Refno: PS/ML/Technical note/85-11 TECHNICAL NOTE

11 June, 1985

Author(s): Mats Möller

Subject: Pressure drops in the helium supply lines, for the ACOL cryogenic and cryopumping system.

1. SCOPE

The ACOL cryogenic and cryopumping system is equipped with a helium high pressure supply and return line distribution system (see Fig 1). It consists of one high pressure-line (HP) and one low pressure-line (LP), each with a length of approximately 110 m.

This document presents the calculation for the pressure drops in the system. It also proposes the dimensions of the tubes.

2. SPECIFICATION

1. Pressure in HP-line:	20 bar
2. Pressure in LP-line:	5 bar
3. Length of HP-line:	110 m
4. Length of LP-line:	110 m
5. Volume ratio VLP/VHP:	1/4
6. Flow of helium:	400 norm m³/h
7. Temperature:	20-30°C
8. Max allowable pressure	drop per line: <0.5 bar

3. CALCULATIONS

The calculated pressure drop as function of the tube internal diameter, at $t=20^{\circ}C$ and at $t=30^{\circ}C$, is shown in Table 1.

iameter	Pressure drop	Pressure drop
n)	∆p(bar),at t=20°C	∆p(bar),at t=30°C
20	0.68	0.70
25	0.23	0.24
30	0.10	0.11
40	0.100	0.104
50	0.034	0.036
60	0.014	0.015
	n) 20 25 30 40 50	Δp(bar), at t=20°C 20 0.68 25 0.23 30 0.10 40 0.100 50 0.034

Table 1:	The	pressure	drop	in	HP-	and	LP-line
----------	-----	----------	------	----	-----	-----	---------

Conclusion:

In order to satisfy the max allowable pressure drop of less than 0.5 bar, a tube of 25 mm is needed to be used for the HP-line. This gives with the volume ratio 1/4, the diameter of the LP-line; 50 mm.

Remarks:

The influence of one-time losses (valves, turnes, etc) has not been included in this calcultaion.

A rough estimate of these losses indicates that they are very small. Example: A 90° bend gives a drop of 0.0005 bar.

4. THEORY USED FOR THE CALCULATION

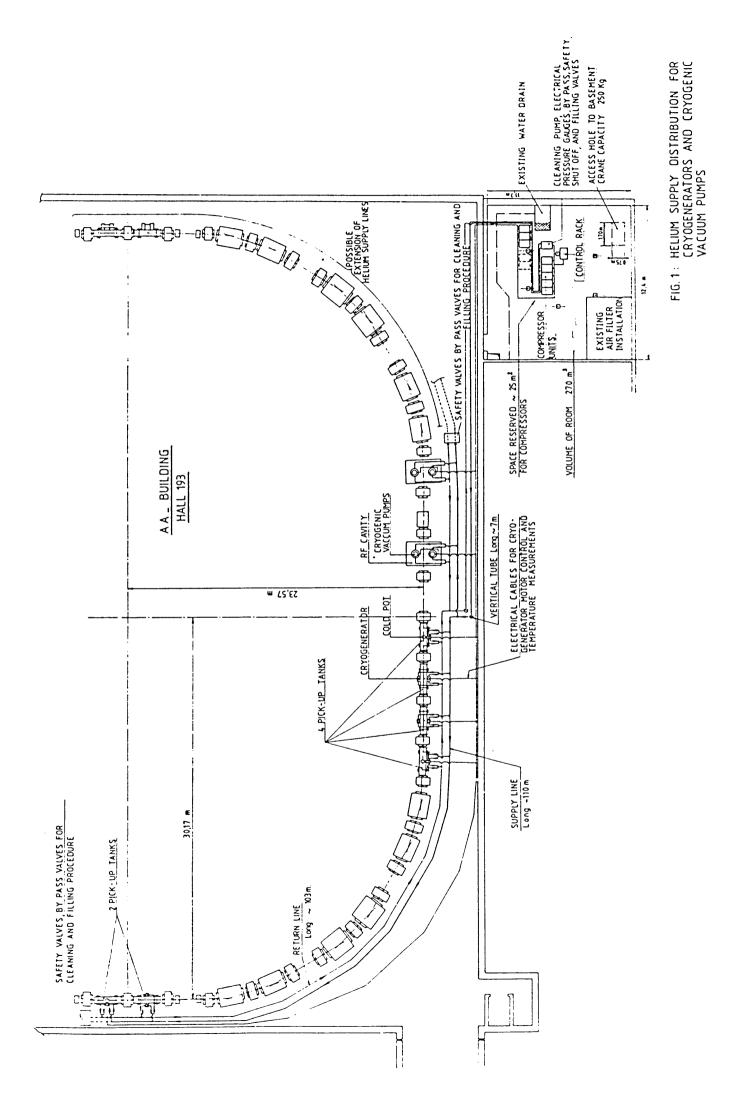
The pressure drop:

the breeste steb.	
	$\Delta p = p_1 - p_2 = p_1 (1 - \sqrt{1 - \lambda v_1^2 \rho_1 l / (\rho_1 d)})$
The universal gas law gives	:
	$\rho = \rho/(R \cdot T)$
	R = Rm/M
Continuity equations:	
	$\dot{\mathbf{m}} = \rho \cdot \mathbf{v} \cdot \mathbf{A} = \text{constant}$
	$\dot{\mathbf{v}} = \mathbf{v} \cdot \mathbf{A}$
Flow equations:	
Reynolds number	Re = $v \cdot d/v$
kinematic viscosity	$v = \eta/\rho$
if Re>2320	$\lambda = 0.3164/4\sqrt{\text{Re}}$

Chemical and physical constants for helium

M = 4.00 kg/kmolR = 2079.01 j/(kg K) $\rho_0 = 0.179 \text{ kg/m}^3$

dynamic viscosity η at p=1 atm


t	η
(°C)	(µNs/m²)_
0	18.7
20	19.6
50	21.0

dynamic viscosity η at t=20°C

р	η
(bar)	(µNs/m²)
20	19.6
50	19.6
100	19.6

REFERENCES

- [1] Dubbel, Taschenbuch fur den Maschinenbau, 15. Auflage.
- [2] G.W.C. Kaye, Tables of Physical and Chemical Constants.

