

Searches for new physics with leptons using the ATLAS detector

Dr Tracey Berry On behalf of the ATLAS Collaboration SUSY2023, Southampton

ROYAL HOLLOWAY UNIVERSITY

Beyond the Standard Model

Many different theories beyond the Standard Model (SM) predict new physics \rightarrow XYZ? + leptons

Present 13 TeV results on the searches using the ATLAS detector

Beyond the Standard Model

Anomalies in the flavour sector recently observed

- $ightarrow R_o/R_D$, 3.2 sigma anomaly in global average
- $ightarrow R_K/R_{K^*}$, anomalies by LHCb in 2019, gone 2022
- $\succ \Delta C_{q}$ anomaly, 3.4 s deviation measured by LHCb
- g-2 anomaly measured at Fermilab

arxiv:2212.09152

ATLAS Data – Run 2 & 3

2/23

LHC / HL-LHC Plan updated in February 2022

Results presented for Run 2 @ 13 TeV, 139 fb⁻¹

÷ 80

70

60

50

40

30

20

10

0

Jan

ATLAS Online Luminosity

s = 7 TeV

s = 8 TeV

s = 13 TeV

s = 13 TeV

s = 13 TeV

s = 13 TeV

2023 pp /s = 13.6 TeV

Apr

s = 13.6 TeV

Jul

2011 pp

2012 pp

2015 pp

2016 pp

2017 pp

2018 pp

2022 pp

Delivered Luminosity [fb

> Excellent data taking Run 3

Oct

Month in Year

Leptoquarks

- Leptoquarks: possible explanation for many flavour anomalies: flavour-diagonal and cross-generational final states
- interact with both leptons and quarks
- scalar or vector, fractional electric charge
- two coupling scenarios: minimal coupling or Yang-Mills
- First introduced in the 70s by Pati & Salam

Leptoquarks : production modes

- Three classes of production processes:
- 1) pair-production \Rightarrow 2 ℓ + 2 jet final states
- 2) single production \Rightarrow 2 ℓ + 1 jet final states
- 3) Drell-Yan with exchange in t-channel \Rightarrow 2 ℓ final states
- Production process determines the exclusion area:
- > pair-production good for low masses at any coupling
- single production and Drell-Yan good for high masses

arxiv 1810.10017

Leptoquark Results Summary

LQ mass	1.8 TeV
LQ mass	1.7 TeV
LQ ^u ₃ mass	1.49 TeV
LQ ^u mass	1.24 TeV
LQ ^d mass	1.43 TeV
LQ ^d mass	1.26 TeV
LQ ^V mass	2.0 TeV
LQ ^v mass	1.96 TeV

2 e	≥2 j	Yes
2μ	≥2 j	Yes
1τ	2 b	Yes
0 e, µ	≥2 j, ≥2 b	Yes
\geq 2 e, μ , \geq 1 τ	≥1 j, ≥1 b	-
0 e, μ, ≥1 τ	0 – 2 j, 2 b	Yes
multi-channel	≥1 j, ≥1 b	Yes
2 e, μ, τ	≥1 b	Yes

Qua	rks			
u ^m	C	t top		
down	S	bottom		
1 st	2 ^{nc}	³ rc	d	
electron	μ	T		
Ve electron neutrino				
Leptons				

Scalar LQ 1st gen

Scalar LQ 2nd gen

Scalar LQ 3rd gen

Scalar LQ 3rd gen Scalar LQ 3rd gen

Scalar LQ 3rd gen

Vector LQ mix gen

Vector LQ 3rd gen

L Q

 $\beta = 1$ $\beta = 1$ $\mathcal{B}(LQ_3^u \to b\tau) = 1$ $\mathcal{B}(LQ_3^u \to tv) = 1$ $\mathcal{B}(\mathrm{LQ}_3^d \to t\tau) = 1$ $\mathcal{B}(\mathrm{LQ}_3^d \to b\nu) = 1$ $\mathcal{B}(\tilde{U}_1 \rightarrow t\mu) = 1$, Y-M coupl. $\mathcal{B}(LQ_3^V \rightarrow b\tau) = 1$, Y-M coupl.

139

139

139

139 139

139

139

139

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-008/fig_01.png

Searches for leptoquarks coupling across different & mixed flavour families

Pair production of leptoquarks \rightarrow t+ light lepton(I) ttbar $\ell^+\ell^-$: in 3I or 4I final states

- Events selection: \geq 2 light lep, \geq 2 jets, \geq 1 b-jet
- Analysis regions:
- > Signal: (3l, 4l), for tete t μ t μ , min(m_{II})>100 GeV
- Control Regions, Main backgrounds ttW, ttZ/γ*
- 4 Signal Regions

3

 LQ_{mix}^{d}

 $\overline{\mathrm{LQ}}_{\mathrm{mix}}^{\mathrm{d}}$

arXiv:2306.17642

Non-prompt

ArSR-4

 (e^{-}, μ^{-})

 $^{+}(e^{+},\mu^{+})$

 (e^-, μ^-)

Pair production of leptoquarks \rightarrow t+ light lepton(I) ttbar $\ell^+\ell^-$: in 3I or 4I final states

10

Yang-Mills scenario and \tilde{U}_1^{YM} exclusive decay into tµ

ROYAL

arXiv:2306.17642

OLLOWAY

Pair-produced scalar and vector LQs decaying to 3rd-gen quarks and 1st/2nd-gen leptons – mixed

JHEP 06(2023)188

Scalar leptoquarks with charge -(1/3)e as well as scalar and vector leptoquarks with charge +(2/3)e

2210.04517 Two of these models have the goal of providing an explanation for the recent B-anomalies

Pair-produced scalar and vector LQs decaying to 3rd-gen quarks and 1st/2nd-gen leptons – mixed

up-type LQs the range in B is 0--0.95
down-type it is 0.05--0.95.

Lower limits

- Scalar leptoquark = 1.98 TeV
- Vector leptoquark = 1.71 GeV

2210.04517

ROYAL

FLONDO

HOLLOWAY

Leptoquark pairs with 1st/2nd generation leptons (e/μ) and light, c or b quarks

Event Selection

- ➢ 2e or 2µ & => 2 jets
- including jets from c- or b-quarks

<u>JHEP 10 (2020) 112</u> <u>2006.05872</u>

ROYAL

HOLLOWAY

Leptoquark pairs with 1st/2nd generation leptons (e/μ) and light, c or b quarks

Muon channel = 1.7 TeV

ROYAL

FLONDON

HOLLOWAY

Searches for leptoquarks coupling across same flavour families

Pair Production leptoquarks decaying to bbrr

third-generation

- Events selection:
- $\tau_{lep} \tau_{had}$, $\tau_{had} \tau_{had}$ (lep=e, μ) channels \geq
- single-tau triggers and single lepton triggers \geq
- Scalar sum variable: $S_T = \sum_{\tau,i} p_T + p_T^{miss} > 600 \text{ GeV}$
- Major backgrounds: top, Z+jets, fake-τ_{had}
- Final fit done on Parametric Neural Network score input variables in $\tau_{lep} \tau_{had}$ SR: $\Delta R(\ell, jet)$, m(τ_{had} , jet), s_T

PNN score distributions in $T_{lep}T_{had}$ SR for $m_{IO} = 500 \text{ GeV}$

arXiv:2303.01294

ROYAL IOLLOWAY

= 0.5

1500

2000

m_{LQ} [GeV]

Pair Production leptoquarks decaying to $bb\tau\tau$

ROYAL HOLLOWAY

m_{LQ}, [GeV]

Leptoquark decaying to $b\tau$ final states

ROYAL HOLLOWAY UNIVERSITY OFLONDON

arXiv:2305.15962

single LQ production non-resonant L pair production

LQ pair production

vector leptoquarks: electric charge of 2/3e scalar leptoquarks with an electric charge of 4/3e.

- Events selection:
- \succ τ_{lep} τ_{had}, τ_{had} τ_{had} (lep=e, μ) channels
- single-tau triggers and single lepton triggers
- Scalar sum variable: $S_T = \sum_{\tau,j} p_T + p_T^{miss} > 600 \text{ GeV}$
- Major backgrounds: top, Z+jets, fake-τ_{had}

18

Leptoquark decaying to bt final states

10 Cross-section (σ_{vis}) limit [fb] ATLAS Obs. limit Exp. limit √s = 13 TeV, 139.0 fb⁻¹ Exp. ± 1σ Exp. $\pm 2\sigma$ 95% CL $\tau_{lep} \tau_{had}$ $\tau_{lep} \tau_{had}$ $\tau_{had} \tau_{had}$ Low b-jet p_ High b-jet p_ Low b-jet p_ 10^{-1} 10^{-2} >600 >700 >600 >650 >700 >800 >850 >950 >650 >600 >750 >900 ATLAS Coupling λ Non-res. (Exp.limit ± 3.5 √s=13 TeV, 139 fb⁻¹ (Obs.limit ± 1a) 95% CL tal (Exp.limit ± to) 3⊢ U1^{YM} model, High b-jet p_ only Preferred by B anomalies Interference with SM neglected Excluded region 2.5 2 1.5 0.5 1000 1500 2000 2500 3000 m_{u™} [GeV]

third-generation

- σ^{tot} [pb] - Obs. limit ATLAS 10^{3} √s=13 TeV, 139 fb⁻¹ ----- Exp. limit 95% CL Exp. $\pm 1\sigma$ 10^{2} High b-jet p₊ only Exp. $\pm 2\sigma$ $\sigma_{\text{theory}}^{\text{tot,vector}}$ 10 $U_1^{YM}, \lambda=2.5$ Interference with SM neglected 1 10-1 10^{-2} 10^{-3} 10-4 500 1000 2000 2500 1500 m_{U,™} [GeV]
- Limit results for min/YM & gauge coupling 1.0 2.5 scalar LOYM. : 1.28 TeV 1.53 TeV vector LQ min.: 1.35 TeV 1.99 TeV vector LQYM : 1.58 TeV 2.05 TeV

arXiv:2305.15962

Scalar pair production of 3rd-generation leptoquarks : decaying to t quark & τ

Event Selection

- one light lepton (I) (e or μ)
- >= one τ_{had} -lepton, or >= 2 |
- >= 2 jets, one or more b-tag

Final states, defined by the multiplicity and flavour of lepton candidates

- Total predicted background in each of
- 15 control region categories
- 6 validation region categories

ATLAS

√s = 13 TeV

Signal regions

 $1\ell+1\tau OS$

 $2\ell OS +> 2\tau$

tt (Z/ γ^*) (high) tt γ^* (low)

QMisID

$1\ell+1\tau SS$ $1\ell+2\tau$ $2\ell OS+1\tau$ $\ell = 2$ $2\ell SS/3\ell+21\tau-L$ $2\ell SS/3\ell+21\tau-H$ $\ell = 0$ $\ell = 10^6$ $4\tau LAS$

TTTH TTT

Single top

Mon-prompt e 🗾 Non-prompt μ 🥅 Mat Conv

ttw

Diboson

tī tī

Other

Fake Thad

Scalar pair production of 3rd-generation leptoquarks: decaying to t quark & τ

JHEP 06 (2021) 179 2101.11582

Scalar leptoquarks decaying exclusively to $t\tau$ are excluded up to

- masses of 1.43 TeV
- > for BF 50% into $t\tau$, lower mass limit is 1.22 TeV.

Majorana neutrinos in same-sign WW

Final states include

- exactly two same-sign muons
- & \geq hadronic jets well separated in rapidity \triangleright

Main backgrounds:

SM same-sign WW scattering and WZ production modelled and constrained with data in dedicated signal-depleted Control Regions

> Events ATLAS Data √s = 13 TeV, 140 fb⁻¹ 70 sWW Background-only fit SB 60 Post-Fit lon-prompt µ 50 40 Uncertainty = 1 TeV, |V_{...}|²= 0.1 30 Weinberg $\Lambda/C_5^{\mu\mu} = 5 \text{ TeV}$ 20 10 Ratio 1.25 0.75 Data/Bkg. Uncertainty Pre/Post fit Bkg. 0.5 40 60 80 100 120 140 160 180 200 p_{_{T}}^{\mu_{_{2}}} [GeV]

W[±] W[±] scattering mediated neutrino N

Search region: 50 GeV and 20 TeV

arXiv:2305.14931 same-sign $\mu^{\pm}\mu^{\pm}$ production in

ROYAL IOW

Majorana neutrinos in same-sign WW

arXiv:2305.14931

Benchmark: PType-I Seesaw model

Search for periodic signals in dielectron and diphoton masses

- > Novel search techniques based on continuous wavelet transforms
- > used to infer the frequency of periodic signals from the invariant mass spectra

ROYAL

2305.10894

LOWAY

neural network classifiers used to enhance sensitivity to periodic resonances

Summary

- > ATLAS have an active search program searching for
- > New physics to explain anomalies
- Leptoquarks cross and same generation
- > Novel search for gravitons
- > New gauge bosons, Lepton Flavour Violation

> We are looking forward to analysing the Run 3 data!

Thanks for listening!

Thanks for listening!

