
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012023

IOP Publishing
doi:10.1088/1742-6596/2438/1/012023

1

Demonstration of FPGA Acceleration of Monte

Carlo Simulation

M. Barbone1, A. Howard1, A. Tapper1, D. Chen1, M. Novak2,
W. Luk1

1 Imperial College London
2 European Laboratory for Particle Physics (CERN)

E-mail: m.barbone19@imperial.ac.uk, w.luk@imperial.ac.uk

Abstract. We present results from a stand-alone simulation of electron single Coulomb
scattering as implemented completely on an Field Programmable Gate Array (FPGA)
architecture and compared with an identical simulation on a standard CPU. FPGA architectures
offer unprecedented speed-up capability for Monte Carlo simulations, however with the caveats
of lengthy development cycles and resource limitation, particularly in terms of on-chip memory
and DSP blocks. As a proof of principle of acceleration on an FPGA, we chose a single
scattering process of electrons in water at an energy of 6 MeV. The initial code-base was
implemented in C++ and optimised for CPU processing. To measure the potential performance
gains of FPGAs compared to modern multi-core CPUs we computed 100M histories of a 6
MeV electron interacting in water. Without performing any hardware-specific optimisation,
the results show that the FPGA implementation is over 110 times faster than an optimised
parallel implementation running on 12 CPU-cores, and over 270 times faster than a sequential
single-core CPU implementation. The results on both architectures were statistically equivalent.
The successful implementation and acceleration results are very encouraging for the future
exploitation of more sophisticated Monte Carlo simulation on FPGAs for High Energy Physics
applications.

1. Introduction
Field Programmable Gate Arrays (FPGAs) are becoming increasingly popular, and thus of
greatly increasing relevance in the context of High-Performance Computing (HPC). Recent
advances in High-Level Synthesis (HLS) toolchains for customised hardware implementations
greatly reduce the engineering effort needed to program FPGAs. As a consequence, the use of
FPGA accelerators is quickly spreading from the HPC context to other disciplines that require
processing large volumes of data or ultra-low latency response. In the context of High Energy
Physics (HEP), the use of FPGA for track reconstruction at the CMS experiment has been
investigated [1].

Monte Carlo (MC) simulations are widely utilised in the context of HEP, combined with their
computational complexity they account for a large fraction of the total computational resources
needed in HEP. In recent years, the general trend shows that the complexity of MC simulations
is growing faster than the compute capabilities offered by newer CPUs, resulting in an increase of
the computational time required by the simulations, especially for particle physics processes [2].

In the last years, we observed a proliferation of frameworks and codebases exploiting hardware
accelerators to improve the performance of both scientific and industrial problems. In the context



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012023

IOP Publishing
doi:10.1088/1742-6596/2438/1/012023

2

of HEP, there are many instances of both new systematic implementation or conversion of
existing codebases and algorithms to accelerators. MadFlow is a framework that automates MC
simulation on GPU for particle physics processes. According to their evaluation, they claim that
MadFlow shows a great performance improvement while running on GPU [3]. On the other hand,
Voss et al. [4] shows that the use of FPGA acceleration by achieving an 8x speedup compared
to GPU implementations is able to meet real-time radiotherapy requirements. However, their
results should be analysed with care and in the right context: they use a simplified model that
does not implement all the physics and they do not mention a proper validation in their study.

In this study, we analyse the use of FPGAs to accelerate MC simulation. We use a simple,
but representative, physics model that has all the characteristics of a more involved particle
physics process such as electromagnetic shower (EM) simulation or multiple scattering. We also
analyse FPGA ease of use, accounting for both expertise and engineering effort. For the sake
of generality, we built a worst-case analysis: most of the engineering was carried out by junior
software engineer with no previous FPGA programming experience, in addition, we did not
rely on any hardware or toolchain specific optimisation, hence any software engineer using any
toolchain should be able to reproduce the results presented here.

The remainder of this paper is structured as follows: A short description of the selected
example algorithm is followed by a general discussion of the methodology followed for FPGA
implementation. These are followed by sections presenting the results obtained and drawing
conclusions.

2. Single Coulomb scatter algorithm
As a simple but physically meaningful MC test case, single Coulomb scattering has been chosen
to be implemented on an FPGA. The screened Rutherford Differential Cross-Section (DCS) can
be obtained by solving the scattering equation under the first Born approximation using a simple
exponentially screened Coulomb potential in the form of [5]

V (r) =
zZe2

r
exp(−r/R), (1)

with a screening radius R, target atomic number of z and projectile charge Ze. This leads to
the screened Rutherford DCS for elastic scattering

dσ(SR)

dΩ
=

(
zZe2

pβc

)2
1

(2A+ 1− cos θ)2
, (2)

where p is the momentum, β is the velocity of the projectile particle and A is the screening
parameter. The corresponding total elastic scattering cross section is given by

σ(SR) =

(
zZe2

pβc

)2
π

A(1 +A)
, (3)

while the angular distribution of single elastic scattering can be given as

f1(θ)
(SR) =

1

π

A(1 +A)

(1− cos θ + 2A)2
. (4)

This leads to an analytical solution of the inverse equation and sampling of µ = cos(θ) as

µ = 1− 2Aξ

1− ξ +A
(5)

with ξ ∈ U(0, 1). The corresponding single elastic scattering model has been implemented in
C++ then translated to the FPGA architecture.



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012023

IOP Publishing
doi:10.1088/1742-6596/2438/1/012023

3

3. Monte Carlo on FPGA
The availability of HLS toolchains greatly simplifies the FPGA programming process as it
provides a high-level interface capable of logic design greatly reducing the engineering effort
required. However, FPGA compile time can take up to several days and in recent times, due to
the resource-increase of modern FPGAs the compile time is still increasing, even when accounting
for the performance increase of modern CPUs. Thus, when targeting FPGAs Agile development
is inefficient, causing many unnecessary compilations to test the design. Moreover, not all
workloads benefit from FPGA acceleration, GPUs offer higher parallelism and they achieve one
order magnitude higher clock frequency. Depending on the workload characteristics GPUs might
achieve higher performance than FPGA or vice versa. In this study, we utilised the methodology
proposed by Voss et al. [6]. This methodology can be summarised in five main steps:

(i) Workload analysis;

(ii) Performance and resource modelling;

(iii) Acceleration target selection;

(iv) Software model of the target;

(v) Hardware implementation.

We selected a junior software engineer with no previous FPGA programming experience and
tasked them with following the methodology in the context of MC, to implement a representative
but a simple component of the Dose Planning Method (DPM) [7] electromagnetic shower
simulation and measure its performance on FPGA.

3.1. Workload analysis
Depending on the characteristics of the workload it is possible to use either FPGAs, GPUs or
both to improve performance. Intuitively, CPUs and GPUs achieve an order of magnitude higher
clock frequency, hence FPGAs can be faster only on workloads that are not able to exploit all
the computing resources available on these architectures. Given the engineering effort and the
compile-time required to program FPGA, choosing the wrong accelerator might cause a massive
waste of resources and personpower that can result in performance loss instead of performance
gain, hence we focus on accelerating only workloads that we deem likely to benefit from FPGA
acceleration.

Workloads that are inefficient on CPUs share at least one of these two main characteristics:

• High branch misprediction rate;

• High cache miss rate.

In the case of GPUs, that lacks both branch predictors and prefetchers the performance
penalty of these two characteristics is higher than CPUs, hence workloads that waste CPU
compute resources will result even less efficient on GPUs. These workloads can greatly benefit
from FPGA acceleration; FPGA accelerators are not affected by mispredictions penalties,
different branches are implemented in hardware, and can overcome cache misses with a custom
loading logic.

Due to their stochastic nature, MC simulations are prone to cache misses and branch-
mispredictions, through the massive use of random numbers to drive the logic of the simulation.
Thus, we conclude that while MC simulations are inefficient on CPUs and GPUs they can
benefit from FPGA acceleration. In addition to the characteristics listed above there are other
two optional other ones that can simplify the design and improve performance: parallelism
and independence. Section 3.3 will discuss how these can be exploited in the context of MC
simulations and FPGAs.



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012023

IOP Publishing
doi:10.1088/1742-6596/2438/1/012023

4

3.2. Performance and Resource model
Subsection 3.1 described the characteristics for a suitable FPGA workload. According to the
Linux perf command, the MC simulation analysed in this study suffers from a high branch
misprediction rate relative to the total number of instructions, thus this MC simulation falls in
the category of workloads that is suitable for FPGA acceleration. However, this information
alone is not enough to start programming the FPGA as, even if the workload is suitable, there
might not be enough resources on an FPGA to achieve a meaningful increment in performance.

The original methodology assumes that FPGAs will always be used, hence, modelling is used
to forecast the performance of the design, and in the case that the performance improvement is
not enough, the developer has to reiterate this process multiple times until the performance goal
is met. In our case, in addition to forecasting the performance gains, we also consider if FPGA
accelerators can meet the project requirements: we evaluate engineering effort and potential
speedup to decide if we can use FPGAs to solve our performance issue. We assume the trade-
off, between engineering time and performance, is positive if the speedup is at least one order
of magnitude higher than CPUs. If the speedup is less than one order of magnitude, we do not
proceed with FPGA acceleration. In the MC case, the model predicted that to be at least one
order of magnitude faster than CPUs, the FPGA design must either reach a clock frequency of
250 MHz or achieve parallelism greater than one. HLS toolchains might not guarantee reaching
250 MHz hence we further explored the second option. According to the model’s predictions,
when targeting a Xilinx VU9P FPGA, simulating one particle per clock cycle requires 127 DSPs
and 10 Mb of on-chip memory. The VU9P FPGA is equipped with 6840 DSPs and 345 Mb
of on-chip memory, thus the simulation of one particle requires 1.86% and 3.35% of the total
available DSPs and on-chip memory respectively. Trivially, since 3.35 > 1.86, the limiting factor
is the on-chip memory. Moreover, the compiler requires part of the on-chip memory to schedule
the design, in our worst-case analysis we consider only 50% of the total memory available to store
data. However, even in this worst-case scenario, the theoretical maximum achievable parallelism
is 15. Hence, the parallelism of at least two, needed to meet the goal of one order of magnitude
speedup should be easily achievable.

3.3. FPGA implementation

Particle

RNG (96bits/clk)

Particle simulator Raw data

Aggregation

Particle

RNG (96bits/clk)

Particle simulator Raw data

CPU

Pa
ra

lle
l i

n
st

an
ce

s

FPGA

Figure 1. FPGA architecture schematic displaying the parallel FPGA instances and the CPU
based aggregation.

The model’s predictions show that to meet the speedup requirement the resulting architecture
should be parallel. Figure 1 shows the resulting architecture. In total there are 15 instances, as
predicted by the model: each instance is composed of a particle generator, a random number



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012023

IOP Publishing
doi:10.1088/1742-6596/2438/1/012023

5

generator (RNG) capable of generating 96 bits per clock cycle and a particle simulator. The
particle generator models a pencil beam hence all particles generated share the same initial
energy and direction. The RNG is implemented using three separate instances of the Mersenne
Twister 32-bits (MT32) random number generator [8]. This generator is not suited for use on
FPGA, as it requires large memory resources compared to FPGA optimised generators, however,
it is the most popular RNG and is the most likely to be available in any programming language,
hence for the sake of generality it was used in this study. The particle simulator is the core
of the simulation as it implements the MC logic. It is composed of a while loop that iterates
until the particle runs out of energy. The moment it runs out of energy a sample point is taken
and sent back to the CPU which aggregates all of them at the end of the computation. It is
worth mentioning that hardware implementations of while-loops cause backward edges in the
dataflow graph. As shown in Figure 2, this backward edge feeds the result back and is processed
multiple times until the guard is false; while loops can produce a result every n cycles where n is
the depth of the pipeline. However, one of the characteristics of MC is independence: multiple
particles can be fed to the while-loop since the order of the result does not matter. If the guard
is true a particle is sent back, if it is false a new particle is fed in and a result is produced.
Exploiting this characteristic can increase MC performance by a huge margin. For example,
if n corresponds to 68, without independence the performance would be over 60 times slower.
This optimised particle simulator computes the final position of the particle, the moment it runs
out of energy and sends the result back to the CPU. For the sake of simplicity, aggregation of
the results is performed by the CPU. According to the model, moving the aggregation onto the
FPGA would improve the performance by 15%.

latency=N Output every 
N clock cycles

Output every 
clock cycle

Figure 2. Illustration of the while loop optimisation impelemented.

4. Results and Evaluation
The final results of this MC simulation consist of a longitudinal and a transverse distribution. To
evaluate the accuracy of the results we executed a Kolmogorov–Smirnov test against reference
distributions which concluded that the distributions are equivalent using α = 10−5, achieving
equivalence with smaller α requires to further increase the number of histories. To evaluate
the performance we computed 100M histories of a 6 MeV electron interacting in water. We
compared the performance of an AMD Ryzen 5900x 12-core CPU running at 3.7 GHz and
boosting up to 4.8GHz and a Xilinx Alveo U200 that incorporates a VU9P FPGA device. The
FPGA implementation was limited at 200 MHz, using single-precision floating-point, leaving out
additional performance benefits given by the use of fixed-point data representations. The CPU
implementation was parallelised using OpenMP while the FPGA implementation was developed
in MaxJ and compiled using MaxCompiler 2021.1 and Vivado 2019.2. The results show that
the FPGA implementation is 270x faster than an optimised single-core implementation and
110x times faster than a multi-core implementation. For today’s market prices, this shows a
cost equivalent speed-up of more than 10. It is worth mentioning that we did not perform any
hardware-specific optimisation or rely on any compiler-specific optimisation; these results are
therefore representative of any HLS toolchain. Relying on MaxCompiler specific optimisations



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012023

IOP Publishing
doi:10.1088/1742-6596/2438/1/012023

6

increases the achievable clock frequency up to 300 MHz, corresponding to a 160x speedup,
obtained with no changes to the codebase. However, since these results are not representative
of the performance obtainable with other HLS toolchains, they are mentioned but not included
in our final evaluation.

5. Conclusions and Future Work
The results show that MC can greatly benefit from FPGA acceleration. In the case of Coulomb
scattering, we observe a speedup of 270x and a cost equivalent speedup of over 10x according
to recent market prices. These results are general since they are obtained in a worst-case
study where the developer had no previous FPGA experience and did not perform any platform
or compiler-specific optimisation. Hence, these results can be obtained by any programmer
using any toolchain. However, due to the limitations of FPGA programming, following a
clear methodology such as the one adopted in this study is crucial to developing a working
implementation employing a reasonable amount of engineering time.

In the future, we would like to extend this MC simulation to perform a complete
electromagnetic shower simulation by adding similar processes like multiple scattering, Moller
scattering and Bremsstrahlung. These processes are similar in nature to Coulomb scattering,
with the addition of a look-up table used to store the various distributions needed. Implementing
such distributions on FPGA can be done with a small increase in resource utilisation [9]. Hence,
we expect that the speedup observed in this study can be transferred to other and more complex
MC simulations.

References
[1] Summers S and Rose A 2019 EPJ Web of Conferences 214 01003 ISSN 2100-014X
[2] Niehues J and Walker D M 2019 Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy

Physics 788 243–248 ISSN 03702693
[3] Carrazza S, Cruz-Martinez J, Rossi M and Zaro M 2021 EPJ Web of Conferences 251 03022 ISSN 2100-014X
[4] Voss N, Ziegenhein P, Vermond L, Hoozemans J, Mencer O, Oelfke U, Luk W and Gaydadjiev G 2019 Towards

real time radiotherapy simulation Proceedings of the International Conference on Application-Specific
Systems, Architectures and Processors vol 2019-July (Institute of Electrical and Electronics Engineers Inc.)
pp 173–180 ISBN 9781728116013 ISSN 10636862

[5] Wentzel G 1926 Zeitschrift für Physik 40 590–593 URL https://doi.org/10.1007/BF01390457

[6] Voss N, Kwaadgras B, Mencer O, Luk W and Gaydadjiev G 2021 ACM Transactions on Architecture and
Code Optimization (TACO) 18 ISSN 15443973

[7] Sempau J W S J and F B A 2000 Phys. Med. Biol. 45 2263 ISSN 0031-9155 URL http://stacks.iop.org/

0031-9155/45/i=8/a=315

[8] T M M and Nishimura 1998 Monte Carlo and Quasi-Monte Carlo Methods 2000 56
[9] Barbone M, Kwaadgras B W, Oelfke U, Luk W and Gaydadjiev G 2021 Efficient Table-Based Polynomial on

FPGA 2021 IEEE 39th International Conference on Computer Design (ICCD) (IEEE) pp 374–382 ISBN
978-1-6654-3219-1


