
Generalizing mkFit and its Application to HL-LHC

Giuseppe Cerati4, Peter Elmer2, Patrick Gartung4, Leonardo Giannini1, Matti Kortelainen4,
Vyacheslav Krutelyov1, Steven Lantz3, Mario Masciovecchio1, Tres Reid3, Allison Reinsvold
Hall5, Daniel Riley3, Matevž Tadel1,*, Emmanouil Vourliotis1, Peter Wittich3, and Avi
Yagil1on behalf of the CMS collaboration
1UC San Diego, La Jolla, CA, USA 92093
2Princeton University, Princeton, NJ, USA 08544
3Cornell University, Ithaca, NY, USA 14853
4Fermilab, Batavia, IL, USA 60510-5011
5US Naval Academy, Annapolis, MD, USA 21402

Abstract. mkFit is an implementation of the Kalman filter-based track recon-
struction algorithm that exploits both thread- and data-level parallelism. In the
past few years the project transitioned from the R&D phase to deployment in the
Run-3 offline workflow of the CMS experiment. The CMS tracking performs
a series of iterations, targeting reconstruction of tracks of increasing difficulty
after removing hits associated to tracks found in previous iterations. mkFit
has been adopted for several of the tracking iterations, which contribute to the
majority of reconstructed tracks. When tested in the standard conditions for
production jobs, speedups in track pattern recognition are on average of the or-
der of 3.5x for the iterations where it is used (3-7x depending on the iteration).
Multiple factors contribute to the observed speedups, including vectorization
and a lightweight geometry description, as well as improved memory manage-
ment and single precision. Efficient vectorization is achieved with both the icc
and the gcc (default in CMSSW) compilers and relies on a dedicated library
for small matrix operations, Matriplex, which has recently been released in a
public repository. While the mkFit geometry description already featured lev-
els of abstraction from the actual Phase-1 CMS tracker, several components of
the implementations were still tied to that specific geometry. We have further
generalized the geometry description and the configuration of the run-time pa-
rameters, in order to enable support for the Phase-2 upgraded tracker geometry
for the HL-LHC and potentially other detector configurations. The implemen-
tation strategy and high-level code changes required for the HL-LHC geometry
are presented. Speedups in track building from mkFit imply that track fitting
becomes a comparably time consuming step of the tracking chain. Prospects
for an mkFit implementation of the track fit are also discussed.

1 Introduction

The mkFit project was started in 2014 with the goal of exploring how the traditional Kalman
filter based track fitting and track finding [1] can be rethought and optimized in the age of – at

*e-mail: mtadel@ucsd.edu

EPJ Web of Conferences 295, 03019 (2024) https://doi.org/10.1051/epjconf/202429503019
CHEP 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

that time, novel – many-core, vectorized computing architectures. After initial positive results
on simplified detector geometries the focus was shifted to applying the mkFit algorithm to
silicon detector track finding for the CMS experiment [2], resulting in a viable prototype in
2018 and culminating in a final one-year integration and validation campaign in 2021. Since
the beginning of LHC Run3 in 2022 [3], mkFit is used by CMS to reconstruct five out of
twelve tracking iterations covering 90% of found tracks with pT > 0.5 GeV/c. An in-depth
review of mkFit, including detailed motivation and algorithm description, has been published
[4]. An overview of early work with further references can be found in [5] and physics
performance of mkFit in CMS Run3 is available as a CMS Detector Performance note [6].

This paper focuses on improvements and extensions of mkFit that were required to sup-
port running of multiple tracking iterations in CMS software (CMSSW) as well as to prepare
it for implementation of tracking after the Phase-2 detector upgrades expected around 2030,
in the High Luminosity LHC (HL-LHC) era. Section 2 introduces how mkFit is structured
and run within CMSSW. A detailed presentation of required generalizations of geometry de-
scription, configuration and steering systems is given in section 3. Currently ongoing and
planned or possible future work is discussed in section 4.

2 mkFit in CMSSW

mkFit was initially developed as a standalone tracking library and at first included into
CMSSW as an external package. This mode of operation was used for development, physics
performance tuning and benchmarking. However, one of the conditions for using mkFit in
production was for the code to be incorporated into the core CMSSW distribution, to make
the software building, configuration, and patching for online and offline use compatible with
CMS’s requirements for computing operations. This section discusses the high-level code
structure of mkFit in CMSSW; outlines steps performed by mkFit in a typical CMSSW recon-
struction job; and, finally, presents some highlights of physics and computing performance.

2.1 Code structure

mkFit code is structured into three CMSSW packages:

• MkFitCore holds the central components of mkFit, including all computational algorithms,
internal data formats and geometry description, as well as configuration structures and re-
lated processing code. This core package is independent of any experiment or geometry
details. It does not depend on or interact directly with any CMSSW modules or data for-
mats.

• MkFitCMS contains helper algorithms, called standard functions, that perform specific tasks
during track finding: seed pre-processing, candidate scoring, candidate filtering, and du-
plicate removal. These codes use mkFit internal data formats and still do not depend on
CMSSW.

• MkFit is the actual bridge between mkFit and CMSSW. It defines the CMSSW producer
modules for both configuration and data-processing. It uses CMSSW specific mechanisms
to pull in configuration and event-data, transforms them into mkFit internal structures and
calls appropriate steering functions. It depends both on MkFitCore (data-formats and ge-
ometry) and MkFitCMS (steering and standard functions) packages.

Standalone operation of mkFit is still possible and is frequently used for validation, tun-
ing, development, and debugging. To support this mode, packages MkFitCore and MkFitCMS
contain additional code and makefiles in sub-directory standalone/ that is not used by

EPJ Web of Conferences 295, 03019 (2024) https://doi.org/10.1051/epjconf/202429503019
CHEP 2023

2

CMSSW build or touched by CMSSW code managements tools. This allows for keeping
all mkFit related files stored in a single repository. A minimal additional repository with ex-
ternal packages that would otherwise be used from CMSSW or CMSSW’s external software
still needs to be maintained separately for standalone builds.1

2.2 Track finding algorithm

Details of CMS track reconstruction and iterative tracking can be found in [7]. Here we are
concerned with processing as it occurs for every iteration after the seed tracks have been
found. Input to track finding is a vector of seed tracks, each consisting of a list of associated
hits and the initial estimate of the track parameters at the final, outermost point. After that,
mkFit processing steps are as follows:

1. Seed cleaning is performed. As mkFit processes seeds in parallel it can not rely on hit
masking in order to exclude seeds whose hits have already been consumed by previ-
ously found tracks.

2. Seed partitioning reshuffles the seeds into tracking regions (barrel, transition, and end-
cap). Those define the sequence in which detector layers will be visited. Additionally,
the seeds are sorted in η, φ-space to improve hit access coherency during later steps.

3. Forward search proceeds through the detector layers for the given tracking region going
outwards from the seeding layers. For each seed, combinatorial search with a limit on
the maximum concurrent number of candidates is performed, adding new hits on each
layer while allowing for a limited number of missed layers and a single additional
“detector overlap” hit. At the end, either because the edge of the tracker is reached
or because no more new hits are found, the best-scoring candidate is chosen as the
representative. Optionally, a quality filter can be applied before the next step.

4. Backward fit re-traverses each found track backwards, refitting the track parameters.
If the seeding region for the current iteration does not extend all the way to the vertex
region, a combinatorial backward search can also be performed, going inwards from
the first known hit.2 Again, the search is stopped when the innermost layers of the
detector have been reached or if no new hits are found for a given seed. If the search
has been performed, the best candidate is chosen as the final representative.

5. Quality filtering & duplicate removal are performed on the resulting tracks.

After the track finding for each iteration is complete, two more steps are performed by
other CMSSW modules: final fit including outlier rejection; and final quality selection, based
on a multivariate algorithm.

In standalone operation, the same mkFit processing steps are performed. Pre-processed
input seeds and hit data are read from a custom binary file. Final fit and quality selection are
not performed, but there is a standalone version of validation comparing the found tracks to
simulated ones.

2.3 Physics and computational performance

Here we present two highlights from the CMS Detector Performance note [6].3 Both cases
compare relevant quantities before and after the inclusion of mkFit in the standard Run3 track
reconstruction of simulated tt̄ events with an average pile-up of 65.

1https://github.com/trackreco/mkFit-external
2Optionally, some or all of the seed-region hits can be dropped and new hits searched for in the seeding layers

as well.
3In this note mkFit has also been used for PixelLess iteration that was later removed due to poor performance

for low-momentum highly displaced tracks.

EPJ Web of Conferences 295, 03019 (2024) https://doi.org/10.1051/epjconf/202429503019
CHEP 2023

3

Figure 1. Comparison of physics performance of legacy track reconstruction (red markers) and the new
Run3 tracking configuration where mkFit is used for 6 of twelve tracking iterations (black markers):
From left-to-right: a) tracking efficiency, b) fake rate, and c) duplicate rate.

Figure 1 shows comparisons of basic physics performance markers. Tracking efficiency
is comparable overall; efficiency vs. η (not shown) indicates small gains in the endcap region
(2.4 < |η| < 2.8). Fake rate is improved overall with reduction improving with increasing
|η|. Duplicate rate is slightly increased but has been subsequently improved with further
iteration-specific tuning of the duplicate removal algorithm.

Figure 2. Comparison of computational performance of legacy track reconstruction (red markers) and
the new Run3 tracking configuration where mkFit is used for 6 of twelve tracking iterations (black
markers). Plots show relative times of tracking steps for (left) iterations that use mkFit and (right) all
iterations.

Vectorization and threading scaling tests for initial iteration imply that, according to Am-
dahl’s Law, ~70% of operations are vectorized and that more than 95% of code is effectively
parallelized. Computational speedups when using mkFit are shown in figure 2. For all iter-
ations where mkFit is used, the observed track building time is reduced by ~3.5x (the best
observed reduction for one mkFit iteration is 6.7x). Note that track building with mkFit takes
less time than seeding, and about the same time as the final fit.

When all iterations, including non-mkFit based ones, are considered the building time
is reduced by ~1.7x. This translates to a 25% reduction of total tracking time (including
seeding, and final fit) and, overall, results in a 10-15% increase of Run3 reconstruction job
event throughput.

EPJ Web of Conferences 295, 03019 (2024) https://doi.org/10.1051/epjconf/202429503019
CHEP 2023

4

3 Generalizations for iterative tracking & HL-LHC

CMSSW is a multi-threaded, module-based event processing framework that instantiates and
runs modules as well as manages data sources (both event data and longer-lived data products)
according to the dependencies generated by the modules themselves when the job configu-
ration is processed. As such, each module can be instantiated multiple times and associated
with different configurations and data-sources, including parallel processing of several events.
This requires complete separability of configuration and module instance state as well as com-
plete absence of any non-constant global state. Further, in the mkFit case, each iteration has
its own set of parameters that control and steer the functioning of core tracking algorithms as
well as separate implementations of standard functions, as mentioned in section 2.1.

While basic, algorithmic modifications had to be made to make mkFit conform to the
iterative tracking of CMSSW — i.e., to support forward search, backward fit, and backward
search — the majority of these changes amounted to generalizations of the algorithms, along
with mechanisms for expressing different modes of behavior through configuration structures
and intermediate-level code that steers the algorithms. The previous section dealt with how
the code is structured and how it operates; this section addresses the design of configuration
structures and associated processing that allows the core of the code, which is independent of
experiment and geometry, to run in accordance with the given detector description, algorithm
tuning, and required standard functions.

3.1 Geometry & detector description

In mkFit terminology a layer denotes an r− z bounding box in global cylindrical space where
hits belonging to the said layer are expected to be found. It usually corresponds in some way
to detector construction or readout layers, but it does not have to:4 its main purposes are to
aggregate the hits, provide an easy way to specify layer crossing sequences for each tracking
region (called a layer plan), and allow track search to proceed uniformly among a set of
tracks. This reduces complexity and allows for the vectorization of certain key computations,
including track candidate propagation, hit selection, and Kalman filter calculations.

Prior to CMSSW integration, logically dividing CMS into nested layers was sufficient
to allow mkFit to roughly reproduce the physics performance of CMSSW legacy tracking.
However, as mkFit was being considered a drop-in replacement for the existing tracking
implementation, additional detector-module identification had to be included in mkFit’s ge-
ometry description to enable it to pick up multiple hits from overlapping modules within
the same layer. Moreover, to support the Phase-2 upgrade geometry, which includes axially
tilted detector modules, further information had to be provided (module position, normal and
φ-direction vectors).

The layer boundaries, module details, and material properties are all extracted during
the CMSSW job setup by traversing all inner tracker modules. For standalone usage this
information gets exported into a binary file.

3.2 Configuration structures

As mentioned in the introduction to this section, mkFit code needs to run concurrently within
the main process, where each execution module is configured for its specific tracking iter-
ation. As there can be no static or global data, the required configuration (or the relevant
fragments) needs to be passed down the execution stack or stored in local objects. It is there-
fore important that the configuration data are structured in a way to facilitate such usage.

4E.g., mono and stereo hits from the same silicon-strip detector layer in CMS are split into separate mkFit layers.

EPJ Web of Conferences 295, 03019 (2024) https://doi.org/10.1051/epjconf/202429503019
CHEP 2023

5

The top-level configuration for each tracking iteration is represented by the class
IterationConfig. It contains flags that control which steps of the track finding algorithm
(see section 2.2) need to be performed, the standard functions that are to be used for this iter-
ation (described in more detail in the next subsection), some high-level parameters for seed
and duplicate cleaning, and the following structures.

• Layer traversal plans for all tracking regions.

• Tracking parameters (e.g., maximum number of missed layers, χ2 cuts, quality filter pa-
rameters) encapsulated in class IterationParams, with two separate instances for forward
and backward search.

• Iteration-specific layer information, stored in class IterationLayerConfig, which holds
parameters guiding hit search and selection algorithms. These are stored in a vector, with
one instance per layer.

The CMSSW module system is typically configured via Python scripts; this requires a
rather tight coupling at the level of C++ code to parse incoming data. As the above mkFit
configuration is rather elaborate, it was accepted as a compromise that all mkFit configuration
can be loaded from (and saved into) JSON files. Each iteration’s configuration is stored in a
separate file (stored as a part of CMSSW release) and the name of this file is then passed to
the mkFit CMSSW module during instantiation.

To allow for an easy modification of a small number of parameters, reading of partial
JSON overrides is fully supported: the default base configuration is read from the CMSSW
release and then existing in-memory representation gets patched or overridden via simple
additional JSON files or strings. Some frequently used parameters can also be set via the
Python interface, e.g., to tune mkFit performance for heavy-ion operations.

Plugin-style configuration is still supported in standalone mode and is, in fact, used to
generate the default JSON files for the CMSSW operation.

3.3 Standard function catalogs

While adding support for multiple iterations and for Phase-2 tracking it became obvious that
using a single standard function and putting additional parameters into IterationConfig
structure does not scale and that a more flexible configuration mechanism for standard func-
tions is required for the following tasks:

• seed cleaning & partitioning – defined per iteration;

• candidate filters, pre- and post-backward fit – defined per iteration;

• duplicate cleaning – defined per iteration; and

• candidate scoring – defined per iteration with a possible override for each tracking region.

To provide a mechanism for registering different, specialized implementations of these
standard functions, and to be able to choose them at configuration time, standard function
catalogs have been introduced. For each type of function above, a thread-safe catalog with
string keys and std::function value type is provided. The catalogs are populated via static
object initializers in source files that contain the standard function codes. As std::function
objects are exported, the functions themselves can be hidden in anonymous namespaces.
Further, function templates can be used to inject compile-time parameters and, in simple
cases, the registered functions can be direct lambda expressions.

With this infrastructure in place, JSON files can simply specify the names (strings) as-
sociated in the catalog with the desired function. After configuration loading and setup is
complete the names get resolved into std::function objects for fast access and become
available through the IterationConfig structure.

EPJ Web of Conferences 295, 03019 (2024) https://doi.org/10.1051/epjconf/202429503019
CHEP 2023

6

4 Ongoing & future work

At present, the described changes are being used to further tune Phase-1 CMS iterations.
Algorithmic improvements in the processing of layers and multi-layer scoring are being in-
vestigated, with the goal of extending the usage of mkFit beyond the current five tracking it-
erations, as well as improving computational performance for currently supported use-cases.
In parallel, Phase-2 tracking is being developed, currently still focusing on a single, initial
tracking iteration, while the specifics of track propagation and Kalman updates required for
the support of tilted modules are being worked out.

The final fit is now the most time-consuming tracking task in iterations using mkFit. With
the latest additions to geometry description, it should be feasible to effectively use mkFit for
this task as well, and we are investigating the required developments in this area, along with
possible improvements to existing backward-fit and backward-search algorithms.

There has been a recent intense development of CMS Phase-2 Line Segment Tracking
(LST) [8, 9], a highly parallelizable algorithm that can run efficiently on GPUs, which is
showing great promise for both offline and high-level trigger usage. We are planning to
explore possible synergetic development with the LST project, aiming for a hybrid approach
where LST performs the initial, fast track finding and mkFit provides final steps such as
backward fit, overlap hit search, and final fitting.

5 Conclusion

mkFit is in production mode for the CMS experiment since Run3 of the LHC, used as a drop-
in replacement for the legacy tracking code for five out of twelve iterations, with equivalent
physics performance and with overall tracking time reduction of ~25%. Work has started to
support CMS Phase-2 tracking geometry and events with increased pileup, where some of re-
quired changes are described in this paper, namely: generalizations of geometry description,
multi-iteration configuration, and introduction of catalogs of standard functions. Exploration
of extending mkFit to also cover the final-fit and to operate synergistically with other track
finding algorithms is in progress.

Acknowledgements

This work was supported by the U.S. National Science Foundation under Cooperative Agreements
OAC-1836650 and PHY-2121686 and grant NSF-PHY-1912813.

References

[1] R. Frühwirth, Application of Kalman filtering to track and vertex fitting, Nucl. Instrum.
Meth. A262, 440–450 (1987)

[2] CMS Collaboration, The CMS experiment at the CERN LHC JINST 3, S08004 (2008)
[3] CMS Collaboration, Development of the CMS detector for the CERN LHC Run 3,

arXiv:2309.05466 [physics.ins-det] (2023) https://arxiv.org/abs/2309.05466
[4] S. Lantz et al., Speeding up particle track reconstruction using a parallel Kalman filter

algorithm, JINST 15, P09030 (2020)
[5] G. Cerati et al., Parallelized and Vectorized Tracking Using Kalman Filters with CMS

Detector Geometry and Events, EPJ Web of Conferences 214, 02002 (2019)
[6] CMS Collaboration, Performance of Run 3 track reconstruction with the mkFit algorithm,

CERN-CMS-DP-2022-018 (2022) https://cds.cern.ch/record/2814000

EPJ Web of Conferences 295, 03019 (2024) https://doi.org/10.1051/epjconf/202429503019
CHEP 2023

7

[7] CMS collaboration, Description and performance of track and primary-vertex recon-
struction with the CMS tracker, JINST 9, P10009 (2014) [arXiv:1405.6569]

[8] P. Chang et al., Line Segment Tracking in the High-luminosity LHC, in these proceedings
[9] CMS Collaboration, Performance of Line Segment Tracking algorithm at HL-LHC,

CERN-CMS-DP-2023-019 (2023) https://cds.cern.ch/record/2857438

EPJ Web of Conferences 295, 03019 (2024) https://doi.org/10.1051/epjconf/202429503019
CHEP 2023

8

