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Abstract. In an earlier work [1], we introduced dual-Parameterized Quantum Circuit (PQC)
Generative Adversarial Networks (GAN), an advanced prototype of a quantum GAN. We
applied the model on a realistic High-Energy Physics (HEP) use case: the exact theoretical
simulation of a calorimeter response with a reduced problem size. This paper explores the dual-
PQC GAN for a more practical usage by testing its performance in the presence of different
types of quantum noise, which are the major obstacles to overcome for successful deployment
using near-term quantum devices. The results propose the possibility of running the model on
current real hardware, but improvements are still required in some areas.

1. Introduction
Quantum computing emerges as a promising technique to complement the traditional ‘classical’
computing, thanks to its potential to speed up computations or solve problems that classical
algorithms cannot address [2]. However, current Noisy Intermediate-Scale Quantum (NISQ)
devices suffer from intrinsic noise from different sources which yield biased results. Quantum
Machine Learning (QML) via Variation Quantum Algorithms (VQA) is one of the algorithms
which can be successfully simulated with a reasonable circuit depth in the presence of noise [3].
Still, the influence of noise is not negligible, which is compounded by the vanishing gradient
problem [4], therefore further research is required to improve the performance of algorithms.

In order to understand the impact of quantum noise in QML, our work specifically focuses on
Dual-Parameterized Quantum Circuit (PQC) Generative Adversarial Networks (GAN), which
are a new prototype of quantum GANs characterized by a classical discriminator and two
quantum generators that take the form of PQCs. In our earlier work [1], we have demonstrated
that the dual-PQC GAN is able to imitate reduced size pixelated images of calorimeter outputs
in High-Energy Physics (HEP), but only in the absence of noise.

This paper investigates the training of dual-PQC GAN in the presence of quantum noise.
We start by briefly summarizing the architecture of dual-PQC GAN in Section 2. In Section

ar
X

iv
:2

20
5.

15
00

3v
1 

 [
qu

an
t-

ph
] 

 3
0 

M
ay

 2
02

2



3, we test the dual-PQC GAN on noise models with two-qubit gate errors only, which are
the dominating factor in current architectures. In particular, the impact of different training
hyperparameters is investigated within a wider range of errors with respect to that of current
real hardware. Finally, Section 4 presents the results obtained both on superconducting and
trapped-ion quantum hardware for the optimal hyperparameters found in noisy simulations.
Ultimately, our work aims to provide a global overview of the effect of different types of noise in
the training of dual-PQC GAN and suggests realistic solutions to provide model convergence.

2. Dual-PQC GAN
This section summarizes the architecture of dual-PQC GAN model, which is a new type of
quantum GAN that we introduced in a previous study [1]. It is a hybrid qGAN architecture
which has one classical discriminator and two parameterized quantum circuits, PQC1 and PQC2,
sharing the role of the generator.

Consider a training set X ⊂ R2n of N = 2n pixel images following a certain distribution.
PQC1, with n1 qubits, learns the probability distribution over image samples by measuring its
output state to produce n1 bits. This bit string is then used to initialise PQC2 (of n2 qubits)
with the corresponding computational basis, |i〉 ∈ R2n1 . By repeatedly measuring n output
qubits of PQC2, a probability distribution is constructed over 2n computational basis states and
interpreted as an image, Ii, of size 2n. The classical discriminator takes the training set and the
images generated by PQC2, and it classifies them into real and fake. Ultimately, the dual-PQC
GAN model can generate 2n1 images of size 2n.
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Figure 1: Schematic diagram of dual-PQC GAN to reproduce images of 2n pixels.

In Ref [1], we apply Dual-PQC GAN on a realistic HEP use-case to reproduce calorimeter
outputs of a reduced size, which are interpreted as pixelated images. In order to facilitate the
comparison between real and fake images, we classify the training set into 4 classes via K-means
clustering and average over each class. Note that this classification is simply for the comparison,
and the whole set of images is used for the training.

In the simulations, the performance of the model is quantified with two metrics:

(i) Relative entropy, DKL(Imean‖Ĩmean), between the average of the real images, Ĩmean, and

the generated images, Imean, with DKL(p‖q) =
∑

j p(j) log p(j)
q(j)

(ii) Individual relative entropy, the mean of the minimum relative entropy for each of the

generated images with respect to the real images: DKL,ind = 1
2n1

∑2n1−1
i=0 minj DKL(Ĩj‖Ii).

3. Hyperparameter scan on noise model
Before running the model on real hardware, we search for the optimal hyperparameters using
grid search over different factors: PQC1 and PQC2 learning rate, discriminator learning rate,



and decay rate. The hyperparameter scan was executed with the Qiskit noise model which
mimics the noise of a real quantum device, using the dual-PQC model with n1 = 2, n2 = 4,
d1 = 2 and d2 = 5. As the readout error is negligible compared to the two-qubit gate error in
this configuration, only the latter is included in this noise model.

(a) p = 0 (b) p = 0.02 (c) p = 0.04

Figure 2: The relative entropy obtained from the hyperparameter scan with different two-qubit
gate error, p. The results with the lowest DKL and DKL,ind at the end of the training are also
displayed with two plots overlapping on (c). Note that all the tests where the losses diverge are
excluded from the plot.

(a) p = 0 (b) p = 0.02 (c) p = 0.04

(d) p = 0 (e) p = 0.02 (f) p = 0.04

Figure 3: The mean image (a,b,c) and individual images (d,e,f) obtained at the end of the
Dual-PQC GAN training with the optimal hyperparameters, which give the lowest DKL,ind for
different two-qubit gate errors, p.

As shown in Figure 2, the standard deviation of the relative entropy increases as the two-
qubit gate error p increases. But at the same time, we consistently get hyperparmeters which
make the training converge in all cases, proving that the model can be trained even in the
presence of noise under the optimal choice of hyperparameters. The convergence in mean and
individual images obtained in the presence of different two-qubit gate errors shown in Figure 3
also emphasizes this fact.



4. Results on real hardware
4.1. Inference on real hardware
Before training the dual-PQC GAN on real quantum hardware, we start by testing the inference
of the pre-trained model in order to check the impact of real quantum noise, including two-qubit
gate errors and readout errors, on the generation of images. This also allows us to compare the
performance of currently accessible quantum device technologies: superconducting chips from
IBM [5], and ion-trap machines from IONQ [6]. Regarding IBM chips, qubits with the lowest
error rates are explicitly chosen from the IBM Quantum Lab while the IONQ machines were
accessed via Amazon Web Services (AWS) Braket.

(a) (b) (c) (d)

Figure 4: Mean (a,c) and individual images (b,d) obtained by inference test on ibmq jakarta
(a,b) and IONQ (c,d).

Figure 4 presents the mean and individual images obtained from inference tests on real
quantum devices. The pre-trained weights are taken from the test which reproduced Figure
3b and 3e. Looking at the low standard deviation suggest the feasibility of dual-PQC training
for superconducting chips, while more studies are required with currently accessible trapped-ion
devices. This prediction is also confirmed in Table 1 which summarizes the error rates of each
devices and the result of inference tests.

Table 1: DKL and DKL,ind averaged over 20 inference tests on different quantum hardware
and their error rates [5]. The results obtained with the two-qubit gate error only noise model is
also displayed for comparison.

Device Readout error CX error DKL (×10−2) DKL,ind (×10−2)

Noise Model NULL 2.00 · 10−2 0.07± 0.04 5.54± 0.04
ibmq jakarta 2.80 · 10−2 1.37 · 10−2 0.14± 0.14 6.49± 0.54

ibm lagos 1.15 · 10−2 5.58 · 10−3 0.26± 0.11 6.92± 0.71
ibmq casablanca 2.61 · 10−2 4.58 · 10−2 4.03± 1.08 6.58± 0.81

ibm perth 2.34 · 10−2 1.68 · 10−2 0.71± 0.19 10.03± 0.65
IONQ NULL 1.59 · 10−2 1.24± 0.74 10.10± 5.62

4.2. Training on real hardware
We conclude the study with the training on real quantum hardware. Figure 5 displays the result
of dual-PQC GAN training on two real IBMQ machines, ibmq lagos and ibm perth. The mean
images and the progress in relative entropy prove that the dual-PQC model can be successfully
trained on average on both devices with final DKL of 7.64× 10−3 and 2.74× 10−3, respectively.



Unfortunately, despite low DKL,ind of 1.29 × 10−2 and 3.56 × 10−3, respectively, the current
training with real quantum hardware falls into a mode collapse, one of the most common failures
in classical GAN [7], where the model only reproduces a low variety of samples as shown on
Figure 5b and 5e.

(a) (b) (c)

(d) (e) (f)

Figure 5: The results of dual-PQC GAN training on ibm lagos (a,b,c) and ibm perth (d,e,f).
The convergence in mean image (a,d) and the decrease in DKL show that the training is successful
on average. However, the mode collapse failure is observed for the individual images with an
overlap between I2, I3 on Figure (b) and I0, I1 on Figure (e).

5. Conclusions
In this paper, we studied the impact of quantum noise on dual-PQC GAN training. The results
showed that with an appropriate choice of hyperparameters, the dual-PQC GAN converges
under real working conditions – specifically in the presence of two-qubit gate noise – producing
images close to the real ones. Moreover, the convergence in mean image is observed on the real
quantum hardware training, yet the mode collapse failure emerges as an issue to solve.

Future research will target methods to avoid the presence of mode collapse, for example by
adding an additional term to the loss function. Furthermore, an increase in the size of training
set in order to reproduce higher number of images with more pixels will be investigated.
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