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Abstract

Commonly, passive filters work by reflecting unwanted energy back to the 
source. This is sometimes undesirable. The addition of a simple input matching 
network can yield a constant input resistance filter, which absorbs out-of-band 
energy, rather than reflecting it. This paper gives circuits and element values for 
matching networks for Bessel, Gaussian and linear phase with equiripple filters of 
orders 3 to 10.
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1 Introduction

It is sometimes useful to have passive LC ladder filters that absorb, rather than 
reflect, energy in the stop band. The usual way to obtain this is by the use of 
diplexers, i.e., by connecting two complementary filters in parallel at their inputs. 
One filter accepts the band of frequencies that the other rejects. Except for 
Butterworth filters, there is no solution for the perfect complementary filter.

If there is no need to present all out–of–band signal power on a separate 
output, there is a much simpler way to obtain good input matching. The parallel 
combination of a series RC circuit and a series RLC resonator can efficiently absorb 
virtually all stop band energy. Even though this method yields only an approximation 
of constant resistance, it is good enough for most practical applications. For most 
filters treated below, the theoretical reflection coefficient is below –50dB over all 
frequencies.

2 Basic considerations

The starting point for the design of a filter with constant input resistance is the 
normalized low-pass prototype for zero source impedance. This is the filter that 
produces the correct response with a constant input level, which is evidently the case 
for any constant source connected to a load that is constant as a function of 
frequency.

Any such filter starts with a large series inductance. Therefore, its input 
impedance will tend to rise with frequency above cut-off. A series RC circuit across 
the filter input can restore the input impedance to unity for very high frequencies, 
and a series RLC resonator can be positioned over the transition region to minimize 
the impedance ripple (Figure 1).

Figure 1. Low-pass filter with input matching

3 Filter tables

The following tables, taken from Zverev [1], have been complemented with 
the normalized element values for the input compensation network. The values have 
been determined using a heuristic seeking to minimize |Z(Ca,Cb,Lb,Rb)–1| over
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all frequencies, and may not represent the absolute optimum. This is evident from the 
somewhat inhomogeneous aspect of the S11 curves. (Figure 2, 3, 4.) They should be 
plenty good however, for almost all practical purposes.

Table 1. Normalized element values for Bessel filters (Maximally flat delay)

Ca Cb Lb Rb L1 C2 L3 C4 L5 C6 L7 C8 L9 C10
3 0.5804 0.3412 0.9915 2.6161 1.4631 0.8427 0.2926

4 0.6121 0.3143 1.0646 2.7036 1.5012 0.9781 0.6127 0.2114

5 0.6465 0.2834 1.1613 2.8896 1.5125 1.0232 0.7531 0.4729 0.1618

6 0.6622 0.2683 1.2094 3.0029 1.5124 1.0329 0.8125 0.6072 0.3785 0.1287

7 0.6876 0.2452 1.2955 3.2070 1.5087 1.0293 0.8345 0.6752 0.5031 0.3113 0.1054

8 0.7091 0.2266 1.3736 3.4024 1.5044 1.0214 0.8392 0.7081 0.5743 0.4253 0.2616 0.0883

9 0.7206 0.2172 1.4167 3.5267 1.5006 1.0127 0.8361 0.7220 0.6142 0.4963 0.3654 0.2238 0.0754

10 0.7270 0.2123 1.4407 3.6091 1.4973 1.0045 0.8297 0.7258 0.6355 0.5401 0.4342 0.3182 0.1942 0.0653

Table 2. Normalized element values for Gaussian filters

Ca Cb Lb Rb L1 C2 L3 C4 L5 C6 L7 C8 L9 C10
3 0.6267 0.3093 1.1256 3.1978 1.4179 0.7167 0.2347

4 0.6877 0.2498 1.3129 3.5644 1.4518 0.8406 0.4905 0.1642

5 0.7149 0.2252 1.4049 3.7347 1.4655 0.8934 0.6109 0.3684 0.1239

6 0.7256 0.2158 1.4409 3.8011 1.4713 0.9174 0.6710 0.4792 0.2915 0.0981

7 0.7304 0.2116 1.4571 3.8334 1.4737 0.9286 0.7020 0.5412 0.3918 0.2387 0.0803

8 0.7326 0.2096 1.4647 3.8493 1.4748 0.9341 0.7185 0.5766 0.4529 0.3292 0.2005 0.0674

9 0.7340 0.2085 1.4695 3.8601 1.4753 0.9367 0.7273 0.5972 0.4907 0.3880 0.2822 0.1716 0.0576

10 0.7335 0.2089 1.4671 3.8551 1.4755 0.9381 0.7321 0.6092 0.5142 0.4267 0.3381 0.2456 0.1492 0.0501

Table 3. Normalized element values for linear phase filters with equiripple 
error (0.05°)

Ca Cb Lb Rb L1 C2 L3 C4 L5 C6 L7 C8 L9 C10
3 0.5981 0.3275 1.0360 2.5837 1.5018 0.9328 0.3631

4 0.6387 0.2884 1.1425 2.7818 1.5211 1.0444 0.7395 0.2925

5 0.7098 0.2254 1.3810 3.3266 1.5144 1.0407 0.8447 0.6177 0.2456

6 0.7061 0.2300 1.3541 3.3652 1.5050 1.0306 0.8554 0.7283 0.5389 0.2147

7 0.7387 0.2031 1.4877 3.7021 1.4988 1.0071 0.8422 0.7421 0.6441 0.4791 0.1911

8 0.6892 0.2471 1.2867 3.3189 1.4953 1.0018 0.8264 0.7396 0.6688 0.5858 0.4369 0.1743

9 0.7381 0.2037 1.4891 3.7692 1.4907 0.9845 0.8116 0.7197 0.6646 0.6089 0.5359 0.4003 0.1598

10 0.6819 0.2545 1.2598 3.3002 1.4905 0.9858 0.8018 0.7123 0.6540 0.6141 0.5669 0.5003 0.3741 0.1494
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4 Reflection coefficient graphs (S11)

For the frequency response, group delay and time responses, consult Zverev 
[1]. Below are the graphs of the theoretical value of the reflection coefficient S11 vs. 
normalized angular frequency, with the proposed compensation circuit in place.

Figure 2. Bessel filter reflection coefficient (Su)

Figure 3. Gaussian filter reflection coefficient (S11)
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Figure 4. Linear phase with equiripple error (0.05°) reflection coefficient (S11)

5 A practical design example

The design concerns a 50 Ohm, 6th order Bessel low-pass filter with a 40MHz 
cut-off frequency. The values for the inductances, taken from the appropriate table, 
are denormalized by multiplying with:

(1)

Similarly, the capacitor values are obtained by multiplying with:

(2)

The resistor values are simply multiplied by 50. This yields the detailed 
schematic diagram shown in figure 5.

Figure 5. Sixth order 50Ω 40 MHz Bessel low–pass
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The filter was constructed using hand wound coils and 5% tolerance ceramic 
chip capacitors on a piece of copper plated epoxy board. (Figure 6.) The coils are 
positioned so as to minimize mutual coupling, but no screening has been used 
between the filter sections.

Figure 6. Practical realization of a constant resistance Bessel filter

The following plot (Figure 7), shows the theoretically possible S11 (lower 
curve), as well as the practically achieved values. These results are compatible with 
the expected performance for 5% tolerance components, as a Monte Carlo simulation 
using a circuit simulator will readily show.
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Figure 7. Reflection coefficient (S11) of the realized filter

6 Conclusion

A simple method is described for obtaining low-pass filters with constant input 
resistance over frequency. Such filters absorb, rather than reflect, out-of-band energy. 
The filters are useful in applications that cannot tolerate reflections, e.g., if the signal 
source is strongly reactive, or connected through a long transmission line.

For most filters, the theoretical reflection coefficient S11 is below –50dB. This 
corresponds to an input resistance that deviates by no more than 0.3% from its 
nominal value. For practical realizations using components with 5% accuracy, and for 
frequencies in the MHz range, an S11 better than -30dB can reasonably be expected.
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