PS / PA Spec 92 - 02 4 Novembre 1992

SPECIFICATION OF THE STEEL LAMINATIONS FOR PS PULSED SEPTUM MAGNETS

M.Thivent - R.Valbuena

1. INTRODUCTION

1.1 General.

To inject or eject the partcule beams between the CERN different accelerators of the PS (Proton Synchrotron) complex, septum magnets are required. These dipole magnets have to produce a very homogenous field between their two pole faces together with a very low leakage field on the outside of the magnet gaps.

These dipole magnets will work inside a vacuum chamber with a pressure level of $1 \times 10-8$ torr when pulsed and operate at a maximum rate of 1.2 sec. with a pulse duration of 3 msecs. These constraints imply the use of very high quality materials and tight tolerances for their manufacture. This specification outlines the requirements to ensure a reliable magnet for these applications.

1.2 Typical Magnet Characteristics.

Nominal magnetic induction	1 to 1.3 Tesla
Vertical gap height	20 to 60 mm
Horizontal gap width	60 to 100 mm
Maximun lamination sizes	160 x 160 mm2
Maximun core length	1000 mm

2. STEEL CHARACTERISTICS

2.1 Material.

We exclude in advance steels of Fe Co class because of the presence of nuclear radiation, so that the choice is mainly directed towards soft magnetic steel (i.e. non oriented -3% content silicon -steel).

2.2 Laminations thickness.

Because of the relatively short pulse length corresponding to a frequency of 200 Hz the lamination thickness should not exceed 0.35 mm.

2.3 Magnetic characteristics.

Saturation induction level	Bsat > 1.5 T.			
Coercitive force (after B=1.5 T.)				

Minimum values in the final steel state

B en T.	0.5	0.8	1	1.2	1.3	1.4	1.5
H en A/m	40	80	120	200	300	500	1300
relative .perm.	10000	8000	6700	4800	3500	2200 ·	900

3. INSULATION

3.1 Material

Since the magnet works in ultra-high vacuum ($P < 5 \times 10.9$ Torr) only an inorganic insulation layer would be acceptable. The laminations must be coated on both faces and insulation thickness should not exceed 3% of the total thickness of the lamination (thickness around 3 microns on each face should be suffisant)

The insulating coating must conserve all properties after a bake-out under vacuum at 300°C

3.2 Resistivity

A minimum surface resistance of 15 ohm.cm2 is required

4. FINAL TREATMENT

The supplier should indicate if an special treatment is necessairy after the punching operation in order to reach the magnetic performances

5. FORM OF SUPPLY

Material should be delivered in flat sheet form.