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1) Introduction

The aim of this detector is to measure the transverse distribution of particle beams of 

small dimension and great density.

The principle on which the detector is based has been reported in reference [1]. It relies 

on the deflection of a low-energy ion-pencil-beam when passing perpendicularly through a 

dense particle beam. In the present paper the probed beam consists of protons. The proof of 

principle has been reported in reference [2], after experiments made on the CERN-SPS beam.

In the conclusions of [2] it was proposed to use a thin ion-curtain probe (or test) beam, 

instead of the ion-pencil beam, so as to avoid the scanning technique. Complementary to the 

ion-curtain method, a variant, so called “shadow” technique, has also been proposed [2, 3].

This paper reports the tests and measurements made with the “ion-curtain”, on the SPS 

beam. After a brief recall of the principle, a summary of the results will be given and 

commented on.

In order to not make this paper too exhaustive, the technical description, involving the ion 

gun itself, will be left out. However mention will be made of the possible use of such an ion 

profilometer on the CERN-Linac, Booster and PS machines.

2) Data - Symbols

2.1 Data

q = 1.6 x 10-19 C , elementary charge,

ε0 = 8.854×10-12 F m-1, vacuum permittivity, 

c = 2.997×108 m s-1, velocity of light,

mp = 1.672×10-27 kg, proton mass.
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2.2 Symbols used for the ion probe beam

Nominal velocity : v0 [m s-1]

A, Z Atomic mass and charge, mi = A mp, Q = Z q (Z = 1 in the present case)

nominal kinetic energy

2.3 Symbols used for the probed proton beam (Ap = 1, Zp =1)

r.m.s bunch length : 

r.m.s transverse dimensions : σx and σy [m], 

For round beams :

nb ≡ number of protons / bunch

T[s] time interval between bunches

3) Principle (Fig.1.a, 1.b)

The system of co-ordinates is defined in Figure 1.a, whilst the detector principle is 

recalled in Figure 1.b.

A low energy ion pencil beam is generated at : (x = -xi, y = y0 ≤ |xi|, z = 0) and moves 

with initial velocity perpendicular to the direction of the proton beam. The proton 

beam itself, centred at (0,0,0) moves with velocity.

The proton beam is supposed to be very dense and has a transverse distribution function 

with r.m.s values σx and σy. For simplicity we suppose a round Gaussian beam so that the 

normalised transverse distribution is given by :
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(1)

The restriction to a round beam does not affect the detector accuracy [2] .

In the case of a bunched proton beam, with time interval T between bunches, the protons 

are supposed to be relativistic (ß0 ≅ 1) so that the electrical space charge field of the p-bunch is 

mainly radial. The relativistic condition is not absolutely necessary [2] but will be 

considered as being fulfilled in this paper.

On its way from -xi to xf, where the detector is placed, the ion beam will be deflected, by an 

angle θ(y0), as a result of the transverse proton space charge electrical field. For each 

impact parameter y0 the detector in the observer plane (x = xf = L, defined by and) will 

record a spot at Y=Y0 = y0+ L θ(y) when the p-beam is ON and at Y = y0 when the p-beam is 

OFF. Then the deflection angle θ(y) can be obtained by :

It has been showed ([1] , [2] and appendix 1) that with minor simplifications the 

deviation angle can be expressed by :

with and the error function; erf(∞) = 1,

(2)

b)

c)

A plot of θ(y) (y here means y0 ) , defined by 2.a, is given in Figure 2 for two different values 

of θmax , namely for θmax = 5×10-3 rad (curve θ1 (y)) and for θmax = 10×10-3 rad (curve θ2(y))
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whilst Δr = 10-3 m for both cases. Figure 3 represents equation 2.b for both values of θmax and 

for the given Δr.

Once 2.b is evaluated a normalisation is applied, namely 

which is the is equivalent in y (or y0 ) direction of equation (1) and therefore represents the 

distribution, we intend to retrieve from our measurements.

Conclusions

Having measured θ (y0), one can deduce θmax and dθ (y0)/dy0 (equation 2.b). The 

later equation is, according to (1), representative of the density distribution in the proton bunch 

in the y direction. The radial r.m.s value Δr can then be obtained from 2.c. However, we found 

this method of data treatment to be not very precise, because important errors are induced 

during the numerical derivation of θ(y0). It can therefore be used only for rough estimates .

In practice, after having measured the deviation angle θ as a function of y0 (or y), we 

proceed with an “erf-fit” of the measured data. The fit gives the optimal value Δr. Then we 

compute so as to obtain the bunch distribution in the y direction.
θΛ

Remark : In the case where σt / T < 1 a modulation of θmax with time occurs [2]. This effect is 

quite small and therefore negligible in the present case where we use heavy probe ions.

4) Ion curtain beam [2]

If, instead of scanning the ion beam in the y direction we use a flat inclined curtain ion 

source, the measurement becomes as described by Figure 4.

The ions forming the curtain are produced from a source situated on the x axis upstream 

of the probed beam ; each ion has therefore a velocity component in the x direction and one in 

yz plane . The geometry between the ion source and the observer plane is explained in detail in 

Appendix 3 .
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For simplicity, in order to avoid heavy and complicated notations, we will consider 

throughout the paper that the ions forming the curtain move in the x direction. (In other words 

we will consider the ion source to be very far away from the probed beam so that the y,z 

velocity components of the ions are negligible.) Of course, during the experimental 

measurements and the data treatment we took into account the real geometry described in 

Appendix 3 .

The thin ion beam is distributed along the line y = z.tg(φ). When the proton beam is 

OFF, the corresponding line is directly recorded on the observer screen orthogonal to the ion 

direction at x = xf = L.

When the proton beam in ON, the ion at ordinate y is deflected by an angle θ(y) and 
reaches the observer plane at Y = y + L tgθ = y + L θ(y).

After some linear transformations we retrieve the distribution θ(y) in a similar way as 
explained in paragraph 3.

Again an “erf-fit” is applied on the measured values (see paragraph 3) from which we 
deduce the p-bunch density distribution, in the y direction, and thus Δr.

This method dispenses with scanning and is independent of the ion curtain density 
dni/dξ (Fig. 4). The determination of the bunch centre of gravity is immediate.

The essential part of this paper concerns measurements made on the CERN-SPS with 
such an inclined ion curtain.

4.1) Shadow technique

A variant has been proposed [3], namely the so called “Shadow” technique. It makes use 
of the same arrangement. The principle is the following : With proton-bunch OFF the probe ion 
lies on the OY line of the observer plane with density

being determined by the ion source properties.
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When the proton-bunch is ON a measurement of the ion density gives,

The interpretation of the measurements is not straightforward (see appendix 2), since
is not constant and also since θmax, which appears in the derivative depends 

on nb and therefore on the proton beam intensity.

In order to implement this technique it would be preferable to have an ion curtain lying in 
the xy plane, that is with. Then 2-dimensional resolution is not needed and one could 

avoid the use of a camera and the subsequent image treatment. A 1-dimensional detector with 
the proper resolution in the y direction (for example strips, fibres) could be used instead. 
However, is not a mandatory condition; on physical grounds the choice of φ is of no

importance. In our experiment (Fig. 4) and the shadowing effect was observed.

This will be briefly reported.

5) Ion curtain profilometer set-up

The schematic set-up is given in Figure 5. The gun (Ion source-Extractor-Drift tube) itself 
consists in an industrial ion source which has been modified and used with Xe+ during all the 
experiments. The outcoming ion beam has a conical distribution and is steered toward a small 
aperture slit. The part of beam not traversing the slit hits a collector plate. The beam coming 
out of the slits is focused so to form the required thin ion curtain when crossing the proton 
beam.

After being deflected by the proton beam space-charge electric field the ions are 
amplified (by a Micro-Channel-Plate) and produce photons on a phosphor screen.

The resulting image is viewed with a Vidicon type camera having a fixed resolution of 
625 points in Z and, due to the band-width of 5MHz, an equivalent of 540 points in Y. The 
Vidicon analogue signal is then digitised by means of an appropriate Data Acquisition card 
which can give a maximum of 576 pixels in Z and 768 pixels in Y. The useful part of the 
digitised image corresponds to 440 pixels in Z and 350 pixels in Y. The resolution therefore 
depends on the performance of the Data Acquisition Card. There are more performant cards

since Y = y + Lθ(y) ≡ g(y) :
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than the one we used; in addition, Vidicons with larger band-widths are available. Higher 
resolution can therefore be achieved. We note that our aim up to now has been to test the 
physical principle of the profilometer and not to provide a performant operational diagnostic.

Care has been taken to ensure a small vacuum pressure increase inside (10-8 torr) in the 
vacuum pipe. Vacuum valves insures, when necessary, a full seperation of the detector from 
the machine.

6) SPS machine parameters

The SPS operated in fixed target mode with the following parameters :

Total number of protons : 1.8×1013 - 2.4×1013

- Number of bunches : 4200

- Number of protons per bunch nb = 4.3×109 - 5.7×109

- r.m.s bunch duration 0.5ns

- time interval between bunches T ≅ 5ns

- revolution frequency 44 kHz

- momentum versus time

p(t) ≅ 14 + 0.1253 (t-1260)(ms) GeV/c

where t refers to the first injection.

The detector was installed at location IWS41432 near a wire scanner used as reference 
(location 41420). The machine parameters at the IWS level are: ßH = 94.61 m,

ßv = 22 m, Dispersion Dh = 2.83 m.

7) Experimental measurements

One of the observations made with the Vidicon camera is shown in Figure 6. In the 
presence of the proton beam we can observe the “S” shaped ion curtain around the virtual 
inclined straight line measured when the proton beam is OFF.
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A preliminary but essential work is to proceed with calibration and more precisely to 
determine the coefficients : Number of mm on the phosphor screen/ number of pixels in both 
directions Z and Y. These coefficients were pz =0.164 mm/pixel and py =0.112 mm/pixel 
respectively.

The intersection between the straight line and the “S” shaped curve determines the “zero” 
point, or the proton beam centre of gravity.

After having measured the function θ(Y) one takes into account the geometrical

parameters (L , D and) (Fig. 5) and finally obtains the function θ(y) .

Using estimates (initial guess values) of θmax and Δr we proceed with an “erf-function” fit 
to find the optimised θmax and Δr.

The overall detector performances and the data treatment are of prime importance for 
acquiring accurate measurements.

A plot of θmax as a function of the inverse ion kinetic energy is given in Fig. 7. The 
linearity is verified over almost all the range of interest.

8) Transverse r.m.s dimension

We made many measurements of the transverse beam dimension using different probe 
ion kinetic energies and comparing our measurements with those taken from the neighbouring 
wire-scanner.

Figure 8 shows a plot the transverse r.m.s value σ, as a function of pc [GeV], measured 
with the ion profilometer and with the wire-scanner. Results are quite comparable. The 
transverse r.m.s value σ decreases as expected.

Figures 9.a and 9.b represent the transverse profile expressed by equation 2.b normalised

to for different proton beam energies during

the SPS cycle. As mentioned before, the plotted curves are the derivatives made on the 
accurate “erf-fit”. The area under each curve is equal to 1.
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9) Error estimate in determining

As showed in Fig.l.b an ion with impact parameter y0 will reach the phosphor screen at

Y = y0 when the proton beam is OFF
Y = Y0 = y0 + L θ(y0) when the proton beam is ON

The phosphor screen is seen by a Vidicon type camera through an optical system 
(Fig. 10a). Therefore, after digitising the Vidicon signal, to the point :

A of ordinate Y = 0 [mm] corresponds the pixel number : Pa
B of ordinate Y = y0 [mm] corresponds the pixel number : Pb
C of ordinate Y = Y0 = y0 + L θ(y0) [mm] corresponds the pixel number : PC

The overall range covered by  y0 corresponds to the use of one row of N pixels.

We have obtained a calibration factor py [mm/pixel].

For a given impact parameter y0, the deviation angle θ(y0) can be computed by 
(Fig.10.a).

As explained above, we then proceed with an erf-fit on the data so as to obtain the 
optimal Ar and θmax:

In fact the probe ion pencil beam (or curtain) has a finite width (or diameter) so that it 
appears to be distributed over a few (8-10) pixels on the P axis representing the camera 
input. The treatment program seeks for the pixel number where the maximum light 
intensity occurs. The corresponding uncertainty is estimated to be δ = ½ pixel. The error 
made on the deviation angle is therefore independent of the impact parameter y0.

9.1) Error simulation procedure
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a) From experimentally measured values θmax and Δ , we consider a theoretical 
model

Due to pixelisation, the impact parameter y0 takes discrete values namely 
(Fig. 10.b)

ymax = + 7 mm and ymin = -7 mm are fixed. Therefore the theoretical distribution is 
given at discrete points θ(y0) → θ( yk).

b) On the latter function we superpose random numbers uniformly distributed in 
[- Δθ , Δθ] so as to simulate the errors induced by the uncertainty in 
determining the maximum amplitude pixel. More precisely, we consider :

where γk are random numbers uniformly distributed in [0,1]

c) Then Φ is fitted by a function : u0 erf (yk/u1) and the optimal parameters : 
u0 ≡ θmaxfit and u1 = Δfit, are obtained from the fit.

d) The relative error is expressed by :

and is averaged over a few (≈ 12) random number “runs”

e) For simplicity we have represented in Fig.10.a the case φ = π/2 which 
corresponds to a 1-dimensional image. In reality, the ion curtain is inclined by 
φ = π/10 with respect to the z axis (Fig. 4) which leads to a 2-dimensional 
image on the camera. Therefore, the overall range covered by y0 corresponds 
to N pixels in z (and not in y) direction (Fig. 4), for which we have obtained 
the calibration coefficient pz [mm/pixel]. We note that pz ≠ py .
Then obviously N ∝ 1/pz.

Results are given in table 1 for which it must be recalled that θmax,, Δ ,
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pz = 0.164 mm/pixel (which corresponds to N = 400) , py = 0.112 mm/pixel 
do actually concern our experiment.

Fig. 10.b shows the function

and the corresponding fit θmaxfit erf (yk/ Δflt) for the CASE 1a
(θmax= 0.010 rad , Δ = 2.29 mm) and for the CASE 5a (θmax = 0.0028 rad , 
Δ = 2.33 mm) of Table 1.

Relative error estimates in determining

Table 1

CASE Py 
(mm/pixel)

Pz 
(mm/pixel)

N θmax 
(rad)

Δ 
(mm)

Relative Error 
| Δfit-Δ |/Δ

1a 0.112 0.164 400 0.010 2.29 4 %
1b 0.056 0.082 800 0.010 2.29 3 %
2a 0.112 0.164 400 0.0095 2.19 4.5 %
2b 0.056 0.082 800 0.0095 2.19 3.3 %
3a 0.112 0.164 400 0.0077 2.22 6%
3b 0.056 0.082 800 0.0077 2.22 4.5 %
4a 0.112 0.164 400 0.0052 2.11 11 %
4b 0.056 0.082 800 0.0052 2.11 8.5 %
5a 0.112 0.164 400 0.0028 2.33 14%
5b 0.056 0.082 800 0.0028 2.33 14%

9.2) Remarks

From Table 1 we conclude that
- For the same θmax the relative error is less important when the digitisation is 

bigger (py smaller). This is expected since :

and the number of points N ∝ 1 / pz.

- For fixed resolution the relative error decreases for higher θmax values, that is 
for higher proton beam intensities and/or for lower probe ion beam energy.
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This is also expected since for large θmax the theoretical term θmax. erf (yk / Δ) is 
more important when compared to the random error term ηk.
- As far as the relative error is concerned, it is preferable to operate at low Xe+ 
ion kinetic energies (1.5 -3 keV).

10) Shadowing technique

As explained in 4.1, and more detail in appendix 2, the shadowing technique makes use 
of the attenuation, induced by the proton bunch electrical field, on the ion probe-beam 
distribution. According to the simplified model described in Appendix 2, for a uniformly 
distributed ion probe-beam the “deflation” width on the phosphor screen should be about :

2 (2 Δr + L θmax( nb)).

Figure 11.a gives an example of the experimentally observed distribution. One should 
note that the data analysis was very tedious mainly because of difficulties in the smoothing 
techniques. As mentioned above, operation at would make data treatment much more 

straightforward.

Figure 11.b presents the beam shadow results for different SPS proton beam momenta.

Figure 11.c shows the beam shadow results for a fixed proton beam momentum and for 
different θmax. The value of θmax was changed by varying the Xe+ ions kinetic energy. The fact 
that some of the curves are shifted to the left is due to the smoothing algorithm and is of no 
importance for the interpretation of the results. One can see that the “deflation” width at fixed 
proton beam momentum and hence at fixed Δr depends on θmax as expected (see Appendix 2).

11) Application to “low” energy machines

Studies have been made on the application of this type of detector on the other CERN 
machines namely Linac-2, PS-booster and PS [4].

Application to Linac-2 looks promising and would illustrate the case where proton beams 
are not fully relativistic (though still dense) since the beam energy is 50 MeV. The use of a 
curtain beam is then almost mandatory.

Concerning the Booster and the PS machine itself, the use of a scanned ion pencil beam 
could be considered instead.
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12) Conclusions

The use of a thin inclined ion curtain, to measure a beam’s transverse density distribution, 
has been investigated. The measurements made on the SPS gave valuable results, in 
accordance with theory. Making the ion curtain profilometer operational appears feasible, 
provided that more time and effort is dedicated to the improvement of the data treatment 
system.

The principle of shadowing the ion beam density has been demonstrated and needs 
further studies. This technique however does not give a straightforward measurement of σ 
since it involves the proton beam intensity (nb) as well (see Appendix 2).

Of course both methods would allow to display the transverse profile all along the cycle 
every 20 to 40 ms.
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FIGURE CAPTIONS

Figure 1: a) System of co-ordinates.

b) Symbols used and the principle of the ion pencil beam profilometer.

Figure 2: Plot of (equation 2a), as a function of y for Δr = 10-3m.

θ1 (y) corresponds to θmax = 5×10-3 rad and θ2(y) corresponds to θmax = 10×10-3 rad.

Figure 3: Plot of d θ1 (y) / dy and d θ2(y) / dy as a function of y. Again θ1 (y) corresponds to 

θmax= 5×10-3 rad and θ2(y) corresponds to θmax = 10×10-3 rad and Δr = 10-3m .

Figure 4: Principle of the inclined curtain ion beam profilometer.

Figure 5: Ion curtain detector set-up. Top : Ion gun + Optics; Bottom : Overall set-up 

including the detector.

Figure 6.a: Image from the Vidicon camera of the ion curtain detector showing the ion curtain 

deformation due to proton bunches space-charge.

Figure 7: Plot of θmax [rad] as a function of the inverse of the probe ions kinetic energy [keV].
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Figure 8: Measurements of the horizontal r.m.s dimension σ [mm] as a function of the SPS 

beam momentum. Measurements are made with :

- The Xe+ ion curtain at 1.81 keV and 2.72 keV kinetic energy. The relative error in 

determining σ was 6% for 1.81 keV ions and 11% for 2.72 keV ions.

- The wire scanner using raw and fitted data.

Figures 9.a, 9.b: Transverse beam profile, as a function of SPS beam momentum.

The plotted curves are the derivatives made on the accurate “erf-fit”.

By normalisation it is meant that we plot :

The area enclosed by each curve is equal to 1.

Figure 9.a : measurements made with Xe+ ions of 2.72 keV.

The relative error in determining σ was 11%.

Figure 9.b : measurements made with Xe+ ions of 1.81 keV.

The relative error in determining σ was 4.5% .

Figures 10.a, 10.b : Error estimate in determining

Figure 10.a : Principle of error estimate and symbols used.
Figure 10.b : Results of the error simulation procedure for the 
CASE 1a (θmax = 0.010 rad , Δ = 2.29 mm) and for the CASE 5a 
(θmax = 0.0028 rad , Δ = 2.33 mm) of Table 1.

The function 

corresponding fit θmaxfit erf (yk/ Δfit) are shown for each case.

and the



17

Figures 11.a ,11.b, 11.c: Shadow technique .

Figure 11.a : Example of the experimentally observed distribution .

Figure 11.b : Beam shadow results for different SPS proton beam 

momenta.

Figure 11.c : Beam shadow results for a fixed proton beam 

momentum and for different θmax. The value of θmax was changed by 

varying the Xe+ ions kinetic energy.
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ION PROFILOMETER

Nominal (fixed target) SPS proton beam , intensity = 1.8×1013 protons

Xe+ ions energy : 2.72 keV

3500 ms from injection , proton momentum = 314 GeV/c

Figure 6
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A.1.1

APPENDIX 1

We aim to demonstrate that the deviation angle θ (y0) can be, under some assumptions, 
approximated by an erf function.

A) Hypothesis

We consider a proton bunch having

a transverse normalised distribution

with r.m.s value :

an uniform longitudinal distribution over the length

So that the overall distribution is :

(1)

where nb = number of protons/bunch

B) Deflection angle as a function of the impact parameter y0

It has been shown [1] that (Fig. 1)

(2)

where the symbols are those 
defined in paragraph «Symbols». Differentiating :
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and for uf ,ui → ∞ a good approximation will be

(3)

C) Error function

It is well known that

erf(0) = 0, erf(∞) = 1, erf(x) = -erf(-x).

Applied to (3) gives an approximate expression of (2)

(4)

with the constant C = 0 since θ (0) = 0

We set the maximum deviation angle

(5)

and are thus in position to summarise

(4)

(3)
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(6)

D) Another expression of the transverse r.m.s value. Keeping the hypotheses of a
Gaussian proton bunch
-n(r) is a 2-d Gaussian distribution (r2 = x2 + y2) with r.m.s value Δr

is a 1-d Gaussian distribution function of y0 which r.m.s

value

it is convenient to set

(7)

and to write instead

(4)’

(3)’



A.2.1
APPENDIX 2

We aim to analyse in more detail the theoretical aspects of the shadow method.

As said the ion distribution on the observer plane is expressed by :

A.2.1

where is the curtain (or ion source) distribution measured when the proton beam 

is OFF.

We have :

The function g(y) itself is not simple and therefore g-1 is not straightforward.

Since :

we obtain :

A.2.2

remembering that θ max depends on nb and therefore on the proton beam intensity.



A.2.2

To illustrate this effect let us simplify and consider instead of an erf function a 
simplified expression :

Then we have :

Fig. A.2.1 shows the curves as a function of Y for Δr = 10-3m , L = 0.5 m and for 

two different values of θmax , namely for θmax = 5×10-3 rad (curve dnil/dY)) and for
θmax = 10×10-3 rad (curve dni2/dY) .We considered only the simple case in which the 

initial ion curtain distribution is uniform, that is const. (we took).
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Figure A.2.1

We see that the deflation width on the phosphor screen is : 2 (2 Δr + L θmax( nh)).
The discontinuity of the curve occurs at Y = (2 Δr + L θmax (nb)) and will remain at this 

point if Δr and θ max both vary in such a way that d(Y) = d (2 Δr + L θ max(nb)) = 0 
or 2 d(Δr) = L d(θ max(nb)) i.e. the r.m.s proton beam size variation d(Δr) is compensated 
by a variation of θ max due to an increase of bunch intensity (nb) and vice versa.
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APPENDIX 3

We have seen that the Xe+ beam coming out of the source has a conical distribution . 
This ion beam is collimated, steered and focused in order to obtain the ion curtain. (Fig. 5) 
Therefore, not only do the probe ions move in the x direction but they also have a velocity 
component lying in the yz plane.

Figure A.3.1 shows the projection of the probe ion trajectory in the xy plane and 
Figure A.3.2 shows the projection of the probe ion trajectory in the xz plane. The parameters 
D=916 mm and L=395 mm are given in Fig. 5 .

Figure A.3.1



A.3.2

Figure A3.2

With the proton-bunch OFF the probe ion reaches the observer plane (Fig. A.3.1)

at whereas with the proton-bunch ON the 

probe ion is also deflected by an angle θ(y0)and hence reaches the observer plane at

.

In both cases the probe ion drifts in the z direction (Fig. A.3.2) and reaches the observer 
plane at.

This geometrical set-up was actually taken into account in the treatment of 
experimental data. However, in order to simplify the notations, we considered throughout 
the paper the ion source to be very far away from the probed beam (D → ∞) so that the 

y,z velocity components of the ions are practically negligible and.
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LEBRUN Philippe LHC M21510
LINNECAR Trevor SL-HRF Z01600
MACCAFERRI Remo PS-BD L07510
MOLINARI Gianni PS-BD L07600
ODIER Patrick PS-BD G02900
PRIETO Virginia PS-BD L07200
RIEGE Hans LHC-DLO E08100
SCHMICKLER Hermann SL-BI Y01500
SCHMIDT Rudiger LHC-ICP M26620
STEINBACH Charles PS-OP L06600
TRANQUILLE Gérard PS-OP L06520
WILDNER Elena SL-AP M08600


