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Abstract. The unprecedented volume of data and Monte Carlo simulations at the HL-
LHC will pose increasing challenges for data analysis both in terms of computing resource
requirements as well as ”time to insight”. Discussed are the evolution and current state of
analysis data formats, software, infrastructure and workflows at the LHC, and the directions
being taken towards fast, efficient, and effective physics analysis at the HL-LHC.

1. Introduction
The Large Hadron Collider at CERN has already produced a large amount of proton collision
data, with on the order of 1016 proton-proton collisions in each of the general purpose detector
experiments in LHC run 2. The High Luminosity LHC program will represent a huge increase
in the amount of data collected, representing a twenty-fold increase with respect to today [1].
While the exact impact on data volume depends on the interplay between integrated luminosity,
physics priorities, and trigger strategy, it is clear that searches and measurement across the full
range of final states and phase space regions will have significantly larger sets of data and Monte
Carlo simulation to analyze.

For some Standard Model processes with large cross sections, measurements using LHC run 2
data already face significant technical challenges. As an example, inclusive W → ℓν production
accounts for more than 3×109 events per lepton flavour per experiment for the full run 2 dataset,
implying billions of data and Monte Carlo events. For measurements which cover an inclusive
phase space, there is relatively little scope for skimming, and the technical challenge of analyzing
these datasets is a prelude to those which will be faced by a wider range of measurements and
searches in the HL-LHC era.

2. Analysis workflows and requirements
At a very high level, two critical properties are needed from the corresponding software, hardware
and workflows in order to do effective physics analysis:

(i) Fast turnaround: Fast iteration time is essential for the debugging of experimental,
theoretical or technical issues, and for developing and improving the analysis. What is
relevant in this context is iteration time “as the physicist waits” (as opposed to in terms of
computing performance metrics.)

(ii) Flexibility: Flexible capabilities are needed for defining the analysis logic, selection,
binning, categorization, systematic uncertainties and statistical interpretation. The ideal is
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to avoid limitations related to technical feasibility when it comes to optimizing the analysis,
or improving the description of the underlying physics or related uncertainties.

A representative workflow for an analysis of LHC Run 2 data at the CMS experiment might
contain the following steps:

(i) Reconstruction of data and generation, detector simulation and reconstruction of Monte
Carlo simulation events on the grid, centrally managed by the CMS offline and computing
project, producing files, in ROOT [7] format, containing CMS reconstruction software
objects in a “MINIAOD” format which is approximately 30kB/event [3].

(ii) Production on the grid, centrally or privately managed, of files in ROOT format, containing
a list of basic types and arrays for each collision event, in the “NANOAOD” format or a
customized variation thereof, which is approximately 1kB/event [4].

(iii) Processing NANOAOD or similar in order to to produce a “final” set of histograms for
statistical interpretation and plotting, or a very condensed dataset for unbinned maximum
likelihood fits.

(iv) Statistical interpretation and visualization, including likelihood fits, statistical lim-
its/confidence intervals, plotting, etc.

In addition to the above, there may also be various auxiliary workflows or steps which might
be needed for object/detector calibrations/corrections/etc. Much of the subsequent discussion
will focus on step (iii) above, where the compact NANOAOD or similar analysis data-format is
reduced to histograms or very small datasets for statistical interpretation and visualization.

The appropriate and feasible contents of the analysis data-format, given the stringent size
constraints plays a key role in the design of the subsequent reduction step. In particular this
determines in large part which classes of operations can be performed “on the fly” at this stage,
as opposed to being better suited to pre-computation in one of the previous steps on the grid.
Typical contents included variable length arrays for 4-vectors and summarized properties of high
level objects, such as electrons, muons, photons, taus, jets, as well as event level properties or
summary variables. For the high-level objects, aside from 4-vectors, summary properties such
as isolation sums for leptons and photons, or substructure variables for jets might be included,
as well as the output of one or more multivariate discriminator for suppression of misidentified
objects, tagging of jets for boosted hadronic decays of heavy objects, etc. Among information
which is not feasible to include in a NANOAOD or similar data-format of this size are things
like detailed information on isolation sum constituents, detailed information on jet constituents
(calorimeter clusters, tracks, particle flow candidates) or similar detailed global information
about the event.

As a consequence of the above, the types of operations which can be performed “on the fly”
when analyzing this data-format include object selection (lepton identification, isolation, kine-
matics cuts, etc), composite object combinatorics (forming Z → µµ, H → γγ, tt̄ → ℓjjbb̄ /ET

candidates and the like), energy scale and resolution corrections for high level objects like lep-
tons, photons, jets, plus corresponding systematic variations. Machine learning inference on high
level object and event quantities, for example classifiers which are used for signal vs background
discrimination based on lepton and jet kinematics, or high level quantities can also be computed
at this stage. Operations which typically cannot be performed at this stage of the analysis and
must be pre-computed at earlier steps include re-computation of isolation sums, re-clustering
of jets, re-calculation of jet substructure variables, or machine learning inference on low-level
detector information (individual hits, clusters, tracks, etc).
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A heuristic goal for analysis turn-around time is O(1 hour) between making high-level changes
to the analysis selection or other details, and being able to produce a new set of results. For
O(109) events this implies event throughput rates in the MHz for the NANOAOD→ histograms
or similar reduction step. Achieving this while also realizing the corresponding flexibility goals
requires modern, easy to learn and use software frameworks for the analysis step, where a consen-
sus is building around python for the user-facing interface. Aside from this, “smart” parallelism
is needed to achieve quick turnaround time “as the physicist waits”. In this context, latency
is just as important as throughput, and it is critical to avoid IO bottlenecks, serial processing
bottlenecks, and long tails in processing or error recovery. Typical batch-queue based solutions
involve submitting a large number (O(1000)) single core jobs, reading inputs from mass storage,
and writing 10’s or 100’s of Mbytes of histograms to a shared filesystem. This potentially suffers
from long tails in job scheduling, processing, and failure recovery, as well as additional over-
head, bottlenecks and delays from merging the resulting outputs, which can be be 10’s or 100’s
of GBytes in aggregate, and be stored on mass storage systems poorly suited for operations on
large numbers of files, or shared filesystems with poor throughput characteristics and/or limited
capacity.

One alternative parallelization model is simply to use multi-thread or multi-process
parallelism on a single node, with shared memory or inter-process communication used to merge
results. Recent substantial increases in the number of CPU cores available per-socket/node, as
well as radical improvements in SSD performance from the transition to NVMe greatly extend
the limits of single node scaling. For this approach to be effective, care needs to be taken to
avoid lock contention and serial processing bottlenecks (Amdahl’s law). Where python is used in
a multi-threading context, particular care must be taken with respect to the Global Interpreter
Lock. Parallelization on a single node is ultimately limited by the maximum number of CPU
cores per socket (with commodity servers having at most two CPU sockets). In order to scale
up to multiple nodes, while avoiding the drawbacks of the batch-queue solution, newer task-
based scheduling solutions can be used, such as Spark [5], or Dask [6]. These can maintain a
more ”interactive-like“ user-facing behaviour via the scheduling of short tasks on persistent or
longer-provisioned resources, as well as incremental and/or parallelized merging of results which
can be transmitted between nodes directly over the network. These solutions have much more
flexible scaling and provisioning, and more efficient utilization of shared resources compared to
a single node, but additional challenges for maintaining robustness and avoiding IO bottlenecks.

3. Recent advances in analysis software for HEP
Until relatively recently, the vast majority of physics analysis at the LHC was carried out by
means of ”legacy“ functionality in ROOT, including TTree::Draw(), TSelector, or hand-coded
C++ event loops, with parallelization usually realized via batch queue systems, such as Con-
dor [8]. There have been major recent developments in ROOT, as well as new python-based
tools which enable additional paradigms and approaches for high performance analysis.

3.1. ROOT
Modern versions of ROOT include major developments such as Cling [9], which provides
LLVM/Clang based just-in-time compilation of C++, fundamentally improving the robustness
and feature-set of ”interpreted“ code. The PyROOT [10] interface leverages this to provide
a much friendlier interface to ROOT via python on the one hand, and opens many possibili-
ties for interoperability between python tools, ROOT, and other C++ libraries via the auto-
matic python bindings and comprehensive C++ language support. Very recent developments in
ROOT 6.26 enable optimization of just-in-time compiled code, and largely close the remaining
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performance gap between just-in-time and pre-compiled code. Another major advancement is
RDataFrame [11], which allows the use of high performance computation graphs for data anal-
ysis. Combined with PyROOT, this provides a relatively user-friendly interface to implement
complex analysis logic while maintaining high performance. Multi-threaded parallelization on a
single node is ∼ fully transparent to the user, and fully addresses common issues related to paral-
lelization discussed previously, as long as the runtime for the analysis in question is short enough
given the number of CPU cores available in the available nodes. There are recent and ongoing
developments to enable parallelization on Spark, Dask, or similar systems via distributed RDF
functionality [12]. There are also significant ongoing developments to improve the functionality,
convenience and performance of RDF in general [13]. Taken together, the combination of Cling,
PyROOT and RDataFrame enable ROOT to provide a flexible and user-friendly interface to
high performance C++.

3.2. Python Ecosystem
Beyond high energy physics, many industry-standard tools are based on the python ecosystem,
including libraries such as Numpy and Scipy. In recent years there has been a major effort to
leverage this ecosystem for physics analysis. A key requirement for this, and a critical limitation
of numpy for HEP usage is the need to deal with ”jagged“ multi-dimensional arrays, where
the number of elements in an array varies from one collision event to the next, as typical for
HEP collision data. This has been addressed by the Awkard Array [14] library, which allows
numpy-like syntax and operations to be applied to batches of events. Efficient reading of batches
of collision events into Awkard arrays is facilitated by the Uproot library [15], which provides
a python-based re-implementation of a subset of ROOT I/O, sufficient to analyze NANOAOD
and similar data-formats by populating appropriate sets of awkward arrays, a paradigm often
referred to as ”columnar“ analysis. Histogram functionality for python-ecosystem-based anal-
yses are typically provided by the C++ Boost Histogram library [16], and the corresponding
python bindings and extended functionality provided by the boost-histogram [17] and Scikit-
HEP Hist [18] libraries. Additional high level analysis functionality and tools, building on the
above are provided by the Coffea library [19], including multi-process parallelization on a single
node, as well as efficient scaling to multiple nodes with Spark, Dask and similar systems.

3.3. Performance implications of event-loop vs batch processing
Physics analysis has traditionally been carried out using event event loops, where processing
and aggregation of data is carried out one event at a time. The RDataFame interface in
ROOT is a recent example of this. Columnar analysis may also be used, where operations and
aggregation are applied to batches of events, up to hundred of thousands at a time using the
python ecosystem. There are important technical and conceptual differences between these two
paradigms. For tools where python is used beyond the initial set up, this type of batching
is actually essential to maintain good performance, because of significant call overhead for
each operation, given the need to pass through the python interpreter. With sufficiently large
batches, the impact of this overhead can be reduced to negligible levels. Though typically much
smaller, C++ is not immune from call overheads, through things like vtable lookups, which can
negatively impact branch prediction, or dynamic memory allocation from std::vector or similar
objects. Operating on batches of events also makes it easier to exploit data level parallelism
(vectorization), though this might also be possible with event loops given sufficient levels of
inlining of the computation graph. The per-event logic of operations in event-loop based tools
is more in line with how HEP analysis has been done up to this point, and columnar analysis
on batches of events often requires re-thinking or re-implementation of existing algorithms, but
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may also in some cases allow more intuitive or performant solutions. Benchmarks provided by
the Boost Histogram project, shown in Fig. 1 are an interesting example where compile-time
specification of the number and types of axes and the corresponding optimizations this enables
provides a large performance benefit when filling histograms per-event, but becomes largely
irrelevant for large batches.

Figure 1. Number of cpu cycles
per input value (lower is better)
to fill Boost histograms in C++
of various dimensions, comparing
compile-time (”sta“) vs run-time
(”dyn“) specification for the num-
ber and types of axes, as well as
per-event(”call“) vs batched (”fill“)
filling [16]. Compile-time specifica-
tion of axes incurs less call overhead
when filling the histogram, but the
impact of this becomes small or
negligible when using batched fill-
ing.

3.4. Multi-threading vs Multi-processing
When comparing multi-threading based parallelization, where multiple threads are spawned
from a single process, vs multi-process based parallelization, where multiple processes are used,
an important distinction which is sometimes overlooked are the benefits of shared memory,
most easily exploited in the multi-threading case. When filling histograms as part of a physics
analysis, the most common strategy is to keep one copy of the histogram per thread, which
are then merged by adding them together. This has the advantage of avoiding any contention
issues between threads, and also incurs relatively modest overhead from multi-process based
parallelism, since histograms can be serialized for inter-process communication or for temporary
storage on disk. The main drawback is potential memory limitations on the total number of
histogram bins. A typical server or batch slot in the LHC computing infrastructure provides
2Gbytes of memory per thread. If the total size of the histograms for a given analysis exceeds
this (with each histogram bin typically consisting of two double-precision floating point values,
one for the sum of weights, and one for the sum of weights squared), then it can be difficult to
efficiently use resources given only multi-process parallelism. In the multi-threading case this
can be mitigated by using atomic operations for the aggregation. In particular this is possible
using C++ Boost histograms together with RDataFrame, allowing only a single copy of the
histogram to be used for a process containing many threads, and with minimal performance
overhead for typical cases where the number of bins greatly exceeds the number of threads [20].
The boost-histogram python bindings provide some support for atomic histograms, but the
python global interpreter lock can make it difficult to efficiently exploit this at the analysis
level. Other possibilities to avoid memory limitations include sparse histograms, buffers and/or
locks for filling of shared histograms, or distributing histograms across multiple processes or
nodes.
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3.5. Interoperability
While there is currently a reasonable level of interoperability between ROOT and python
ecosystem tools, there is some room for improvement. Uproot is already able to read and write
ROOT histograms from ROOT files, as well as providing limited conversion facilities between
ROOT and python boost-histograms. Additional desirable functionality could include the use of
ROOT and/or RDataFrame to read data into Awkard Arrays [21]. One particular issue is that
the use of different C++ python bindings in ROOT vs the boost-histogram and hist libraries
(PyROOT/cppyy vs pybind11) makes it difficult to use Boost histograms with RDataFrame
while preserving all of the functionality of the python bindings in the boost-histogram and hist
libraries. There are ongoing efforts to improve this [20].

4. Outlook
Both RDataFrame in ROOT as well as python ecosystem tools are being used for high
performance analysis of LHC Run 2 today already today, with excellent performance and
scaling both on large servers with multi-processing/multi-threading, and distributed across
multiple nodes with Spark, Dask or similar [20,22–24]. Recent developments in analysis software
therefore already going a long way towards addressing the challenges to be faced in the HL-
LHC era, and are enabling increasingly innovative or complex analyses even of existing LHC
data. Some challenges to address include the optimal leveraging of thread-level and multi-node
parallelism in combination, as well as optimising storage and IO patterns and infrastructure to
avoid bottlenecks as analyses scale in size and complexity, and many high-performance analyses
begin making concurrent use of computing resources. Recent developments and progress are
extremely promising, with improvements to functionality, ease-of-use and performance expected
to continue over the coming years, in order to meet the challenges and requirements for flexible
high performance analysis which are needed to fully exploit the physics potential of the HL-LHC.
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