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INTRODUCTION

Much work has been done in which the coherent processes in the beams of 
circular accelerators are thoroughly investigated, both theoretically and experimentally 
[1-12]. One method of study of coherent processes of the parameters of the beam and 
the accelerator, is the method, based on measurements of a so called Beam Transfer 
Function (BTF). When the BTF is being measured, the beam is modulated by a force in 
some frequency band and the complex reaction to this excitation is measured. BTF 
measurements are made for both longitudinal and transverse planes. For the latter both 
bunched and coasting beams are examined. This present work is devoted to transverse 
BTF measurements of the coasting beam in the CERN PS Booster at injection 
( 50MEV ) before beginning the process of acceleration. The importance of the 
measurements at this period of time results from the fact that the beam losses and the 
final intensity strongly depend on the behavior of the beam at low energy. The 
qualitative analysis of the coherent processes presented, including the feedback system 
behavior, does not claim to be original. It reflects the understanding by the authors of 
the coherent processes occurring in this particular machine and in the particular 
measuring circuit and is used to predict the results of the real measurements.

Out of all the work done on BTF measurements there are few reliable 
experimental results, especially for low energy machines. As a rule the experimental 
results diverge strongly from the anticipated ones [13,14]. The ‘distorted’ results make 
it practically impossible to plot a stability diagram and to use all the possibilities which 
the BTF measurements should provide. Normally these distortions are attributed the 
influence of various noise sources.

Our experimental results have also been strongly perturbed. The analysis of the 
signals enabled an assumption to be made about the influence of instabilities of phase 
velocities of the coherent eigen wave modes. Further analysis of the fluctuations of 
currents in the bending and the quadrupole magnets as well as a simplified numerical 
simulation of the process, confirmed the assumption. When measuring a BTF we are 
dealing with an unsteady process, the typical time of measurement being larger than 
the typical time of variation of the characteristics of the modes, decreasing the time 
for a measurement requires an unacceptable degradation of the resolution in frequency. 
Also the time of measurement cannot be smaller than the time interval which is 
necessary to provide a resonant excitation of the coherent oscillations.

One of the approaches to overcome similar problems uses the technique of 
restoration of experimental functions, based on solving the integral Fredholm equation. 
The very complicated problem of taking into account the law of fluctuations of the 
magnetic fields can be eliminated by making beam response measurements at two 
frequencies simultaneously.
But a conclusion about the possibility of applying this technique cannot be made 
without further research and detailed simulation of the processes.
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1. ANALYSIS OF THE COHERENT PROCESSES IN THE COASTING 
BEAM. MODES OF OSCILLATIONS.

To simplify analysis, consider the behavior of a beam in a reference frame, 

rotating with an angular velocity ω0 where  is equal to the revolution frequency 

of the beam in the accelerator. In this reference frame the particles do not move in the 
azimuthal direction but execute transverse oscillations (horizontal or vertical) with the 
frequency Qω0, where Q is the betatron tune or number of betatron oscillations per 
one revolution. For simplicity we shall consider only coherent displacements of the 
beam with respect to the orbit. Suppose the displacement of the beam at a fixed 
moment in time t = 0 is described by the function y0(θ), where θ is the azimuthal 
coordinate varying from 0 to 2π. As all the particles execute betatron oscillations with 
the frequency Qω0, the behavior of the beam both in space and time y(θ, t) can be 
obtained by multiplying y0(θ) by sin(ω0Qt+γ(θ)), where γ(θ) is the phase of the 
coherent betatron oscillation for different points θ of the orbit at a moment in time 
t=0.

One can write

As the functions yo(θ)and γ(θ) are periodic with the period 2π, then the functions 
y0(θ) cos (γ(θ)) and y0(θ) sin (γ(θ)) are also periodic and they can be presented as the 
Fourier series:

Substituting (2a) and (2b) into (lb) and after some not complicated but tiring 
trigonometric transformations one can reduce the function of the beam displacement 
to the following expression:

One can see that the displacement of the beam in space and in time can be presented 
as the sum of trigonometric components. The first term in (3) represents the mode of 
oscillation when the phase of oscillation is the same for all the points of the orbit. This 
oscillation can be considered as the wave with infinite phase velocity ±∞. The rest of 
the components of the series (3) represent sinusoidal traveling waves, having the same
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frequency Qω0, but different wave numbers n. The angular wave velocity of these 
waves can be written as:

In the frame, rotating with the beam, the absolute values of phase velocities for a given 
n are equal in absolute values but differ in sign. The sign “+” corresponds to the wave, 
propagating in the same direction as the beam does, the sign “-” corresponds to the

wave, propagating in the reverse direction. At the injection energy the values of

for the PS Booster (ω0=2π -600 kHz, QH =4.2 for the horizontal oscillations and 
Qv =5.3 for the vertical ones) are given in the table 1.

Table 1

Horizontal plane, QH = 42 Vertical plane, Qv = 5.3
Fast Slow Fast Slow Fast Slow Fast Slow

n

0 ±∞ ±∞ ±∞ 2.52 232 ±∞ ±∞ ±∞ 3.18 3.18

1 2π 2.52 2π 3.12 -2π 1.92 3.12 1.92 2π 3.18 2π 3.78 -2π 2.58 3.78 238

2 2π 1.26 2π 1.86 -2π 0.66 3.72 1.32 2π 1.59 2π 2.19 -2π 0.99 4.38 1.98

3 2π 0.84 2π 1.44 -2π 0.24 4.32 0.72 2π 1.06 2π 1.66 -2π 0.46 4.98 1.38

4 2π 0.63 2π 1.23 -2π 0.03 4.92 0.12 2π 0.795 2π 1.395 -2π 0.195 538 0.78

5 2π 0.504 2π 1.104 2π 0.096 532 0.48 2π 0.636 2π 1.236 -2π 0.036 6.18 0.18

6 2π 0.42 2π 1.02 2π 0.18 6.12 1.08 2π 0.53 2π 1.13 2π 0.07 6.78 0.42

7 2π 0.36 2π 0.96 2π 0.24 6.72 1.68 2π 0.454 2π 1.054 2π 0.146 7.38 1.02

8 2π 0.315 2π 0.915 2π 0.285 7.32 2.28 2π 0.398 2π 0.998 2π 0.202 7.98 1.62

9 2π 0.28 2π 0.88 2π 0.32 7.92 2.88 2π 0.353 2π 0.953 2π 0.247 838 2.12

10 2π 0.252 2π 0.825 2π 0.348 8.52 3.48 2π 0.318 2π 0.918 2π 0.282 9.18 2.72

Suppose the frame, initially moving with the beam angular velocity ω0, begins to slow 
down. Phase velocities of all the waves in this frame will change. Finally, when this 
frame is stopped, i.e. when transforming to the laboratory frame, phase velocities of 
the waves become equal to:

The values of ωph are also presented in the table 1. The waves with the sign "+" after 

transformation to the laboratory frame ( eq. 5 ) do not change there direction of 
propagation or sign of the phase velocity. Phase velocities of all diese waves are larger 
than the angular velocity of the beam ω0, so all these waves are called fast waves. 
Phase velocities of the waves with the negative sign are smaller than ω0 and they
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are called slow waves. A fraction of these slow waves with  propagate in

the backward direction with respect to the beam (ωph is negative). These waves are 
called backward waves. For example, for the horizontal oscillations, slow waves (sign 

"-") with n =1,2,3 and 4 are backward waves.
In the reference frame, rotating with the beam, a detector which can measure the 

frequency of the beam oscillations will register the same frequency Qω0 for all the 
waves. On the contrary, in the laboratory frame the frequencies of all the waves are 
different The frequency which is detected can be found as the product of the wave 
number and the phase velocity. Phase velocity is given by (5) and the wave number, 
which reflects variation of the phase in space is not changed with the frame 
transformation and is equal to n. Thus, the frequency of the wave, which is observed 
in the laboratory frame can be written as:

Negative values of frequencies in (6), correspond to the backward waves. One should 
note, that the real measuring device will detect only absolute values of the frequencies. 
So, for the backward waves (6) will be written as:

The values of ω are presented in table 1. The location of the frequency lines for 
horizontal oscillations are shown in fig. 1.

Thus the modes of the coherent oscillations of the beam in the laboratory frame 
can be presented as the following traveling waves:

for n =1,2,3... and the oscillation

The latter can also be considered as a wave, propagating with infinite (or minus 
infinite) phase velocity, i.e. the expression (7) can be generalized for the case n =0.

Fig. 1 : Spectra of lines for the horizontal oscillations.
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2. PHYSICAL PRINCIPLES OF OPERATON OF THE TRANSVERSE 
FEEDBACK SYSTEM.

BTF measurements require excitation of the coherent betatron oscillations. To 
excite these oscillations and to measure the response of the beam the circuits of the 
active transverse feedback system have been used. This technique imposes some 
peculiarities on the process of measurement and on the interpretation of the results, so 
we shall qualitatively consider the operation of the feedback system, which is shown 
schematically in fig. 2.

Suppose there is a wave (7) of the transverse displacement of the beam. Let the 
detector of the beam displacement (PU) of any type be installed at the coordinate 
θ=0. The signal from the PU is proportional to the displacement of the beam and can 
be written as:

Fig. 2 : Propagation of a feedback signal

This signal propagates along the feedback line to the deflector D, installed at the 
coordinate θ =θ0. Suppose the deflector is short compared with the wavelengths of 
the signals. In this case spatial distribution of the field of the deflector can be written as
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the δ-function δ(θ -θ0). This space distribution can be presented as the Fourier 
series at the interval [0, 2π ]:

where

Substituting f(θ) = δ (θ -θ0) in (10)-(12), one can obtain:

Then the spatial distribution (9) can be written as:

The latter expression describes the distribution of the deflecting field in space. 
The distribution in space and in time can de obtained by multiplying En(θ) by the 
harmonic function of time sin(ωt - φ0 ), where φ0 is the phase delay of the signal in 
the feed back line:

Substituting (13) in (14), and after some transformations one can obtain:

The first term of (15) represents an oscillation whose phase is independent of the 
coordinate (a wave with infinite phase velocity). The two other terms are traveling 
waves, propagating in opposite directions. Thus, a single wave of the beam 
displacement (7) ( n =const), produces an infinite number of waves of the deflecting 
field (k =0,1,2,3...). These waves have the same frequency ω = ω0(n±Q) but 
different wave numbers k and hence different phase velocities:
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Only those waves of the deflecting field which have the same frequency and the same 
wave number (or the same value of phase velocity and the same direction of 
propagation), can interact with the wave of the beam. That is with the wave of the 
beam displacement (7) will interact only with that wave of deflecting field which was 
induced by this particular wave of the beam displacement, and which has the same 
wave number k - n. So only two terms of the series (15) can interact with the wave of 
the beam:

(In the following analysis the amplitude coefficients are taken to be equal to 1). 
Consider the second term of (16 ):

This is a traveling wave, which was originated by the beam displacement wave (7). The 
phases of these two waves differ by the value nθ - φ0. The meaning of this difference 
is the following: the wave of the field is delayed with respect to the wave of 
displacement by the value φ0 due to delay of the signal propagation in the feedback 
line, simultaneously it advances the field of displacement by the phase nθ0 because it 
is exited at the coordinate θ = θ0.

Our purpose is to consider the interaction of the wave of the beam displacement 
and the wave of the deflecting field, which is produced by this same wave of 
displacement via the feedback loop. When the waves are interacting, the energy is 
transmitted from one wave to another. As the wave of deflecting field is practically the 
wave of the deflecting force, it is convenient to consider its interaction not with the 
wave of displacement y(θ, t) but with the wave of traverse velocity y(θ, t) of the 
beam. The wave of velocity is shifted in phase with respect of the wave of 

displacement by the value, but the sign of this shift depends on the type of the wave 

(fast, slow, backward):

To explain the choice of the sign one can use fig. 3. Fig. 3a shows the wave of 
displacement, propagating from left to right. Suppose this wave is fast, its phase 
velocity is greater than the velocity of the beam Then, the velocity of the beam Vf at 

point A is directed with respect to the wave to the left and up. It means that the 
transverse velocity at this point is positive. So, the wave of velocity, shown in fig. 3b, 
must be attributed to the fast wave. Similarly, for the slow forward wave, the velocity 
Vs is directed to the right and down. The corresponding wave of velocity is shown in
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fig. 3c. It can be seen from these pictures, that for fast waves, the waves of velocity 

advance the waves of displacement by the value of. But on the contrary, for slow

forward waves the waves of velocity delay by the same value. For backward waves 

the mutual direction of the wave and the particles at point A is the same as for the fast 
wave. So for backward waves the phase relation between the wave of velocity and 
the wave of displacement is the same as for the fast wave. Because the oscillation with 
n = 0 can be considered as a traveling wave with infinite ±∞ phase velocity, it can be 
treated either as a fast or as a backward wave.

Fig. 3 : Phase shift of waves of velocity with respect to wave of displacement.

So, the in (18) corresponds to the fast and the backward waves and the

to the slow forward waves.

Thus, our purpose is to consider interaction of the waves of the velocity (18) and 
the waves of the deflecting field (17).

Generally, their phases can differ by some constant value Δφ :

which after simplification can be written as:
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Taking into account, that

and

where t0 is the time of flight of the beam from the detector PU to the deflector D, t1 
is the time of propagation of the signal from PU to D along the feedback line, one can 
write:

It can be seen, that generally the value of phase difference varies for the waves 
with different wave numbers, and so there is a dependence of Δφ on frequency. In this 
case it is impossible to provide the same phase difference in all the frequency bands: at 
some frequencies the sign of the feedback can change resulting in excitation of 
coherent oscillations. The necessary condition of independence of Δφ on the wave 
number n is the equality t0=t1. That is the times of propagation of the beam and the 
feedback signal from the PU to the deflector must be equal to each other. In this case:

The equality t0 = t1 means that the field acting on a particle in the deflector 
was induced by this particular particle in the PU. The physical meaning of the 
expression (24) is the following. If the phase advance φB =ω0Qt0 is exactly equal to

, then all the waves (fast, slow forward and backward) are in anti phase with the 

wave of the deflecting field (Δφ=π). If then all these waves of the beam 

are in phase with the wave of the field ( Δφ = 0 ). If the two latter conditions are not 
valid, for example if

then the waves of the beam are shifted in phase with respect to the deflecting wave by 
the value Δψ. The sign of the shift (24) is the same for the fast and the backward 
waves and is opposite for the slow forward waves.

Another condition for proper operation of the feedback system is an optimum 
choice of the mutual location of PU and D (angle θ0 ). Consider the integral of the 
interaction of the two waves, which reflects exchange of energy between the wave of 
the beam and the wave of the field:
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Substituting (17) and (18) in (26) for t0=t1, one can obtain: 

where (φB = ω0Qt0 is the phase advance of the betatron oscillations from the PU to 
the deflector D. Fig. 4 shows the variation of the sign of the integral A for the 
horizontal (QH =4.2) and for the vertical (Qv = 5.3) planes, together with the locations 
of PU and the D (the electrodes of the Pu’s as well as of the deflectors for the two 
planes are mechanically combined in the same vacuum boxes).

One should note, that for the selected positions of the PU and D the sign of the 
feedback can be changed for example by simply inverting the signal in the feedback line 
as in the CERN PS Booster Damper ( fig. 5 ) or by interchanging the connection of the 
cables to the electrodes of the PU or of the D.

Fig. 4 : Locations of PU and Deflector of the Damper system for the 
horizontal and vertical planes.
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3. QUALITATIVE ANALYSIS OF THE BEAM RESPONSE TO THE PERIODIC 
EXCITATION.

This section of the report is devoted to the qualitative analysis of the beam 
response, which can be observed during the BTF measurements.

As mentioned earlier, the circuits of the active feedback loop were used for the 
measurements. The simplified block diagram and schematic drawing of the feedback 
loop are shown in fig. 5 and fig. 6 respectively. To start with let us consider what will 
be the value of the phase difference of the signals in the real measuring circuit for the 
monoenergetic beam.

Fig. 5 : Simplified diagram of the Damper hardware.

Suppose the feedback loop is opened (the switch “Loop-open/closed” is off). The 
phase of the signal at point B with respect to point A can be written ( see fig. 6.):

For fast and slow waves:

For backward waves:

The physical meaning of the terms in (28) and (29) is the following: φ1-phase advance 
of the signal from the point A to the deflector, φ2-phase advance of the signal from 
the PU to the point B; n(2π -θ0) -phase advance of the coherent wave of the beam
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Fig. 6: Schematic drawing of the Damper system.

from the deflector to the PU for the forward waves ( both the fast and the slow 

waves); nθ0 -phase advance for the backward wave. The term in (28) and 

in (29) are due to the phase difference between the waves of displacement and the 
waves of the velocity (analogous to the (18)): the deflecting field is in phase with the 
wave of the velocity, while the signal which is registered by the PU is induced by the 
wave of displacement The term +π in both (28) and (29) is due to inversion of the 
phase in the Damper circuits (fig. 5). Substituting 

for the forward waves (fast and slow) and 

for the backward waves and letting t0 = t1 and θ0 = ω0t0, one can get:
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Assume the phase advance of the betatron oscillations be close to the value of.

Taking into account (25) one can represent (32) as :

The sign "+" here relates to the fast and backward waves and "-" to the slow 
ones.

Up to now we supposed that the beam is monoenergetic. Real beams have an

energy spread. The difference within the pulse of particles from the nominal value 
P

results in the difference of the revolution frequency

and of the betatron tune

Here  -transition energy, normalized by the rest energy, ζ -

chromaticity. Differentiating (6) and (6a) and substituting (34) and (35), one can find 
how the frequency of the detected signals varies when the energy of the beam changes:

For the fast waves:

For the slow waves:

For the backward waves

If the distribution in frequency has been measured, then the energy distribution in the 
beam can be found using (36)-(38) by simple linear scaling. Sometimes it is convenient 
to present Δω as a function of the frequency observed experimentally.
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Fig. 7 shows the dependence of the normalized parameter , found from

(36)-(37) for the horizontal oscillations (ζ =-0.89 and η =0.844 [15]), on the 
frequency which can be detected experimentally.

Fig. 7 : Relation between frequency spread and energy spread.

The distribution in frequencies can be found from the experimental results of 
the BTF measurements. We shall not reproduce here the rigorous physical and 
mathematical analysis of the problem which has become classical, but consider it 
qualitatively.

Suppose we have an array of loss less independent oscillators with slightly 
different frequencies. Fig. 8 [7] shows the frequency responses of the individual 
oscillators and the average response of a large number of oscillators. The average 
response depends on the distribution of the oscillators resonant frequencies. It is 
shown [1] that the complex function of the average response of a large number of loss 
less independent oscillators, with the distribution function of resonant frequencies 
G(Ω), normalized by the amplitude of the exiting force Fm can be written as:

where

is the real Cauchy’s principal value of the integral, and K is a positive constant 
coefficient for a given system of oscillators.
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Fig. 8 : Response of oscillators to excitation and the average response (Solid 
line).

Similarly, one can obtain the coherent response of the beam. For the simplest 
case, when both the detector and the deflector are located at the same coordinate 
(θ0 = 0), the response appears to be the same as for the system of oscillators except 
for changing the sign for the slow waves:

The signs in (41) can be qualitatively understood from the following considerations. 
Similarly to lossless independent oscillators, for fast and backward waves the 
displacement is delayed with respect to the velocity (fig. 3) which is associated 

with the wave of the exiting force by. So the sign in (41) is attributed to the fast

and the backward waves similarly to the case of lossless independent oscillators 
(39). On the contrary for slow waves, the wave of displacement advances

the wave of displacement by the same value. So the waves of displacement for slow 

waves are displaced with respect to the waves of displacement for the fast waves by 
half a period, thus providing the different signs in (41).
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Sometimes it is more convenient to analyze not the function, but the 

inverse function, which can be written as:

Now continue the qualitative analysis of the data, which can be obtained 
experimentally.

As mentioned above the phase difference of the signals between the points A and 
B (fig. 6) can be found from (31) or from (33), if the phase advance of the betatron 

oscillations between the PU and deflector is close. The behavior of the signal at 

the point B near the resonance can be written as:

Here A(ω) and φ(ω) are the amplitude and the phase responses. When passing through 

the resonance the phase response function changes from to. The qualitative

behavior of the functions φ(ω) ± Δψ +π and A(ω) is shown in fig. 9a ( here we have 
according to (25) and fig. 4 supposed Δψ < 0).

Consider the inverse function

Qualitative behavior of the amplitude and the phase -φ(ω)∓Δψ-π 

characteristics is shown in fig. 9b.

It is convenient to draw the function in the complex plane (fig. 10). Each 

point of the curve (for example point A) is characterized by the vector with the 
modulus rotated with respect to the positive direction of the real axis by the 

angle -φ(ω)∓ Δψ-π. For our case (ω0Qt0 is close to and Δψ < 0) the curves 

for the fast and the slow waves are rotated with respect to the vertical axis by the angle 
Δψ in different directions.
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Fig. 9 : Qualitative behavior of the beam response

Usually the theoretical response of the beam is analyzed for the case when the 
detector and the deflector are installed at the same coordinate θ0 = 0. In this case the 
distribution in frequency G(Ω) of the wave can be obtained, separating the imaginary 

part of the measured function according to (42). To be able to use this procedure 

the experimental data must be transformed to the case of the same angular location of 
the detector and the deflector. Consider how the curves will be transformed for

this case. Suppose the deflector is moving to the PU (the relation t0 = t1 must be kept
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valid for each position of the deflector). The curves, shown in fig. 10, rotate in the 
directions, indicated by the arrows: the curves for the fast and the slow waves rotate in 
the opposite directions. The total angle of rotation when the detector approaches the 
PU is equal to ω0Qt0. The final position of the curves on the complex plane is shown 
in fig. 11. The physical meaning of this position of the curves is the following. At 
resonance (points A and B), the wave of displacement is delayed with respect to the 

wave of excitation (or the wave of velocity) by (fig. 3) for the fast and the 

backward waves and advances by for the slow ones. For the inverse function 

the phase relations change and the point of the resonance A for the fast and backward 
waves appears to be rotated with respect to the positive direction of the real axis by 

π
the angle. Accordingly, for the slow waves the point of the resonance B is rotated 

by the angle.

Fig. 10 : Qualitative behavior of the function 1/y in a complex plane.
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Fig. 11 : Position of curves 1/y in the complex plane when PU and 
deflector are installed at the same point of the orbit.

Sometimes, when analyzing the coherent oscillations, it is more convenient to 
consider the response of the wave of velocity y' or the inverse function. The 

shape of the function is qualitatively the same as that of, but it is rotated by 

for the fast and backward waves and by for the slow ones. In the case of 

θ0 = 0 the functions for the fast, backward and the slow waves qualitatively coincide 

(fig. 12). When passing through the resonance the phase of the function changes 

from to. On the contrary for the direct function y' the phase changes from 

to as for the usual oscillator for all the types of waves.

Fig. 12 : Position of curves (velocity) in the complex plane when PU and

deflector are installed at the same point of the orbit.
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Now consider the behavior of the function φAB(ω) outside the resonance. 
Resonant interaction means that the signals, induced by the particles of the beam in the 
PU, are summed coherently for multiple turns. When the frequency of excitation is far 
from resonance the signal is strongly reduced and the main contribution to the summed 
signal will mainly come from the first turn. When passing through the deflector (fig. 5), 
the particle is kicked by the electromagnetic field. The signal, induced by this particle 
in the PU, will be delayed with respect to the field in the deflector by the time,

where Τ is the period of revolution. The phase difference of

the induced signal and the deflecting field will depend on the frequency as ωΔt. Then 
the phase difference between the points A and B (fig. 5) can be written as:

where the constant is defined by the phase advance of the betatron oscillations from 
the deflector to the PU. If t0 = t1 the latter expression can be transformed to:

One can see that outside resonance the tilt of the function φAB(ω) will be close to.

Summarizing, one can imagine the qualitative behavior of the function φAB(ω), 
when the frequency is varied over a wide frequency band (fig. 13). Changing the 
function φAB(ω) outside the resonance results in changing the "tails" of the function 

(or ) in the complex plain.

Fig. 13 : Qualitative behavior of the phase response over a wide frequency 
band,

Fig. 14 shows qualitative behavior of these functions for slow forward and fast 
(backward) waves at adjacent frequencies. One should note that adjacent-frequency
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slow and fast (backward) waves correspond to different values of n (fig. 1). For 
example, near the fifth harmonic of the revolution frequency the wave numbers for the 
slow and the fast waves are nf = 1 and ns = 9. So, according to (28 ) the "real" phase 

difference for these waves will be about 8 · 2π .

Fig. 14 : Qualitative behavior of 1/y functions in the complex plane for adjacent 
(in frequency ) slow and fast waves.

Up to now we considered the response of the beam with the feedback loop 
opened and without taking into account interaction of the beam with the fields induced 
by the beam itself.

Now consider the case, when the fields are still absent but the active feedback 
loop is closed. In fig. 5 and fig. 6 it is equivalent to turning on the switch “Loop- 
open/closed”. The dimensions of the circuits surrounded by the dashed line are small 
with respect to the wavelengths of interest. So phase changes inside this region can be 
neglected. Considering point A as the input and the point B as the output one can draw 
the block diagram of the system (fig. 15). In this picture I is the transfer function of 
the system with the opened feedback loop and K is the transfer function of the 
feedback circuit. Summation of the input and the feedback signals is made at point A.
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Fig. 15 : Block diagram of the feedback system.

One can write:

and

It can be seen that the function of the system with the feedback loop closed is the 

same as that of the system with the opened loop, but shifted by the value of the 

transfer function of the feedback line. In our particular case K is real and it does not 
depend on frequency. So the experimental functions will be shifted for all the 

waves by the same value K to the left along the real axis (fig. 16).

The interaction of the beam with the fields, induced by the beam itself on the 
surroundings is characterized by the impedance (In our case the Transverse 
impedance). Generally, the impedance is a complex value depending on frequency. The 
reverse influence of the fields on the beam itself can be considered as existence of an 

additional feedback. This feedback, similarly to the active one, shifts the function

in the complex plane by some complex value A:

Due to dependence of A on frequency, the shift for the different waves will vary.
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Fig. 16 : Shift of the curves 1/y in a complex plane due to active feedback.

Real measurements of the BTF with the active feedback loop opened are possible only 
with small intensities of the beam. For typical values of intensities (1011-1012 
protons/pulse) the measurements are possible only with the closed loop because of 
beam losses due to instabilities. In this case only the summed effects due to both K and 
A can be observed. One can separate these effects making measurements for different 
values of K (of course there must be no losses for all the values of K) and 
extrapolating the position of the function to the zero value of K. The shift thus 

found is due to the influence of the fields of the beam and can be used to find the 
impedance.

Finally one can formulate, how the experimental data of the BTF measurements 
must be corrected to use them to find the distribution in frequencies and consequently 
in energies.

1. Outside the resonance the tilt of the phase response resulting in the bending 
of the tails in the function must be eliminated. (One should note, that this 

elimination does not influence the final results practically but improves their 
presentation).

2. Within the resonance curve the correction of the phase distortion in the 
cables of lengths l1 and l2 (fig. 2,6) Δφ = Δωt1 must be made.

3. After that the curve must be rotated and shifted in the complex plane to 

be positioned as it is shown in fig. 11 to satisfy the theoretical relation (42 ).
4. The imaginary part of the function thus obtained is an unnormalized 

distribution in frequency G(Ω). The pulse distribution in the beam can be obtained 
using (36 ), (37) or (38) depending on the type of coherent wave of the beam.
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4. EXPERIMENTAL STUDY. ANALYSIS OF THE PERTURBATIONS.

The BTF measurements were made in ring 4 of the PS Booster during FLAT 
cycles using circuits of the damper system for coherent betatron oscillations. The 
majority of the measurements were made in the horizontal plane for 2 turn injection 
with an intensity about 8•1011 protons/pulse. Measurements made for 1/2 turn 
injection as well as in the vertical plane, give qualitatively the same results and are not 
presented in this report.

The measurements were made with the help of a Hewlett Packard Network 
Analyzer HP8753C and a Vector Signal Analyzer HP89410A.

The output signal of the Network Analyzer is swept in frequency and its input 
signal is analyzed after transformation to an intermediate frequency selected by a pass 
band filter. The band of the separated frequencies depends on a number of parameters 
but mainly on the band and the time of sweeping as well on the number of digitized 
points of the signal. The bandwidth of the filter actually fixes the resolution in 
frequency with which the measurements are being made. Another characteristic of the 
accuracy of the measurements is time resolution. This parameter is connected with the 
resolution in frequency, as well as the time and the band of sweeping. Real values of 
the above mentioned parameters must be taken into account when the measurements 
are being made and the results are presented and interpreted.

The Vector Signal Analyzer uses frequency analysis of the digitized input signal 
with the help of an algorithm of the Fast Fourier Transformation (FFT). The output 
signal can be either a swept frequency sinusoidal signal or white nose in a given 
frequency band. The frequency resolution Δf of this device depends mainly on the 
time of measurement T0. In the simplest (and the best from the point of view of getting 
higher resolution) case of the uniform window [16] the above parameters are 
connected by the fundamental relation Δf = 1/T0.

Now consider the results of the experiments. Fig. 17 shows the amplitude and the 
phase responses, measured in the frequency band 0.3-1.5 MHz (0.3 MHz is the lower 
limit of the operating frequency of the network analyzer HP 8753C). Similar curves 
have also been measured for other frequencies. The resonant frequencies of the waves 
agree well with those presented in table 1. As for the response curves, their shapes, 
particularly the phase characteristics, do not agree with the anticipated ones (fig. 13). 
The analysis of the possible reasons for the discrepancy enabled conclusions to be 
made about the influence of the crosstalk in the measuring circuits. Fig. 18 shows 
amplitude and phase responses measured with the beam off. It can be seen, that the 
amplitude of the signal is approximately the same as that with the beam outside the 
resonances (fig. 17). All the efforts to decrease the crosstalk did not succeed, but 
however it turned out to be possible to separate the signal of interest by vector 
subtraction of the crosstalk. Amplitude and phase responses thus found are shown in 
fig. 19. Comparing the amplitude characteristics before (fig. 17) and after subtraction 
(fig. 19) one can note that the tilt of the curve has disappeared and the ratio of the 
signals in the resonances and outside has improved by an order of magnitude to 
become about 103. Concerning the phase response, its general behavior is close to that 
anticipated. When passing through the resonance the phase changes by about -180°. 
For all the resonances it is close to 180° and is shifted with respect to this level by the 
small value Δψ, the sign of the shift being the same for the fast and the backward 
waves and different for the slow waves. Outside, but not too far from the resonances,
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one can distinguish a linear (on average) slope of the curve. Far from the resonances 
the behavior of the curve becomes irregular due to the reduced useful signal and 
possible errors in the subtraction of crosstalk.

Fig. 17 : Experimental Amplitude and Phase responses (BTF).

Fig. 18 : Amplitude and Phase responses without beam.
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Fig. 19 : Amplitude and phase responses after subtraction of crosstalk.

As mentioned above, the necessary condition for proper operation of a damper 
of coherent oscillations, is equality of the times of propagation of the beam t0 and the 
feedback signal from the PU to the deflector. Inequality of t0 and t1 results in a 
phase shift (23), which is especially seen at the higher frequencies. Fig. 20 shows 
amplitude (a) and phase (b) responses, measured for the frequency band 8.7-9.9 MHz, 
as well as the phase curve (c), measured when a fixed delay equal to Δr = -20 nsec is 
removed from the feedback line. One can see the vertical shift Δφ of the phase 
response due to the insertion of the delay Δφ = -ωΔt
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Fig. 20 : Shift of the phase characteristics due to delay error in the feedback line.

Fig. 21 demonstrates the tilt of the phase characteristic outside the resonance. This 
curve is presented after smoothing for better demonstration. The tilt of the curve is 
about -300°/600kHz, which is less than the anticipated value -360°/600kHz (47). 

The difference is evident, because the latter value can be obtained if the signal at the 
first turn only is detected. This simplification is not valid in general and especially not 
far from the resonances.

Fig. 21 : Tilt of the phase function outside the resonance.

Now let us begin the analysis of the shapes of the experimental curves. The 
typical shapes of the curves are shown in fig. 22. Both the phase and the amplitude 
characteristics are strongly perturbed. The first reason for this perturbation was 
assumed to be noise of the electronics. To check this assumption the beam was 
excluded from the line of signal propagation: the signals from the output of the power 
amplifiers (fig. 5), after proper attenuation, were applied directly to the plates of the 
PU and observed as with beam. The noise level in this circuit was about 103 smaller 
than the perturbations observed with the beam. The fact that the perturbations 
decrease outside the resonances also confirms, that they are due to the beam itself.
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Fig. 22 : Typical response of the Booster beam.

To study the problem of these perturbations measurements of the responses at 
fixed frequencies (cw) were made. Fig. 23 shows the amplitude response at 3.138 
MHz, that is in the middle of the curve given in fig. 22. One can distinguish periodicity 
of the signal. The Fourier analysis (fig. 24) showed that the signal includes harmonics 
of 50 Hz. This fact led us to suppose that the modulation of the magnetic fields in the 
bending and the quadrupole magnets could be a reason for the perturbations. The 
spectrum of the current of the bending magnets (without the DC component) is shown 
in fig. 25. This spectrum really includes harmonics of the 50 Hz, but the total ripple of 
the current is about 10-4 (the ripple of the magnetic fields is smaller), which is 
acceptable from the point of view of normal operation of the Booster. Nevertheless it 
does not mean that the ripple of the current can not have an undesirable influence on 
the BTF measurements.

Fig. 23 : Amplitude response for cw excitation.
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Fig. 24 : Spectrum of the amplitude response for cw excitation.

Fig. 25 : Frequency spectrum of the Bending magnet current.

Consider how the ripple of the magnetic fields can influence the modes of 
coherent oscillations. Suppose that the typical frequencies of the ripple are much 
smaller than the revolution frequency ω0. With this assumption the approach 
described in the first section of this report can still be used but the parameters ω0, 
Q , a0, bn, cn, dk, ek, qj, α0, βn and μn should be considered as slow functions of 
time. For small variations of ω0 and Q one can get the following expressions for the 
phase velocity ωph(t) and the detectable frequency ω(t): 
For fast waves:
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For slow and backward waves:

For fast waves:

For slow waves:

For backward waves:

One can see that both ωph(t) and ω (t) are modulated in time and the system has 

variable parameters. Even if the wave is excited at a fixed frequency both the phase 
and the amplitude responses will be modulated in time. Also it should be noted, that 
the dependence of a0,bn and on time in (3) will result in changing of the 
interaction of the beam’s wave and the wave of the exciting force (changing the 
integral (26)) thus providing an additional amplitude modulation. Moreover, if the 
time of excitation of the wave is big enough, then parametric resonances are possible.

The effects mentioned above show, that under certain conditions the process 
under examination can become extremely complicated.

Unfortunately we have no answer to the natural question how big are the 
modulations (50)-(52) in the PS Booster. But the data available for the machine RHIC 

[17](ΔQ = (45 ÷ 80)ΔG/G, where G is a gradient of the quadrupole fields) indicate

that this modulation can be considerable.
In case of a nonzero energy spread in the beam, the modulation of the phase 

velocities in the linear approximation is the same for all energies. The distribution of 
phase velocities moves along the velocity axis without changing its shape. Sweeping 
the frequency of excitation means that the equivalent wave of the deflecting force 
changes its phase velocity. When the wave of excitation passes the above distribution 
the energy is transferred to the wave of the beam resulting in the excitation of the 
coherent oscillations. If the modulation is big enough and fast enough to shift the 
distribution considerably when the wave of the excitation passes it, the resulting 
oscillation will not reflect the shape of the distribution and the detectable signals will 
be distorted.

To confirm this mechanism, a numerical simulation of the response of a set of 
lossless independent oscillators was made.

Consider a lossless oscillator with a harmonically variable resonant frequency Ω :
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Suppose the oscillation is being excited by the force f(t) = Fm sin(ωt) with the 
frequency ω changing linearly in time ω = ω0 + kt. If the variation of ω and Ω are 
slow then the equation of motion can be written:

If A << Ω0, R << Ω0 and then for the interval of time Δt, such that 

kΔt << ω0, the variations of ω and Ω can be neglected and the equation (54) can be 
considered as an equation with non variable parameters:

The solution of (55) is well known:

The parameters A and B are defined by the initial conditions. Let y(0) = y0, 
y'(0) = y'0, then

Near the resonance when Ω ≈ ω0 but (Ω - ω)t << 1 (57) and (58) can be transformed 
to

The numerical simulation of the response of the set of oscillators was made in the 
following sequence:

1. The density distribution function of resonant frequencies was given in np 
points.

2. The initial ωb and the final ωe frequencies of the variation of the exciting 
force as well as the duration of variation T0 were given.
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3. The band of the frequency variation ωe -ωb and the time T0 were divided 
into nf equal steps inside which the frequency of the force and the resonant 
frequencies of all the oscillators were considered to be constant

4. At each step, using (57 and (58 or (59) and (60) the values of y and y' 
were calculated for np points.

5. After each step an average value of y for all the np points and its maximum 

value for the period of the exciting force were calculated.

6. For each step the frequency of the exciting force was shifted discretely by 

the value and the resonant frequencies of all the oscillators were changed 

according to (53). The values of y and y' calculated at the previous step were taken 
as the initial conditions. For the first step it was supposed y0 = y'0 = 0, that is the 
system was initially considered at rest

7. As a result of the simulation, the dependencies of on frequency or on 

time were obtained.
The initial distribution of the resonant frequencies was supposed to be Gaussian 

with the central frequency 3000 kHz, dispersion σ = 1 kHz and was given for 
np =10000 points within the interval ±3σ .

Fig. 26 shows the function, calculated for the following parameters: 

ωe=ωb =2π · 3000 kHz, R=2π ·50 Hz, Α=2π·1 kHz, Τ0=400 msec, nf=1000. 
The shape of the curve is rather complicated, but as for the experimental curve (fig. 
23) one can distinguish its periodicity. The frequency spectrum of the simulated curve 
is given in fig. 27. One can see that a simple sinusoidal modulation of resonant 
frequencies of the oscillators results in a rather complicated spectrum of the resulting 
function.

Fig. 26 Simulated curve of the amplitude response for fixed frequency (cw).
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Fig. 27 : Frequency spectrum of the simulated (fig. 26) amplitude response.

The degree of perturbation depends on the duration of sweeping. Fig. 28(a,b) 
shows two curves of, calculated for the same values of ωb =2π · 2995 kHz, 

ωe=2π·3005 kHz, β=0, R=2π·50 Hz, Α=2π·1 kHz and nf=1000 but for 

different duration: T0=4 msec and T0=400 msec. The shape of the function 

also depends on the phase β of the modulation. Fig. 28c shows the function, 

calculated for the duration T0 =4 msec and β = π .

33



Fig. 28 : Amplitude responses for different durations of sweeping time and 
different phases of the modulation function.

One should note, that the numerical model used is rather rough to be applied 
for a quantitative description of the experimental effects. It does not take into account 
the effect of finite resolution in frequency of the measuring device, damping of the 
coherent oscillations and some other effects.

To decrease the perturbations one should decrease the time of measurement 
However one should understand that the decrease is limited by the following:

1. The time of measurements must be much bigger than the period of the beam 
revolution (1.67 μsec in our case) to provide a resonant excitation.

2. When the duration of the measurements decreases the resolution in 
frequency is degraded. According to (36)-(38) and the list of Booster parameters [15], 
the frequency width of the resonances must be several kHz. To measure the shape of 
the distribution the resolution in frequency must be at least 10 times smaller, for 
example 250 Hz. To provide this resolution the time of observation of the signal must 
be at least 4 msec. The results of numerical simulations have shown that for T0=4 
msec there are important perturbations even for the simplest sinusoidal modulation 
with the 50 Hz frequency. According to the spectrum of the current in the bending 
magnets (fig. 25), one can suppose that the function of modulation of the resonant 
frequencies of the coherent modes is more complicated and rapid. The "fast"
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measurements made with the help of the Vector Signal Analyzer confirmed the above 
considerations. Fig. 29 shows the amplitude responses measured for different values of 
T0. As anticipated the perturbations increase with the increasing of T0. However one 
should note that the observed perturbations increase, not only because of the increase 
of time, but also due to a simultaneous improvement of frequency resolution. Fig. 30 
shows the behavior of the amplitude response for different moments in time within one 
beam pulse. Strong variation of the response for this particular measurement can be 
explained by the variations of the magnetic fields.

Fig. 29 : Amplitude responses for different values of measurement duration.
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Fig 30 : Waterfall display. Successive amplitude responses within one beam pulse.

Summarizing the above considerations it is possible to conclude that when making 
BTF measurements we are dealing with a typical unsteady process. The time which is 
required to observe the process is larger than the characteristic time for it to change.

The direct way to avoid the fluctuations is to improve the stability of the 
magnetic fields but this in practice is not a trivial affair. Another way is using a 
technique of restoration of experimental functions [18].

The results of measurements of any characteristic are always distorted by the 
measuring device and the function measured always differs from a real one.

Let Φ(ξ) be a real function and F(x) a measured one. A constraint of these 
two functions is described by the integral Fredholm equation of the first kind:

The kernel of the equation Κ(x,ξ) is a characteristic of the device. For a fixed 
value of ξ = ξ0 the function Κ(x, ξ0) is a response of the device to a δ-function 
signal δ (ξ -ξ0). If the characteristics of the device are known, that is the function 
Κ(x, ξ) is known, then the equation can be solved and the real function Φ(ξ) can be 
found in spite of the perturbations by the device. The function Κ(x, ξ) can hardly ever 
be found experimentally. But sometimes it can be calculated with an acceptable 
accuracy.

In the case of the BTF measurements the whole system, including the signal 
analyzer, measuring circuits and the accelerator, should be considered as a single 
measuring device from the point of view of perturbation of the real distribution in 
frequencies. The equations of the type of (61) can be formulated for the amplitude and 
the phase response functions independently.

The most complicated step in finding the kernels Κ(x, ξ) for the amplitude and 
the phase functions is taking into account a law of modulation. The modulation is due 
to distortion of magnetic fields, but as all the considerations are being made within the
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model of a set of harmonic oscillators it is sufficient to know a law of modulation of 
frequencies or phase velocities of eigen modes. According to (5), (6) and (6a) the 
modulation of the revolution frequency ω0 and tune Q can be considered as the 
origin of modulation of the eigen frequencies and phase velocities. The measurements 
done showed that there is no reproducibility of BTF measurements; neither within the 
beam pulse (fig. 30) nor from one pulse to another. In this case the modulations of 
ω0 and Q must be measured simultaneously with the BTF. It can be done by 
measuring a response of the system to the excitations at different frequencies 
simultaneously, as shown in fig. 31. The measurements can be made with the help of 
two Vector Signal Analyzers triggered simultaneously. The BTF measurements are 
made by the analyzer FFT1. The second analyzer FFT2 operates at the fixed frequency 
ω2 far from any resonance. To understand the behavior of the system at the frequency 
ω2 one can apply a simplified model of single turn interaction (no resonance), used 
previously in section 3. Fig. 32 shows a behavior of the beam when passing through 
the deflector and the PU. Let the field in the deflector be described by the function 
sin (ω2t). When the beam passes through the deflector its transverse momentum is 
modulated by this function and the coherent transverse oscillations are excited. Phase 
advance of the coherent oscillations from the deflector to the PU can be written as 
Q(2π -θ0). Taking into account the time of flight from the deflector to the PU 
(2π -θ0)/ω0, the displacement of the beam in the PU and hence the induced signal 
can be written as

If ω0 and Q vary in time then the signal (62) appears to be modulated both in phase 
and in amplitude, in the case of a single turn interaction the amplitude modulation 
being due to tune variation and the phase - due to revolution frequency modulation.

The model of a single turn interaction is presented for the explanation only. 
Really, when calculating the modulations of ω0 and Q not only the first but also a 
number of subsequent turns must be taken into account.

After the function of modulation of the eigen frequency has been found one has 
to calculate the displacement of the monochromatic beam in the PU at a frequency 
close to the resonance for the law of excitation provided by the FFT1 for the time 
interval T0 equal to the time of measurement of this device. Then the function of 
displacement must be Fourier transformed using the same algorithm as in the FFT1.

As a result the response of the whole system, now considered as a “device”, 
can be found for a monochromatic beam as a function of frequency. That is the kernel 
of the equation (61) for a fixed ξ0 can be found. Due to linearity of the system within 
the frequency band of interest, near the resonance, the kernels for other values of ξ 
are the same as that for the ξ0 but shifted along the frequency axis by the appropriate 
value.

After the kernel K(x,ξ) has been found one can solve the equation (61) and 
find a real function of distribution in frequency or in momentum.

Above are presented only general considerations on the application of the 
method of restoration of experimental functions for the BTF measurements. A 
conclusion about the possibility of applying this technique cannot be made without 
further experimental and theoretical studies.
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Fig. 31: Simultaneous measurements of beam responses at 
two frequencies.

Fig. 32: Behavior of the beam in a single turn model.
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CONCLUSION

Attempts at BTF measurements of the coasting beam in the CERN PS Booster are described 
in the report. The peculiarity of the measurements is the use of the circuits of the active feedback loop 
on special cycles during normal operation of the machine. This feature resulted in necessity of the 
combined qualitative consideration of the coherent processes in the beam and operation of the active 
feedback system. A Qualitative analysis of the effects which can be observed experimentally is also 
presented. Real experimental results in general agree with those predicted but appear to be strongly 
perturbed. The analysis of the signals enabled an assumption to be made about the influence of the 
fluctuations of currents in the bending and the quadrupole magnets. These fluctuations result in 
modulation of phase velocities of the eigen modes of coherent oscillations. Further spectral analysis of 
the fluctuations of currents in the bending magnets, as well as a simplified numerical simulation of the 
process, confirmed the assumption. The fluctuations of magnetic fields of about 10-4 though 
negligible from the point of view of normal operation of the accelerator, appear to be disastrous for 
the BTF measurements. When measuring a BTF we are dealing with an unsteady process, the typical 
time of measurement being larger than the typical time of variation of the characteristics of the eigen 
modes. To decrease the time for a measurement requires an unacceptable degradation of the 
resolution in frequency.

The way out of the situation can be to use the method of restoration of dependencies through 
the perturbed experimental results. The most complicated problem of taking into account the law of 
fluctuations of the magnetic fields can be eliminated by making beam response measurements at two 
frequencies simultaneously. But a conclusion about the possibility of applying the technique cannot be 
made without further research and detailed simulation of the processes.
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