# AD TRANSVERSE DAMPERS

### L. Søby

In the AD, the beam will be submitted to electron-cooling at an intermediate level of 300 MeV/c and at the flat bottom at 100 MeV/c. At the resulting high final densities the beam may become unstable. In this note a damper is proposed for the suppression of coherent transverse instabilities.

#### **1. BASIC FEATURES**

The damper shall cover the following needs:

- a) Damping of coherent instabilities in the energy range 300 100 MeV/c antiproton and proton beams circulating in the clockwise direction. Bunched and unbunched beams with a maximum intensity of  $5 \times 10^8$  particles. Damping is needed on the intermediate level at 300 MeV/c, during further ramping down, and at the flat bottom at 100 MeV/c.
- b) Fast transverse blow-up for acceptance measurements.

### 2. POSITION MONITORS AND DEFLECTORS

The 50  $\Omega$  strip-line deflectors, one for each plane, installed in sector 16 (DAV1605, DAH1607) will be used to deflect the beam. The coherent signal to be damped will be taken from one of the closed orbit electrostatic PUs. The betatron phase advance must satisfy the condition  $\mu \cong (2n + 1)\pi/2$  and the beam flight time between PU and deflector must be as small as possible to minimise phase distortion in the cables. UHZ04 for the horizontal plane and UVT03 for the vertical plane satisfy both criteria's very well. The phase advance and flight times are summarised in Table 1 below.

|                                                | UHZ04  | UVT03  |
|------------------------------------------------|--------|--------|
| Betatron phase advance PU-Deflector (deg.)     | 425    | 474    |
| $Sin(\mu)$                                     | 0.91   | 0.91   |
| Distance between PU-deflector ( $\Delta S/S$ ) | 0.228  | 0.240  |
| Time of flight PU-deflector @300 MeV/c (ns)    | 455.5  | 471.5  |
| Time of flight PU-deflector @100 MeV/c (ns)    | 1310.3 | 1379.3 |
| Flight time change from 300 to 100 MeV/c (ns)  | 854.8  | 899.4  |

| Table 1: Relationship PU-deflector with $Q_H = 5.39$ and $Q_V$ | = 5.37. |
|----------------------------------------------------------------|---------|
|----------------------------------------------------------------|---------|

#### 3. SPECIFICATION OF ELECTRONICS

In Table 2 below is a list of the electronics foreseen for the damper. It will physically be located in a rack to be installed in the hall close to section 13. A block diagram of the system can be seen on page 5. All modules except the head amplifier are identical to those of the Booster. The table describes the modules needed for one plane only. Note that since we use two separate PUs, 2 word generators are needed.

|                                          | Gain<br>[dB] | 3dB<br>Bandwidth | Length<br>[ns] | Function                                          | Remarks                                                      |
|------------------------------------------|--------------|------------------|----------------|---------------------------------------------------|--------------------------------------------------------------|
| Head amplifier                           | 47           | 10 kHz-20 MHz    | 16             | Low noise amplifier                               | AD Closed orbit amplifier                                    |
| Cables PU-deflector                      | -0.5         | DC-2 GHz         | 244            | Bring signals to and from rack                    | Calculated for Vertical plane                                |
| Reception amplifier                      | 0            | 10 kHz-80 MHz    | 10             | Differential to single ended                      | Same as for AD orbit measurements                            |
| Delay switching unit<br>(Variable delay) | -16          | DC-500 MHz       | 7-2055         | Delay signal                                      | Same as Booster and Lear<br>TFB. LSB = 2 ns<br>MSB = 1024 ns |
| Delay word generator                     | ***          | ***              | ***            | Control delay switching unit                      | Same as Booster TFB<br>Input: RF H=1 Anal.                   |
| Control module                           | 0; -16       | 50 kHz-100 MHz   | 12             | Controls attenuator and mode ie. BTF, blow-up     | Same as Booster TFB                                          |
| Power amplifiers                         | 50           | 20 kHz-100 MHz   | 14             | 100W water cooled power amplifier                 | Same as Booster TFB                                          |
| Sense switching                          | 0            | DC-2 GHz         | 12             | Relays to switch deflector to match sense of beam | Exists but will have to be changed to handle 100 W           |

Table 2: Description of damper electronics.

Adding up we have the following specifications:

| Table | : 3: | <b>Overall</b> | specifications |
|-------|------|----------------|----------------|
|       |      |                |                |

| Maximum gain   | 80 dB                  |
|----------------|------------------------|
| 3dB bandwidth  | 50kHz –20 MHz          |
| Minimum length | 315 ns                 |
| Output power   | 100 W into 50 $\Omega$ |

The dynamic range of this system is capable of handling a fully offset, bunched beam of  $5 \times 10^8$  particles. The betatron line frequencies are given by  $(N-Q) \times Frev_{300Mev}$ . So in the range N = 6 - 45 damping should be efficient.

### 4. BLOW-UP

It is foreseen to use the existing signal generator in the Equipment room. The FM-signal will excite the beam via the stimulus input on the control module. A relay will switch the blow-up signal between the horizontal and vertical control modules. Two cables between the ACR and the rack will provide signal transmission for the blow-up and BTF measurement.



Fig. 1: Blow-up layout

## 5. LAYOUT AND CONTROLS

As mentioned earlier most of the hardware will be installed in the hall. An emplacement has been found close to section 13 just outside the ring (DEM line). This is important to minimise cable lengths. A layout of the rack is seen in Fig. 2 below.



Fig. 2: Rack layout

To control the system 2 ICV196 are foreseen. The location of the modules is not yet defined. Also 1 TG8 module is needed to switch the damper on/off. A summary of the control

bits needed for one plane is given in Table 4 below. The shaded cell is common for both planes.

| Module               | Function            | Nb. of<br>control bits | Nb. of<br>acquisition bits |
|----------------------|---------------------|------------------------|----------------------------|
| Delay word generator | Rate                | 7                      | 7                          |
| Delay word generator | Offset              | 7                      | 7                          |
| Control module       | Variable attenuator | 4                      | 4                          |
| Control module       | BTF/Blow-up on/off  | 1                      | 1                          |
| Control module       | Timing enable       | 1                      | 1                          |
| Control module       | Loop open/closed    | 1                      | 1                          |
| Control module       | Water OK            |                        | 1                          |
| Control module       | Local/Remote        |                        | 1                          |
| Power amplifiers     | On/Off              | 2                      | 2                          |
| Power amplifiers     | Reset               | 2                      |                            |
| Power amplifiers     | Interlock           |                        | 2                          |
| Power amplifiers     | Local/Remote        |                        | 2                          |
| Blow-up              | Sense: PBAR/Proton  | 1                      | 1                          |
| Blow-up              | Plane select        | 1                      | 1                          |
| Blow-up              | Local/Remote        |                        | 1                          |
| Total / plane        |                     | 27                     | 32                         |

## Table 4: Control bits for 1 plane.

## 6. COST ESTIMATE AND PLANNING

|                                                     | CHF    | Status                                         |
|-----------------------------------------------------|--------|------------------------------------------------|
| Head amplifier                                      | 0      | Exists                                         |
| Cables                                              | 7000   | To be ordered                                  |
| Reception amplifier                                 | 0      | Exists. Use AD closed orbit spare              |
| Delay switching units                               | 3000   | All parts ordered, modules to be build         |
| Delay word generators                               | 4000   | Parts to be ordered, modules to be build       |
| Control modules                                     | 4000   | Parts to be ordered, modules to be build       |
| Power amplifiers                                    | 10000  | All parts ordered. Construction has started.   |
| Power supplies                                      | 3337   | Ordered.                                       |
| Sense switching                                     | 4000   | New relays ordered. New switch box to be build |
| 4 * 50Ω, 20 dB, 100 W<br>attenuators for deflectors | 4292   | Ordered                                        |
| Demineralised water instal.                         | 3000   | To be ordered                                  |
| VME modules: 2* ICV196 +1 TG8                       | 6000   | To be ordered from controls group.             |
| Rack installation                                   | 2000   | Rack recuperated, installation to be done.     |
| Total                                               | ~50000 |                                                |

The production of the hardware will continue until August where we expect to install it during the 1 month shut down of the AD. Also cables and water will be installed during that period. The damper should be ready for September.

