EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN - PS DIVISION

PS/PA/Note95-17 (PPC)

Minutes of the Topical PPC Meeting held on 27th June 1995

D. Manglunki

Geneva, Switzerland 8 August 1995

Minutes of the Topical PPC meeting held on June 26th, 1995

Topic : PS-SPS Beam transmission at 13 (and 26) GeV/c

Present :

B. Allardyce, G. Arduini, B. Autin, J. Belleman, J. Boillot, M. Bouthéon, R. Cappi (Chairman), M. Chanel, V. Chohan, K. Cornelis, G. Cyvoct, G. Daems, D. Dekkers,
A. Faugier, R. Garoby, G. Gelato, S. Hancock, H. Haseroth, C. Hill, T. Linnecar,
D. Manglunki (Secretary), M. Martini, S. Maury, J.P. Riunaud, K. Schindl, H. Schönauer,
D. Simon, E. Schulte, E. Shaposhnikova, C. Steinbach, H. Ullrich, E. Wildner.

1. Introduction (R. Cappi)

Welcome to the SL delegates (G. Arduini, K. Cornelis, A. Faugier, T. Linnecar and E. Shaposhnikova).

Two problems were to be addressed by the accelerators physicists in 1995 (see PPD minutes, PS/PA Note 95-03 (PPC)) :

LHC beam behaviour at 26GeV/c; Pb ion transmission between PS and SPS.

4 types of beam were prepared : 26, 20, 14 and 13 GeV/c, thanks to the new facilities of the new PS control system.

A big effort was made to improve the reliability and the calibration of the instrumentation (mainly the PS wire scanners and TT2 SEM grids and fils).

2. Summary of PS results (R, Cappi)

Dynamic and mechanical aperture measurements at 26 GeV/c showed the PS can extract a $\Delta p/p$ of ±4.10⁻³ with an efficiency of 95%.

Transverse emittance measurements in the PS and in TT2 are in agreement, but the TT10 measurements are a factor ~2 bigger, or anyway show inconsistencies. An instrumentation error is not excluded. We still miss a comparison of SPS wire scanner (not yet working) with PS wire scanner measurements.

Very small longitudinal emittance ($\tau < 5$ ns, $\Delta p/p < 10^{-3}$) bunches were produced at 26GeV/c for the study of microwave instabilities in the SPS.

3. Microwave instability in the SPS (T. Linnecar)

The foreseen behaviour of the LHC beam is based on extrapolations on existing beams. According to those extrapolations, the beam density is above the microwave instability treshhold. Experimental results are under analysis.

4. Emittance measurements in TT10 and data analysis (G. Arduini, M. Martini)

The PS and SPS teams agree on the definition of emittance ($\varepsilon = 4\sigma^2/\beta$). The precision of the emittance measurements is estimated to be 10-20%. TT10 momentum acceptance found to be $\Delta p/p = \pm 4.10^{-3}$.

		PREI	PRATIO	ک ع	2	PREPARATION 2
ď.	S-MD	BEAMS :				
		Monentum	USER	Mag. yele	RET GAT.	A BIG EFFORT OF INSTRUMENTATION
Î	Ч	26 9.4%	, рилнс	J	FEIL S	CHECK - UP
	2	20 gev/c	MD PRO	L	FEIG J	• WIRE SCANNERS (2×H, 2×V) NEW SOFT
†	Ś	13 900/6	, MD SPS	t	FEIL D	
	4	ymb ti	' SFT PRO'	¢	FEIG	• TT2 SEM grids CROSS CHECK
						• TT2 SEM file) ELECTRE NICS
+	ADIAB	. VRF REDUCI	rion To 087	AIN SMALL	2% ~ ±0.3.6	CALIBRATION SOFT WARE
+	BUNCH	ROTATION	I TO OBTAL	N SASe	BUNCHES	D HEALUREMENTS
	80	Small &	V 25.	A		
+	N.N.	I - BUNCHES	" TO 08	TAIN SH	ALL T. Smg	
	T	AM2 UN	~ % ~ m	10.2.10-3		
					· · ·	·
+	Para			2	•	

PRECIFE CONTROL OF W.P. & J. : No NORE OCTUPOLES AT HIGH ENERGY (G.AHONI)

2

 $\mathcal{T}^{\mathcal{O}}$

ند : بر

ين بېر

NO SIJO OVE

(1) 26 Gev/C DYNAMIC APERTURE MERSUREMENTS

Dru. AP. INTHE PS RING P = I 4.103 AP = I 4.103 W.S. 2000 W.

≁ ↑ 2) MECH, AP. AT EXTRACTION, TRANSF. LINE AND SPS

7 295% FOR \$P ≤ 1 4.10⁻³

3) $\mathcal{E}_{a,y}$ neasureneurs $\mathcal{E}_{a=} \frac{(26x)^2}{p_{a}}$ p_{a} \mathcal{E}_{a} \mathcal{E}_{a} \mathcal{E}_{a

4) MISMATCH ???

(16) 26 gev/c 2 put instabilities in SPS

HAVEFORN S		- displey -	off o	Source Chan 1 2	func 1 2	store	r scele-time	C 5.00 ns	- Scale-del	- 13.444	sadahc
sustting trigger								13.4407 us 13.4557 us 5.00 ns/div realiting	stop æsrkeri 13.4492us størt mørkeri 13.4432us	delto tr 4.933 ns L 1/delto tr 200.020mb	- extracted bunch :
Ap running-								20 C619.51			(Jdriou)

~

0,25 ±1% 0,22 ±1% 0.43

· . SEE TREVOR LINNERAR

 \odot

... SEE G, ARDULNI

HOR

Plane

Gain

Status

NI ASI

Gain

Plane

NEWSH

Status

1994 ("south 1.

5 23+

Pls: SFI

File

2

ain

plane

NI WAR

Status

ACE = 6.8 mer = 2 = 41 mention of = .810 V= Looku

14.2

, G. 10

ň

V= 20KU

MD 14/6/95 26 GeV - NOPHASEX		MD 21/6/95
- 20 bunches (5 ns long) - 4x10 ⁹ pp	b - Δp/p = 0.12 x 10 ⁻³ off-line analysis	13 GeV - NOPHASEX
TT10: $\varepsilon_{\rm H} = 0.91 \ \pi \ \rm{mm} \ \rm{mrad}$ $\varepsilon_{\rm V} = 0.26 \ \pi \ \rm{mm} \ \rm{mrad}$	PS: 0.50 π mm mrad 0.22 π mm mrad	- 15 bunches (5 ns long) - 4x10 ⁹ ppb - Δp/p = 0.26 x 10 ⁻³ off-line analysis
Blow-up factors: 1.01 and 1.07 calculated from the "theoretical" β	- small spread of the emittance values function at the grids	TT10: $\epsilon_{\rm H} = 0.86 \pi$ mm mrad PS: 0.8 π mm mrad $\epsilon_{\rm V} = 0.47 \pi$ mm mrad 0.36 π mm mrad
on line TT10 measurement:	$\varepsilon_{\rm H} = 1.84 \ \pi \ {\rm mm} \ {\rm mrad}$ $\varepsilon_{\rm v} = 0.32 \ \pi \ {\rm mm} \ {\rm mrad}$	Blow-up factors: 1.99 and 1.17
- 20 bunches (26 ns long) - 10 ¹⁰ pp	b - Δp/p = 0.3 x 10 ⁻³	on line TT10 measurement: $\varepsilon_{\rm H} = 1.66 \pi$ mm mrad $\varepsilon_{\rm V} = 0.59 \pi$ mm mrad
TT10: $\varepsilon_{H} = 1.2 \pi \text{ mm mrad}$ $\varepsilon_{V} = 0.5 \pi \text{ mm mrad}$	PS: 0.5 π mm mrad 0.3 π mm mrad	
Blow-up factors: 1.03 and 1.11		

During this MD session the momentum acceptance of the TT10 liner was measured both with "short" and "long" bunches:

 $\varepsilon_{\rm H} = 1.76 \ \pi \ \rm{mm} \ \rm{mrad}$ $\varepsilon_v = 0.51 \pi \text{ mm mrad}$

on line TT10 measurement:

TT10 momentum acceptance $\Delta p/p > +/- 4 \times 10^{-3}$

At $\Delta p/p = -5 \times 10^{-3}$ no beam in TT10

$\Delta p/p$ given at 2σ 0.3 π mm mrad 0.3 π mm mrad 0.3 π mm mrad	o/p = 0.6 x 10 ⁻³ PS: 0.6 π mm mrad 0.3 π mm mrad 0.3 π mm mrad Pb - Δp/p = 1.3 x 10 ⁻³ PS: 0.6 π mm mrad 0.3 π mm mrad	26 GeV - NOPHASEX Only on-line analysis - 20 bunches (5 ns long) - 10 ¹¹ ppb - Δp TT10: $\epsilon_{H} = 1.76 \pi$ mm mrad $\epsilon_{V} = 0.61 \pi$ mm mrad - Single bunch (5 ns long) - 8 - 9 x10 ¹⁰ - Single bunch (5 ns long) - 8 - 9 x10 ¹⁰ TT10: $\epsilon_{H} = 1.92 \pi$ mm mrad $\epsilon_{V} = 0.38 \pi$ mm mrad	inary results of the TT10 emittance measurements at 13 and 26 GeV fSEM grids in TT10 (1027 - 1028 - 1029 -136, 106 and 75 m from jection point) 15 wires - 2.5 mm pitch analysis of the grid data (Nodal program) analysis of the grid data (Nodal program) analysis of the raw data (noise measurement in the absence of beam, raction, gaussian fit, MAD calculation of the phase advance for and NOPHASEX optics) and NOPHASEX optics) Gaussian fit: $exp (-(x-\mu)^2/2\sigma^2)$ $g = 4\sigma^2/\beta$ $\Delta p/p$ given at 2σ
	ppb - Δp/p = 0.3 x10 ⁻³ PS: 0.54 π mm mrad	- Single bunch (30 ns long) - 8-9 x10 ¹⁰ TT10: $\varepsilon_{\rm H} = 1.16 \pi$ mm mrad	or of the emittance measurement: 10 - 20 %
	ppb - Δp/p = 1.3 x 10 ⁻³ PS: 0.6 π mm mrad	- Single bunch (5 ns long) - 8 - 9 x 10 ¹⁰ TT10: $s_{11} = 1 \ 92 \ \pi \ mm \ mrad$	Gaussian fit: $\exp(-(x-\mu)^2/2\sigma^2)$ $\varepsilon = 4\sigma^2/\beta$
Gaussian fit: exp $(-(x-\mu)^2/2\sigma^2)$ $\varepsilon = 4\sigma^2/\beta$ TT10: $\varepsilon_{u=1}$ 1.92 π mm mrad PS: 0.6 π mm mrad	PS: 0.6 π mm mrad 0.3 π mm mrad	TT10: $\varepsilon_H = 1.76 \pi \text{ mm mrad}$ $\varepsilon_V = 0.61 \pi \text{ mm mrad}$	nalysis of the raw data (noise measurement in the absence of beam, cction, gaussian fit, MAD calculation of the phase advance for id NOPHASEX optics)
alysis of the raw data (noise measurement in the absence of beam, tion, gaussian fit, MAD calculation of the phase advance for i NOPHASEX optics) $\epsilon_{v} = 0.61 \pi$ mm mrad PS: 0.6π mm mrad 0.3 π mm mrad 0.3 π mm mrad 0.3 π mm mrad 0.3 π mm mrad $\epsilon_{v} = 0.61 \pi$ mm mrad 0.3 π mm mrad 0.3 π mm mrad 0.3 π mm mrad $\epsilon_{v} = 0.61 \pi$ mm mrad 0.3 π mm mrad	ν/p = 0.6 x 10 ⁻³	- 20 bunches (5 ns long) - 10 ¹¹ ppb - Δp	nalysis of the grid data (Nodal program)
I yeis of the grid data (Nodal program)- 20 bunches (5 ns long) - 10^{11} ppb - $\Delta p/p = 0.6 \times 10^{-3}$ alysis of the raw data (noise measurement in the absence of beam, citon, gaussian fit, MAD calculation of the phase advance for $\varepsilon_H = 1.76 \pi$ mm mrad PS : 0.6π mm mrad 10.93π mm m mrad 10.93π mm mrad 10.93π mm m mrad 10.93π mm m m m m m m m m m m m m m m m m m		26 GeV - NOPHASEX Only on-line analysis	SEM grids in TT10 (1027 - 1028 - 1029 -136, 106 and 75 m from ction point) 15 wires - 2.5 mm pitch
26 GeV - NOPHASEX tion point) 15 wires - 2.5 mm pitch26 GeV - NOPHASEX Only on-line analysisalysis of the grid data (Nodal program)- 20 bunches (5 ns long) - 10 ¹¹ ppb - $\Delta p/p = 0.6 \times 10^3$ alysis of the grid data (noise measurement in the absence of beam, ction, gaussian fit, MAD calculation of the phase advance for i NOPHASEX optics)- 20 bunches (5 ns long) - 10 ¹¹ ppb - $\Delta p/p = 0.6 \times 10^3$ alysis of the raw data (noise measurement in the absence of beam, ction, gaussian fit, MAD calculation of the phase advance for i NOPHASEX optics)- 20 bunches (5 ns long) - 10 ¹¹ ppb - $\Delta p/p = 0.6 \times 10^3$ alysis of the raw data (noise measurement in the absence of beam, ction, gaussian fit, MAD calculation of the phase advance for i NOPHASEX optics)- 30.6 mm mrad cut (5 ns long) - 8 - 9 \times 10^{10} ppb - Ap/p = 1.3 \times 10^3Gaussian fit:exp (-(x-µ) ² /20 ²)- Single bunch (5 ns long) - 8 - 9 \times 10^{10} ppb - Ap/p = 1.3 \times 10^3			nary results of the TT10 emittance measurements at 13 and 26 GeV

11/00/93 22:38					G. Ar	rduini
TT10 emittance	: measurement o	of 06/06/95 - file	name PS1			
				$\langle \rangle$		
		1	BATCH 1	/	/	
	BSOI	027	BSQ	028	BSG	1029
	н /	<u>v</u>	н /	V	н /	<u>v</u>
		18	42	7	15	11
	/47	21	105	9	/31	53
	/119	29	234	45	<u> </u>	204
		202			323	
	660	1051	194	041	1168	1203
	038	1685	R86	1385	1100	1426
	038	1729	D18	1275	1381	1272
	976	991	856	926	1109	887
	931	418	743	576	673	477
	802	116	592	238	275	229
	607	25	897	108	97	121
	388	7	218	52	31	59
	207	6	99	24	13	23
	94	6	40	9	7	10
	114	114/	92	93	98	115
μ [mm]	1.95701790	-1.14704037	-0.15945983	-0.97200435	-1.37609005	-2.19275188
ð [mm]	6.52212238	3.86446667	6.68917751	4.88399315	4.93852234	5.33293724 /
4σ²/β [mmmrad]	3.5463895	1.09951019/	3.73038864	2.25900269	1.84311295	2.76850986/
	·····	/	`	<u> </u>		
	<u>_</u>					
	•		The second second			
	DECL		BATCH 2		PSC	1000
	BSGI	027	BATCH 2 BSG1	1028 V	BSGI	1029
	BSG1 H	027 V	BATCH 2 BSGI H	1028 V 7	BSGI H	1029 V 24
	BSG1 H 11 23	027 V 18 22	BATCH 2 BSGI H 22 58	V 7 19	BSG1 H 16	1029 V 24 141
	BSG1 H 11 23 59	027 V 18 22 29	BATCH 2 BSG1 H 22 58	1028 V 7 19 127	BSG1 H 16 34 358	1029 V 24 141 415
	BSG1 H 11 23 59 145	027 V 18 22 29 62	BATCH 2 BSG1 H 22 58 144 303	1028 V 7 19 127 404	BSG1 H 16 34 358 358	1029 V 24 141 415 832
	BSG1 H 11 23 59 145 303	027 V 18 22 29 62 285	BATCH 2 BSG1 H 22 58 144 303 505	1028 V 7 19 127 404 756	BSG H 16 34 358 358 358 787	1029 V 24 141 415 832 1198
	BSG1 H 11 23 59 145 303 503	027 V 18 22 29 62 285 1030	BATCH 2 BSG1 H 22 58 144 303 505 693	1028 V 7 19 127 404 756 1245	BSG H 16 34 358 358 358 787 1212	1029 V 24 141 415 832 1198 1450
	BSG1 H 11 23 59 145 303 503 716	027 V 18 22 29 62 285 1030 1687	BATCH 2 BSG1 H 22 58 144 303 505 693 836	1028 V 7 19 127 404 756 1245 1395	BSG H 16 34 358 358 358 787 1212 1413	1029 V 24 141 415 832 1198 1450 1264
	BSG1 H 11 23 59 145 303 503 716 866	027 V 18 22 29 62 285 1030 1687 1728	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915	1028 V 7 19 127 404 756 1245 1395 1028	BSG H 16 34 358 358 358 787 1212 1413 1356	1029 V 24 141 415 832 1198 1450 1264 954
	BSG1 H 11 23 59 145 303 503 716 866 966	027 V 18 22 29 62 285 1030 1687 1728 973	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900	V 7 19 127 404 756 1245 1395 1028 720	BSG H 16 34 358 358 358 787 1212 1413 1356 1037	V 24 141 415 832 1198 1450 1264 954 536
	BSG1 H 11 23 59 145 303 503 716 866 966 984	027 V 18 22 29 62 285 1030 1687 1728 973 404	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825	V 7 19 127 404 756 1245 1395 1028 720 344	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583	V 24 141 415 832 1198 1450 1264 954 536 252
	BSG1 H 11 23 59 145 303 503 716 866 966 984 905	027 V 18 22 29 62 285 1030 1687 1728 973 404 111	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695	V 7 19 127 404 756 1245 1395 1028 720 344 145	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221	V 24 141 415 832 1198 1450 1264 954 536 252 127
	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501	V 7 19 127 404 756 1245 1395 1028 720 344 145 66	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76	V 24 141 415 832 1198 1450 1264 954 536 252 127 65
	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 . 26	V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29
	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299 144	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 . 26 13	V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 29 12 20
	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743 527 314	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6 6 102 1030 1687 1728 1030 1687 1728 1030 1687 1728 1030 1687 1728 1030 1687 1728 1030 1687 1728 1728 1728 173 174 174 174 174 175 175 175 175 175 175 175 175	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299 144 60	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13 7 7 0	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 . 26 13 77	V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 127 65 29 17 7
	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743 527 314 156 127	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6 6 113	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299 144 60 93	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13 7 7 96	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 . 26 13 7 7 105	V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 12 7 7 126
	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743 527 314 156 127	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6 6 113 1450(2)(7)	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 2999 144 60 93	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13 7 96	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 26 13 7 7 105	V 24 1029 V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 127 7 126 4 18422176
μ (mm)	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743 527 314 156 127	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6 6 113 -1.14596367 2.89000282	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299 144 60 93 1.17644882	1028 V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13 7 96 -2.45123672 4.95(79577)	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 26 13 7 7 105 -2.10384083 5 17162022	V 24 1029 V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 127 65 29 127 7 126 -4.18423176 5.27652825
μ [mm] σ [mm]	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743 527 314 156 127 3.63903809 6.37330151	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6 6 113 -1.14596367 3.83920383 102512121	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299 144 60 93 299 1.17644882 1.17644882	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13 7 96 -2.45123672 4.85678577	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 26 33 77 105 -2.10384083 5.17168903 2001/217	V 24 1029 V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 127 65 29 127 7 126 -4.18423176 5.27653885 2.70653885
μ [mm] σ [mm] 4σ²/β [mmmrad]	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743 527 743 527 314 156 127 3.63903809 6.37330151 3.38639355	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6 6 113 -1.14596367 3.83920383 1.08518124	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299 144 60 93 299 1.17644882 6.56793404 3.59638596	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13 7 96 -2.45123672 4.85678577 2.23390484	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 26 13 77 105 -2.10384083 5.17168903 2.02126217	V 24 1029 V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 127 65 29 127 7 126 -4.18423176 5.27653885 2.71026230
μ [mm] σ [mm] 4σ²/β [mmmrad]	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743 527 743 527 314 156 127 3.63903809 6.37330151 3.38639355	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6 6 113 -1.14596367 3.83920383 1.08518124	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299 144 60 93 299 144 60 93 1.17644882 6.56793404 3.59638596	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13 7 96 -2.45123672 4.85678577 2.23390484	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 26 33 77 105 -2.10384083 5.17168903 2.02126217	V 24 1029 V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 127 65 29 127 65 29 126 -4.18423176 5.27653885 2.71026230 41001
μ [mm] σ [mm] 4σ²/β [mm mrad]	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743 527 314 156 127 3.63903809 6.37330151 3.38639355	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6 6 113 -1.14596367 3.83920383 1.08518124	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299 144 60 93 299 144 60 93 1.17644882 6.56793404 3.59638596	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13 7 96 -2.45123672 4.85678577 2.23390484 42.237	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 26 1037 583 221 76 26 13 7 7 105 -2.10384083 5.17168903 2.02126217	V 24 1029 V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 127 65 29 127 65 29 126 -4.18423176 5.27653885 2.71026230 41.091
$\mu [mm]$ $\sigma [mm]$ $4\sigma^2 /\beta [mm mrad]$	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743 527 314 156 127 3.63903809 6.37330151 3.38639355 47.979 -1.469	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6 6 6 113 -1.14596367 3.83920383 1.08518124 54.330 1.605 2.007	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299 144 60 93 299 144 60 93 1.17644882 6.56793404 3.59638596 52.880 1.337	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13 13 7 96 -2.45123672 4.85678577 2.23390484 42.237 -1.083 2.0%	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 26 26 13 7 7 105 -2.10384083 5.17168903 2.02126217 52.930 -1.313 2.207	V 24 1029 V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 127 65 29 127 -4.18423176 5.27653885 2.71026230 41.091 1.071 2.167
$\mu [mm]$ $\sigma [mm]$ $4\sigma^{2}/\beta [mm mrad]$ $\beta [m]$ α $\phi [2\pi]$	BSG1 H 11 23 59 145 303 503 716 866 966 984 905 743 527 743 527 314 156 127 3.63903809 6.37330151 3.38639355 47.979 -1.469 3.103	027 V 18 22 29 62 285 1030 1687 1728 973 404 111 24 7 6 6 113 -1.14596367 3.83920383 1.08518124 54.330 1.605 2.927 54.50	BATCH 2 BSG1 H 22 58 144 303 505 693 836 915 900 825 695 501 299 144 60 93 299 144 60 93 1.17644882 6.56793404 3.59638596 52.880 1.337 3.169	V 7 19 127 404 756 1245 1395 1028 720 344 145 66 30 13 7 96 -2.45123672 4.85678577 2.23390484 42.237 -1.083 3.085	BSG H 16 34 358 358 358 787 1212 1413 1356 1037 583 221 76 26 26 13 7 7 105 -2.10384083 5.17168903 2.02126217 52.930 -1.313 3.307	V 24 1029 V 24 141 415 832 1198 1450 1264 954 536 252 127 65 29 127 65 29 127 -4.18423176 5.27653885 2.71026230 41.091 1.071 3.167 -0.17

	BAT	CH 1/	BATCH 2		
	Н	/ v	H	v	
Calculated emittance $[\pi \text{ mm.mrad}]$	2.344	1.747	2.456	1.717	
Calculated β [m]	72.57	34.19	66.15	34.34	
Calculated a	-2.314	1.021	-2.100	1.011	

2

Distribution list

B.W. AllardycePSK.H. KisslerSLG. ArduiniSLP. LefèvrePSB. AutinPSR. LeyPSS. BairdPSM. LindroosPSJ. BeilemanPST. LinnecarSLJ. BoillotPSJ. MadsenPSJ. BosserPSD. ManglunkiPSM. BouthéonPSM. MartiniPSB. BrouzetSLS. MauryPSH. BraunPSC. MetzgerPSJ. ClendeninPSD. MoehlPSF. CaspersPSH. MulderPSM. ChanelPSF. PedersenPSV. ChohanPSJ. PotierPSS. CornelisSLJ.P. PotierPSG. DaemsPSJ. RichePSJ.P. DelahayePSJ. RichePSJ.P. DelahayePSJ. RichePSJ. DumollardPSG. SchneiderPSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSG. GelatoPSF. VarennePSJ. GorzalezPSH. UmstatterPSJ. GorzalezPSH. UmstatterPSJ. GorzalezPSH. VaretnarPSJ. GorzalezPSH. VaretnarPSJ. GorzalezPSH. UmstatterPSJ. G	V. Agoritsas	PS	S. Johnston	PS
G. ArduiniSLP. LefèvrePSB. AutinPSR. LeyPSS. BairdPSM. LindroosPSJ. BellemanPST. LinnecarSLJ. BoillotPSJ. MadsenPSJ. BosserPSD. ManglunkiPSM. BouthéonPSM. MartiniPSE. BrouzetSLS. MauryPSH. BraunPSG. MetralPSP. CappiPSC. MetzgerPSJ. ClendeninPSD. MoehlPSF. CaspersPSH. MulderPSM. ChanelPSF. PedersenPSV. ChohanPSU. RaichPSG. OzemsPSJ. RichePSJ. DekkersPSJ. RichePSJ. DekkersPSJ. RichePSJ. DumollardPSG. SchneiderPSJ. EvansPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSE. SchultePSJ. FraserDSUC. SteinbachPSG. GelatoPSG. TranquillePSJ. GrozelezPSH. UmstatterPSJ. GozalezPSH. UmstatterPSJ. GruberPSF. VarennePSJ. GruberPSH. UmstatterPSJ. GruberPSD. WarnerPSJ. GianniniPSD. Warner	B.W. Allardyce	PS	K.H. Kissler	SL
B. AutinPSR. LeyPSS. BairdPSM. LindroosPSJ. BeilemanPST. LinnecarSLJ. BoillotPSJ. MadsenPSJ. BosserPSD. ManglunkiPSM. BouthéonPSM. MartiniPSM. BouthéonPSM. MartiniPSR. CappiPSC. MetzgerPSJ. ClendeninPSC. MetzgerPSJ. ClendeninPSPSC. MetzgerM. ChanelPSF. PedersenPSV. ChohanPSF. PetriollatPSK. CornelisSLJ.P. PotierPSG. CyvoctPSU. RaichPSJ. DekkersPSJ. RichePSJ. P. DelahayePSJ.P. RiunaudPSD. DumollardPSE. SchnidlePSJ. DurnieuPSE. SchniderPSJ. ErikssonPSE. SchniderPSJ. FaugierSLT.R. SherwoodPSJ. FaugierSLT.R. SherwoodPSG. GalatoPSG. TranquillePSR. GarobyPSE. TankePSJ. GouzalezPSH. UlmstatterPSJ. GouzalezPSH. UmstatterPSJ. GruberPSF. VarennePSJ. GanuniniPSH. VaretnarPSJ. GruberPSH. UmstatterPSJ. GiovannozziPSH. UmstatterPS <td< td=""><td>G. Arduini</td><td>SL</td><td>P. Lefèvre</td><td>PS</td></td<>	G. Arduini	SL	P. Lefèvre	PS
S. BairdPSM. LindroosPSJ. BellemanPST. LinnecarSLJ. BoillotPSJ. MadsenPSJ. BosserPSD. ManglunkiPSM. BouthéonPSM. MartiniPSE. BrouzetSLS. MauryPSR. CappiPSG. MetralPSJ. ClendeninPSD. MoehlPSJ. ChanelPSF. CapersPSJ. ChanelPSF. PedersenPSV. ChohanPSF. PerriollatPSS. CayvoctPSJ.P. PotierPSG. DaemsPSJ. RaichPSD. DekkersPSJ. RichePSJ. DumollardPSF. SchindlPSJ. ErikssonPSE. SchultePSJ. ErikssonPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSJ. FraseerDSUC. SteinbachPSG. GelatoPSF. SandorpePSJ. GorozalezPSH. UmstatterPSJ. GorozalezPSF. VarennePSJ. GoruberPSK. VosSLH. HaserothPSH. WunstatterPSJ. GiuniniPSD. VarnerPSJ. GiuberPSD. VarnerPSJ. GiuberPSD. VarnerPSJ. GiuberPSD. VarnerPSJ. GiuberPSD. VarnerPSJ. GiuberPS <td>B. Autin</td> <td>PS</td> <td>R. Ley</td> <td>PS</td>	B. Autin	PS	R. Ley	PS
J. BellemanPST. LinnecarSLJ. BoillotPSJ. MadsenPSJ. BosserPSD. ManglunkiPSM. BouthéonPSM. MartiniPSB. BrouzetSLS. MauryPSH. BraunPSG. MetralPSP. CappiPSC. MetzgerPSJ. ClendeninPSD. MoehlPSJ. ClendeninPSF. PedersenPSJ. ChohanPSF. PedersenPSV. ChohanPSF. PetriollatPSK. CornelisSLJ.P. PotierPSG. OyvoctPSU. RaichPSG. DaemsPSJ. RichePSJ. DekkersPSJ. RichePSJ. DekkersPSJ. RichePSD. DuwollardPSG. SchneiderPSJ. EvansPSE. SchultePSJ. EvansPSD. SimonPSJ. FaugierSLT. R. SherwoodPSJ. FaugierSLT. R. SherwoodPSG. GatobyPSE. TankePSG. GatobyPSE. TankePSJ. GonzalezPSH. UllrichPSJ. GonzalezPSH. VarennePSJ. GruberPSH. VarennePSJ. GonzalezPSH. VarennePSJ. GruberPSD. WarnerPSJ. GuiberPSD. WarnerPSJ. HaserothPSM. Vrete	S. Baird	PS	M. Lindroos	PS
J. BoillotPSJ. MadsenPSJ. BosserPSD. ManglunkiPSM. BouthéonPSM. MartiniPSE. BrouzetSLS. MauryPSH. BraunPSG. MetralPSR. CappiPSC. MetzgerPSJ. ClendeninPSD. MoehlPSJ. ClendeninPSF. PedersenPSJ. ClendeninPSF. PedersenPSM. ChanelPSF. PedersenPSV. ChohanPSF. PerriollatPSV. ChohanPSF. PerriollatPSG. CyvoctPSU. RaichPSG. DaemsPSJ.P. PotierPSJ. DekkersPSJ.P. RiunaudPSJ. DekkersPSJ.P. RiunaudPSD. DekkersPSJ.P. RiunaudPSD. DumollardPSG. SchneiderPSJ. EvansPSE. SchultePSJ. EvansPSE. ShaposhikovaSLA. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. GelatoPSG. TranquillePSM. GiovannozziPSH. UmstatterPSJ. GonzalezPSH. VarennePSJ. GonzalezPSH. VarennePSJ. GonzalezPSD. VarenePSJ. GonzalezPSH. VarennePSJ. GonzalezPSD. VarenePSJ. Ha	J. Belleman	PS	T. Linnecar	SL
J. BosserPSD. ManglunkiPSM. BouthéonPSM. MartiniPSE. BrouzetSLS. MauryPSH. BraunPSG. MetralPSR. CappiPSC. MetzgerPSJ. ClendeninPSD. MoehlPSF. CaspersPSH. MulderPSM. ChanelPSF. PedersenPSV. ChohanPSF. PedriollatPSK. CornelisSLJ.P. PotierPSG. OyvoctPSU. RaichPSG. DaemsPSJ. RichePSD. DekkersPSJ.P. RiunaudPSD. DekkersPSJ.P. RiunaudPSD. DekkersPSJ.P. RiunaudPSD. DekkersPSJ. RichePSD. DumollardPSG. SchneiderPSJ. EvansPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSE. SchultePSG. GelatoPSG. TranquillePSG. GelatoPSG. TranquillePSG. GoraberPSH. UllrichPSJ. GonzalezPSH. UllrichPSJ. GonzalezPSH. VarennePSJ. GonzalezPSF. VarennePSJ. GonzalezPSM. VretenarPSJ. GiovannozziPSM. VretenarPSJ. HaserothPS </td <td>J. Boillot</td> <td>PS</td> <td>J. Madsen</td> <td>PS</td>	J. Boillot	PS	J. Madsen	PS
M. BouthéonPSM. MartiniPSE. BrouzetSLS. MauryPSH. BraunPSG. MetralPSR. CappiPSC. MetzgerPSJ. ClendeninPSD. MoehlPSF. CaspersPSH. MulderPSM. ChanelPSF. PedersenPSV. ChohanPSF. PedersenPSK. CornelisSLJ.P. PotierPSG. CyvoctPSU. RaichPSG. DaemsPSN. RasmussenPSD. DekkersPSJ.RichePSJ.P. DelahayePSJ.P. RiunaudPSG. DaemsPSG. SchneiderPSJ.P. DelahayePSJ.P. RiunaudPSD. DumollardPSG. SchneiderPSJ. ErikssonPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSD. SimonPSB. FrammeryPSD. SimonPSG. GelatoPSG. TranquillePSR. GarobyPSE. TankePSJ. GruberPSF. VarennePSJ. GruberPSF. VarennePSJ. GruberPSF. VarennePSJ. GruberPSM. VretenarPSJ. GruberPSF. VarennePSJ. GruberPSM. VretenarPSJ. GruberPSD. WarnerPSJ. HilaireSLE. Wildne	J. Bosser	PS	D. Manglunki	PS
E. BrouzetSLS. MauryPSH. BraunPSG. MetralPSR. CappiPSC. MetzgerPSJ. ClendeninPSD. MoehlPSF. CaspersPSH. MulderPSM. ChanelPSF. PedersenPSW. ChohanPSF. PedersenPSK. CornelisSLJ.P. PotierPSG. CyvoctPSU. RaichPSG. DaemsPSN. RasmussenPSD. DekkersPSJ. RichePSJ.P. DelahayePSJ.P. RiunaudPSD. DumollardPSG. SchneiderPSD. DurieuPSH. SchönauerPSL. DurieuPSE. SchultePSJ. EvansPSE. SchultePSB. FrammeryPSD. SimonPSG. GelatoPSG. TranquillePSR. GarobyPSS. G. TranquillePSR. GiovannozziPSF. VarennePSJ. GruberPSF. VarennePSJ. GonzalezPSF. VarennePSJ. GruberPSF. VarennePSJ. GruberPSM. VretenarPSJ. GruberPSM. VretenarPSJ. GruberPSM. VretenarPSJ. HaaserothPSM. VretenarPSJ. HilaireSLE. Wildner-MalandainPSJ. HillirePSD. J. WilliamsPSK. Hübn	M. Bouthéon	PS	M. Martini	PS
H. BraunPSG. MetralPSR. CappiPSC. MetzgerPSJ. ClendeninPSD. MoehlPSF. CaspersPSH. MulderPSM. ChanelPSF. PedersenPSM. ChanelPSF. PerriollatPSV. ChohanPSF. PerriollatPSK. CornelisSLJ.P. PotierPSG. CyvoctPSU. RaichPSG. DaemsPSJ. RichePSD. DekkersPSJ. RichePSJ.P. DelahayePSJ. RichePSG. De RijkSLK. SchindlPSG. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSJ. EvansPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSD. SimonPSB. FrammeryPSD. SimonPSG. GelatoPSG. TranquillePSG. GelatoPSF. VarennePSJ. GonzalezPSF. VarennePSJ. GruberPSF. VarennePSJ. GruberPSF. VarennePSJ. GruberPSM. VretenarPSJ. GruberPSD. WarnerPSJ. GruberPSD. WarnerPSJ. MicherPSD. WarnerPSJ. HilaireSLE. Wildner-MalandainPSJ. HilbinerDGE. Lens	E. Brouzet	SL	S. Maury	PS
R. CappiPSC. MetzgerPSJ. ClendeninPSD. MoehlPSF. CaspersPSH. MulderPSM. ChanelPSF. PedersenPSV. ChohanPSF. PerriollatPSK. CornelisSLJ.P. PotierPSG. CyvoctPSU. RaichPSG. DaemsPSN. RasmussenPSD. DekkersPSJ. RichePSJ.P. DelahayePSJ.P. RiunaudPSG. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSD. DurieuPSH. SchönauerPSI. ErikssonPSE. SchultePSJ. EvansPSE. SchaposhnikovaSLA. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. GelatoPSG. TranquillePSG. GelatoPSF. VarennePSJ. GiovanozziPSH. UllrichPSJ. GonzalezPSF. VarennePSJ. GuberPSF. VarennePSJ. GuberPSD. WandorpePSJ. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSJ. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. IensenPS	H. Braun	PS	G. Metral	PS
J. ClendeninPSD. MoehlPSF. CaspersPSH. MulderPSM. ChanelPSF. PedersenPSM. ChanelPSF. PedersenPSV. ChohanPSF. PerriollatPSK. CornelisSLJ.P. PotierPSG. CyvoctPSU. RaichPSG. DaemsPSN. RasmussenPSD. DekkersPSJ.RichePSJ.P. DelahayePSJ.P. RiunaudPSG. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSD. DumollardPSG. SchneiderPSJ. EvansPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSD. SimonPSB. FrammeryPSD. SimonPSG. GalatoPSG. TrankePSG. GelatoPSH. UllrichPSM. GiovannozziPSH. UllrichPSJ. GruberPSF. VarennePSJ. GiovannozziPSF. VarennePSJ. GuberPSM. VretenarPSJ. MienerPSD. WarnerPSJ. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. Wildner-MalandainPSK. HübnerDGE. IensenPS	R. Cappi	PS	C. Metzger	PS
F. CaspersPSH. MulderPSM. ChanelPSF. PedersenPSV. ChohanPSF. PetriollatPSV. ChohanPSJ.P. PotierPSG. CyvoctPSU. RaichPSG. DaemsPSN. RasmussenPSD. DekkersPSJ.P. RiunaudPSD. DekkersPSJ.P. RiunaudPSD. DekkersPSJ.P. RiunaudPSD. DekkersPSJ.P. RiunaudPSD. DumollardPSG. SchneiderPSD. DurnollardPSG. SchneiderPSJ. EvansPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSD. SimonPSB. FraanmeryPSD. SimonPSG. GelatoPSG. TranquillePSR. GarobyPSE. TankePSJ. GonzalezPSH. UllrichPSJ. GruberPSF. VarennePSJ. GruberPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSK. HübnerDGE. Wildner-MalandainPSK. HübnerDGE. LensenPS	J. Clendenin	PS	D. Moehl	PS
M. ChanelPSF. PedersenPSV. ChohanPSF. PerriollatPSK. CornelisSLJ.P. PotierPSG. CyvoctPSU. RaichPSG. DaemsPSN. RasmussenPSD. DekkersPSJ. RichePSJ.P. DelahayePSJ.P. RiunaudPSG. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSD. DumollardPSG. SchneiderPSJ. EvansPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSD. SimonPSG. FraserDSUC. SteinbachPSG. GelatoPSG. TranquillePSR. GarobyPSH. UllrichPSJ. GonzalezPSH. UlmstatterPSJ. GruberPSF. VarennePSJ. GruberPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSJ.Y. HémeryPSD. J. WilliamsPSK. HübnerDGFSD. J. WilliamsPS	F. Caspers	PS	H. Mulder	PS
V. ChohanPSF. PerriollatPSK. CornelisSLJ.P. PotierPSG. CyvoctPSU. RaichPSG. DaemsPSN. RasmussenPSD. DekkersPSJ. RichePSJ.P. DelahayePSJ.P. RiunaudPSG. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSD. DumollardPSG. SchneiderPSL. DurieuPSH. SchönauerPSJ. EvansPSE. SchultePSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSG. GarobyPSE. TankePSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSJ. GonzalezPSF. VarennePSJ. GruberPSPSP. VarennePSJ. GruberPSM. VretenarPSJ. GuberPSD. WarnerPSJ. HancockPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSJ.Y. HémeryPSD. J. WilliamsPSK. HübnerDGE. LensenPS	M. Chanel	PS	F. Pedersen	PS
K. CornelisSLJ.P. PotierPSG. CyvoctPSU. RaichPSG. DaemsPSN. RasmussenPSD. DekkersPSJ. RichePSJ.P. DelahayePSJ.P. RiunaudPSG. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSL. DurieuPSH. SchönauerPSJ. EvansPSE. SchultePSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSG. GraserDSUC. SteinbachPSG. GelatoPSG. TranquillePSM. GiovannozziPSH. UllrichPSJ. GruberPSF. VarennePSJ. GurberPSF. VarennePSJ. GurberPSF. VarennePSJ. HancockPSL. VosSLH. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSK. HülherDGE. IensenPS	V. Chohan	PS	F. Perriollat	PS
G. CyvoctPSU. RaichPSG. DaemsPSN. RasmussenPSD. DekkersPSJ. RichePSJ.P. DelahayePSJ.P. RiunaudPSG. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSD. DurieuPSH. SchönauerPST. ErikssonPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSD. SimonPSB. FrammeryPSD. SimonPSG. GelatoPSG. TranquillePSR. GarobyPSG. TranquillePSR. GianniniPSH. UllrichPSJ. GonzalezPSF. VarennePSJ. GruberPSF. VarennePSJ. GruberPSD. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSK. HübnerDGE. LensenPSK. HübnerDGE. LensenPS	K. Cornelis	SL	J.P. Potier	PS
G. DaemsPSN. RasmussenPSD. DekkersPSJ. RichePSJ.P. DelahayePSJ.P. RiunaudPSG. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSD. DurieuPSH. SchönauerPST. ErikssonPSE. SchultePSJ. EvansPSE. SchultePSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. GalatoPSE. TankePSG. GelatoPSG. TranquillePSR. GiovannozziPSH. UllrichPSJ. GonzalezPSF. VarennePSJ. GruberPSF. VarennePSJ. GruberPSM. VretenarPSJ. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSK. HübnerDGE. IensenPSK. HübnerDGE. LensenPS	G. Cyvoct	PS	U. Raich	PS
D. DekkersPSJ. RichePSJ.P. DelahayePSJ.P. RiunaudPSG. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSL. DurieuPSH. SchönauerPST. ErikssonPSE. SchultePSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. FraserDSUC. SteinbachPSG. GelatoPSG. TranquillePSR. GarobyPSE. TankePSG. GelatoPSH. UllrichPSJ. GonzalezPSB. VandorpePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSK. HübnerDGF. VilliamsPSE. IensenPSPSF. Villiams	G. Daems	PS	N. Rasmussen	PS
J.P. DelahayePSJ.P. RiunaudPSG. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSL. DurieuPSH. SchönauerPST. ErikssonPSE. SchultePSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. FraserDSUC. SteinbachPSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSJ. GonzalezPSF. VarennePSJ. GruberPSF. VarennePSJ. GruberPSL. VosSLH. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSK. HüllireSLE. Wildner-MalandainPSK. HübnerDGFSD. J. WilliamsPS	D. Dekkers	PS	J. Riche	PS
G. De RijkSLK. SchindlPSD. DumollardPSG. SchneiderPSL. DurieuPSH. SchönauerPST. ErikssonPSE. SchultePSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. GraserDSUC. SteinbachPSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSM. GiovannozziPSB. VandorpePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. JensenPS	J.P. Delahaye	PS	J.P. Riunaud	PS
D. DumollardPSG. SchneiderPSL. DurieuPSH. SchönauerPST. ErikssonPSE. SchultePSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. FraserDSUC. SteinbachPSR. GarobyPSE. TankePSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSM. GiovannozziPSB. VandorpePSJ. GonzalezPSF. VarennePSJ. GruberPSK. VardorpePSS. HancockPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. JensenPS	G. De Rijk	SL	K. Schindl	PS
L. DurieuPSH. SchönauerPST. ErikssonPSE. SchultePSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. FraserDSUC. SteinbachPSR. GarobyPSE. TankePSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSM. GiovannozziPSB. VandorpePSJ. GonzalezPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. JensenPS	D. Dumollard	PS	G. Schneider	PS
T. ErikssonPSE. SchultePSJ. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. FraserDSUC. SteinbachPSR. GarobyPSE. TankePSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSM. GiovannozziPSH. UmstatterPSJ. GonzalezPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. JensenPS	L. Durieu	PS	H. Schönauer	PS
J. EvansPSE. ShaposhnikovaSLA. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. FraserDSUC. SteinbachPSR. GarobyPSE. TankePSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSM. GiovannozziPSH. UmstatterPSJ. GonzalezPSF. VarennePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSK. HübnerDGF. VarennePSK. HübnerPSD. J. WilliamsPS	T. Eriksson	PS	E. Schulte	PS
A. FaugierSLT.R. SherwoodPSB. FrammeryPSD. SimonPSG. FraserDSUC. SteinbachPSR. GarobyPSE. TankePSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSM. GiovannozziPSH. UmstatterPSJ. GonzalezPSB. VandorpePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. lensenPS	J. Evans	PS	E. Shaposhnikova	SL
B. FrammeryPSD. SimonPSG. FraserDSUC. SteinbachPSR. GarobyPSE. TankePSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSM. GiovannozziPSH. UmstatterPSJ. GonzalezPSB. VandorpePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. lensenPS	A. Faugier	SL	T.R. Sherwood	PS
G. FraserDSUC. SteinbachPSR. GarobyPSE. TankePSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSM. GiovannozziPSH. UmstatterPSJ. GonzalezPSB. VandorpePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. lensenPS	B. Frammery	PS	D. Simon	PS
R. GarobyPSE. TankePSG. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSM. GiovannozziPSH. UmstatterPSJ. GonzalezPSB. VandorpePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSD. WarnerPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. lensenPS	G. Fraser	DSU	C. Steinbach	PS
G. GelatoPSG. TranquillePSR. GianniniPSH. UllrichPSM. GiovannozziPSH. UmstatterPSJ. GonzalezPSB. VandorpePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSK. HübnerDGE. lensenPS	R. Garoby	PS	E. Tanke	PS
R. GianniniPSH. UllrichPSM. GiovannozziPSH. UmstatterPSJ. GonzalezPSB. VandorpePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSCh. HillPSD. J. WilliamsPSK. HübnerDGE. JensenPS	G. Gelato	PS	G. Tranquille	PS
M. GiovannozziPSH. UmstatterPSJ. GonzalezPSB. VandorpePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSCh. HillPSD. J. WilliamsPSK. HübnerDGE. JensenPS	R. Giannini	PS	H. Ullrich	PS
J. GonzalezPSB. VandorpePSJ. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSCh. HillPSD. J. WilliamsPSK. HübnerDGE. JensenPS	M. Giovannozzi	PS	H. Umstatter	PS
J. GruberPSF. VarennePSS. HancockPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSCh. HillPSD. J. WilliamsPSK. HübnerDGE. JensenPS	J. Gonzalez	PS	B. Vandorpe	PS
S. HancockPSL. VosSLH. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSCh. HillPSD. J. WilliamsPSK. HübnerDGE. lensenPS	J. Gruber	PS	F. Varenne	PS
H. HaserothPSM. VretenarPSJ.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSCh. HillPSD. J. WilliamsPSK. HübnerDGE. lensenPS	S. Hancock	PS	L. Vos	SL
J.Y. HémeryPSD. WarnerPSA. HilaireSLE. Wildner-MalandainPSCh. HillPSD. J. WilliamsPSK. HübnerDGE. JensenPS	H. Haseroth	PS	M. Vretenar	PS
A. HilaireSLE. Wildner-MalandainPSCh. HillPSD. J. WilliamsPSK. HübnerDGE. JensenPS	J.Y. Hémery	PS	D. Warner	PS
Ch. HillPSD. J. WilliamsPSK. HübnerDGE. JensenPS	A. Hilaire	SL	E. Wildner-Malandain	PS
K. Hübner DG E. Jensen PS	Ch. Hill	PS	D. J. Williams	PS
E. Jensen PS	K. Hübner	DG	-	
	E. Jensen	PS		