproduced from LHCB-FIGURE-2022-014.

using a Particle Gun that simulates directly the signal particles without going through the
high-energy collisions which is not needed since Lamarr parameterizes the detector occu-
pancy. Even in these simplified settings, the ultra-fast philosophy succeeds in reproducing
distributions obtained from detailed simulation [12].

5 Integration with the LHCb simulation framework

To be integrated within the LHCb software stack, the parameterizations provided by Lamarr
need to be queried from a C++ application, running in the Gaudi framework. Traditional
deployment strategies were found to lead to unacceptably large overheads due to the pres-
ence of different multi-threading schedulers and context switching issues. Hence, a custom
deployment strategy was preferred: models trained with scikit-learn [32] and Keras [33]
are converted into compatible C code using the scikinC toolkit [34], and then distributed
through the LHCb Computing Grid via the CERN VM file-system (cvmfs) [35].

The modular layout of Lamarr enables a variety of studies and developments on the sin-
gle parameterizations, providing a unique and shared infrastructure for validation and perfor-
mance measurements. While crucial for applications within LHCb, the integration with Gaudi
and Gauss makes the adoptions of Lamarr unappealing for researchers outside of the LHCb
community. The SQLamarr package3 aims to mitigate this problem, providing a stand-alone
ultra-fast simulation framework with minimal dependencies. Based on SQLite3, SQLamarr
provides a set of classes and functions for loading data from physics generators and defining
pipelines from compiled models. An integration between SQLamarr and Gaussino is cur-
rently under investigation with the goal of providing ultra-fast parameterizations following
the experiment-independent philosophy of the newest LHCb simulation framework, called
Gauss-on-Gaussino4 [8, 9].

6 Conclusion

Evolution of the LHCb software stack and simulation techniques are mandatory to meet the
upcoming and future demand for simulated samples expected for Run 3 and those to follow.

3Visit https://lamarrsim.github.io/SQLamarr for additional details.
4Visit https://lhcb-gauss.docs.cern.ch/Futurev5 for additional details.
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Ultra-fast solutions will play a key role in reducing the pressure on pledged CPU resources
without unreasonably compromising the description of the uncertainties introduced in the de-
tection and reconstruction phases. Such techniques, powered by deep generative models, are
provided to LHCb via the novel Lamarr framework. Well integrated with physics generators
within the Gauss framework, Lamarr delivers two pipelines according to the charge of the
generated particle. The parameterizations for the Tracking and the PID systems have been de-
ployed for charged particles and validated with satisfactory results on Λ0

b → Λ
+
c µ
−ν̄µ decays.

Several models are currently under investigation for the neutral pipeline, where the trans-
lation problem approach offers a viable solution to face the particle-to-particle correlation
problem. Further development of the integration between Lamarr and the LHCb simulation
framework is one of the major ongoing activities to bring the former into the production and
make its parameterizations available to the HEP community.
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