
Jet energy calibration with deep learning as a Kubeflow

pipeline

Daniel Holmberg1, Dejan Golubovic2 and Henning Kirschenmann3

1Department of Computer Science, University of Helsinki, 00560 Helsinki, Finland.
2CERN, 1211 Geneva 23, Switzerland.

3Helsinki Institute of Physics, 00560 Helsinki, Finland.

Contributing authors: daniel.holmberg@helsinki.fi; dejan.golubovic@cern.ch;
henning.kirschenmann@cern.ch;

Abstract

Precise measurements of the energy of jets emerging from particle collisions at the LHC are essen-
tial for a vast majority of physics searches at the CMS experiment. In this study, we leverage
well-established deep learning models for point clouds and CMS open data to improve the energy
calibration of particle jets. To enable production-ready machine learning based jet energy calibra-
tion an end-to-end pipeline is built on the Kubeflow cloud platform. The pipeline allowed us to
scale up our hyperparameter tuning experiments on cloud resources, and serve optimal models as
REST endpoints. We present the results of the parameter tuning process and analyze the perfor-
mance of the served models in terms of inference time and overhead, providing insights for future
work in this direction. The study also demonstrates improvements in both flavor dependence and
resolution of the energy response when compared to the standard jet energy corrections baseline.
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1 Introduction

The adoption of machine learning methods has
had a profound impact on the field of high energy
physics, greatly increasing the discovery potential
in the data measured by the particle detectors
at the Large Hadron Collider (LHC) [1]. Deep
learning especially has proven very useful [2] with
graph neural networks being one of the most
expressive and versatile architectures to choose for
many tasks [3] ranging from reconstructing parti-
cle tracks [4] to classifying complete events [5].

In this paper, we study the application of deep
learning for calibrating the energy of particle jets

at the Compact Muon Solenoid (CMS) experi-
ment [6]. Jets in this context originate from high
energy proton-proton collisions producing color
charged partons that undergo hadronization form-
ing collimated sprays of color neutral particles.
Calibrating the energy of jets is an involved pro-
cess, split into several factorized steps, some based
only on simulations and some on comparisons with
data [7]. A precise calibration of the jet energy
scale is crucial for a wide variety of physics anal-
yses, most prominently e.g. measurements of the
top quark mass [8] and inclusive jet cross-section
measurements.

Deep learning has been successfully applied by
the CMS collaboration in the past to increase the
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energy resolution of bottom jets with a feedfor-
ward neural network [9]. These efforts are here
extended to all jet flavors in a QCD-jet data
sample publicly accessible on the CERN Open-
Data portal [10]. Additionally, by adopting recent
advancements in representation learning, specif-
ically ones made for jet classification [11, 12],
more information about jet constituents can be
included in the training process, which has proven
beneficial for jet calibration [13].

Furthermore, since operationalizing machine
learning workflows is a challenge in itself for many
organizations [14], we introduce a cloud native
pipeline for running jet energy calibration exper-
iments. It runs on the Kubeflow platform [15]
that comes with readily available components for
hyperparameter tuning and model serving among
others. Kubeflow has been used by researchers in
various domains such as bioinformatics to achieve
rapid scaling with containers [16], or as a means
to create automated machine learning workflows
for a service-aware 5G network model adapt-
ing to drift in the input data [17]. Adopting a
cloud native workflow enables the workload to be
smoothly deployed also on public cloud resources,
as was done for fast simulation of electromag-
netic showers using generative deep learning at
CERN [18].

The rest of this paper is structured as fol-
lows. In Section 2, we explain the contents of
the CMS open dataset used for this study. In
Section 3, we go through the data distribution, fea-
ture sets and models used to calibrate jet energy.
Section 4 introduces the Kubeflow pipeline used
for training and serving our models on internal
cloud resources. Section 5 shows the results that
our models yield, and lastly in Section 6 we draw
some final conclusions.

2 Dataset definition and
conventional jet energy
calibration

In this study, we utilize a dataset prepared in
the context of the CMS OpenData effort [10].
The dataset consists of particle jets extracted
from simulated proton-proton (pp) collision events
at

√
s = 13TeV. These events are gener-

ated at leading-order perturbative QCD with

PYTHIA 8 [19], and include CMS detector simula-
tion and event reconstruction.

“Particle-level jets” or “generator jets” are
clustered using the anti-kT algorithm [20] with
radius parameter of 0.4 from stable (decay length
cτ > 1 cm) final-state particles resulting from
the hadronization of partons originating from the
pp collisions. As these particles propagate through
the detector, they leave signals in detector com-
ponents such as the tracker and the electromag-
netic and hadronic calorimeter. The modeling of
the interaction with the material and detector
response relies on the CMS Full simulation, based
on GEANT4 [21].

The types of quarks or gluons that initiate
the formation of the jet determines the flavor of
a jet. Flavor labeling is done using a technique
called “ghost association” [22], where heavy fla-
vor hadrons and light quark and gluon partons are
added as “ghost particles” to the clustering pro-
cess. If heavy flavor hadron ghosts are found in
the jet, it is labeled as a heavy flavor (b or c) jet.
If no ghost hadron is found, the jet is checked for
light flavor (uds) or gluon (g) partons, identifying
it as a corresponding jet [23].

The Particle Flow (PF) approach at CMS [24]
is a method that attempts to reconstruct each
particle in the event individually, prior to the jet
clustering, based on information from all relevant
sub-detectors, resulting in a list of “PF candi-
dates”. Various methods for per-particle pileup
(additional pp collisions occurring in the same
bunch crossing as the event of interest) mitigation
can be applied [25]. The charged hadron subtrac-
tion (CHS) is the default for narrow radius jets in
Run 2 CMS data, meaning that charged particles
associated with pileup vertices are removed prior
to jet clustering, thereby reducing the impact of
pileup on jets. The remaining reconstructed PF
candidates are then used as input to jet clustering
algorithms to form a “reconstructed jet” (anti-
kT , R=0.4) that is supposed to be as close to the
particle-level jet in terms of kinematic quantities
as possible.

The aim of jet energy corrections is to correct
the energy of the reconstructed jets—on average—
back to the jet energy of particle-level jets. The
measured jet energy is affected by various effects,
such as energy loss in the detector material, non-
linear response of the detector, and pileup. CMS
factorizes the jet energy corrections into levels
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to individually correct for various effects [7]: The
L1 correction corrects for offset energy induced
by pileup. It is determined from simulated sam-
ples with/without pileup, parametrizing the offset
energy as a function of median event energy den-
sity, jet area, pT, and η. The L2L3 correction
corrects for remaining detector response depen-
dence and is parametrized as a function of jet pT
and η. The L2L3Residual correction corrects for
any remaining differences between experimental
data and simulation, but is not applicable in this
MC-only study.

These conventional jet energy corrections do
not take into account the substructure of the
jets. The PF approach already leads to a reduced
dependence of, e.g. the jet response on the flavor
of a jet in comparison to calorimeter-only recon-
struction. However, taking the substructure of jets
into account promises potential for reduced flavor
response differences and associated uncertainties
as well as an improved jet-energy resolution.

3 Jet energy regression

Standard jet energy corrections can be further
improved upon by using supervised machine learn-
ing. An important step in this direction has been
taken by the CMS Collaboration for b jets specif-
ically [9]. For these jets a significant part of the
jet energy is carried by semileptonically decaying
b-hadrons, decaying to charged leptons and neu-
trinos. Neutrinos escape detection by the CMS
detector since they only interact via the weak force
leading to jet energy being underestimated. How-
ever, using a neural network trained on a sample
of simulated top quarks event decaying into b jets
and W bosons significant improvements in the
energy resolution for b jets were achieved.

These efforts can be generalized to other jet
flavors too. Using a QCD sample such as the
one described in Section 2 enables the training
of a regression model for multiple jet flavors.
This approach can potentially address any fla-
vor discrepancies in the energy response. Notably,
the response of light quark jets and gluon jets
can vary significantly due to the higher color
charge of gluon jets, which results in more
and softer particles with a lower calorimeter
response. Although the PF algorithm can reduce
the response difference substantially by replac-
ing the non-linear calorimeter measurement of

charged hadron energy with the corresponding
track momentum, 15% of jet energy is still car-
ried by neutral hadrons subject to the calorimeter
response non-linearity [24].

3.1 Data distribution and input
features

The jets in the CMS open dataset span a large
spectrum both in terms of pT and pseudorapidity
η as seen in Figure 1. However, the very low pT
region experiences high pileup, resulting in lower-
quality jets. Additionally, the forward region of
the detector lacks tracking information leading to
a worse event reconstruction quality and less reli-
able measurements to train on. To address these
issues, the dataset is filtered by pgenT > 20GeV
and |η| < 2.5. In total 1.42M jets were used, 60%
of which were allocated to the training set. The
model was validated at the end of every training
epoch on a separate set with 20% of all jets. Once
the training had finished, model performance was
evaluated on a test set with the remaining 20% of
all jets.

Fig. 1: A heatmap illustrating the distribution of
jets in the dataset with respect to the generated
transverse momentum (pgenT ) and the absolute
value of generated pseudorapidity (|ηgen|)

Table 1 presents the features used for training
our regression model selected from a comprehen-
sive list of variables available in the CMS open
dataset [10]. Eight of the features describe jets as a
whole. The reconstructed pT is log-transformed to
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reduce the width of the otherwise long-tailed dis-
tribution. In addition to pT, jet coordinates η and
ϕ as well as jet mass and catchment area are also
included in the set of training features. The last
three jet-level variables pTD, σ2 and multiplicity
can help to discriminate between quark and gluon
jets [26].

Every particle within a jet has six associated
features. The two most statistically significant
for the regression task at hand are: 1) the log-
transformed pTi

of a PF candidate indexed with
i, and 2) the same variable, but relative to the pT
of the whole jet, also log-transformed. Addition-
ally, each PF candidate has four location-based
features: the ηi, ϕi and θi detector coordinates,
along with the distance Ri from the particle to the
center of the jet.

3.2 Regression target and loss
function

The aim of the regression is to train a model to
map a a set of features describing a reconstructed
jet towards the transverse momentum of the corre-
sponding generator-level jet. However, by itself the
particle-level pgenT follows a decreasing exponential
distribution that covers many orders of magnitude
in the energy spectrum as seen in Figure 1. To
counteract this, pgenT can be divided by the simi-
larly distributed precoT that is part of the training
set. This gives a target distribution on the order of
one with a reduced variance compared to the orig-
inal target distribution [9]. To further correlate
the target with the input features the logarithm
is taken yielding the final regression target as
y = log (pgenT /precoT ). The distribution of the tar-
get is narrow and centralized around zero as seen
in Figure 2. In order to get the corrected trans-
verse momentum pcorrT , the exponential function
is applied to the prediction ŷ, and the result-
ing correction factor is multiplied by precoT . The
per-jet energy response can then be defined as
R = pcorrT /pgenT .

The mean absolute error (MAE) is selected as
the loss function to minimize for this problem,
as it assigns less importance to outliers compared
to the more commonly used mean squared error
(MSE) loss. In line with the previous study on b jet
energy regression [9], a loss function with reduced
sensitivity to the tails of the target distribution is

Fig. 2: Distribution of the regression target

preferred. To prevent potential spikes in the train-
ing loss, jets with a target value smaller than -1 or
larger than 1 are excluded, as they are considered
too poorly reconstructed to be taken into account.
The loss function used is thus:

L =
1

N

N∑
i=1

|yi − ŷi|I|yi|<1. (1)

A further motivation for the use of the MAE
loss function is that the statistic it learns is the
median of the target distribution, whereas for
example the minimum of the MSE loss lies on the
function that maps input features to the expected
value of the target. Predicting the median in
this case can be seen as beneficial since it is a
robust measure of central tendency. By learning
the median of the target distribution, the model
is more likely to make accurate predictions even
in the presence of outliers.

3.3 Deep learning models

During recent years many new approaches of
applying deep learning in jet physics have
emerged, especially for the purpose of jet tagging
where the aim is to classify jets based on the par-
ticle initiating them. Some proposed approaches
to do this is for example to treat the jets as
images [27], sequences [28] or trees [29]. While
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Table 1: Overview of the input features used for training the regression model, categorized into jet-
level features and PF candidate features. Jet features describe the overall properties of the jet, while PF
features characterize the individual particles within the jet

Category Variable Description

Jet features

log pT Logarithm of a jet’s pT
η Pseudorapidity of a jet
ϕ Azimuthal angle of a jet
m Mass of a jet
A Catchment area of a jet
pTD Fragmentation distribution for a jet’s pT
σ2 Minor ellipse axis of a jet
multiplicity Jet constituent multiplicity

PF features

log pTi
Logarithm of a particle’s pT

log
pTi

pT
Logarithm of the fractional pT of a particle

ηi Pseudorapidity of a particle
ϕi Azimuthal angle of a particle
θi Polar angle of a particle
Ri Distance from a particle to the center of the jet

these methods perform well and surpass tradi-
tional multivariate methods, the way they repre-
sent jet constituents is not ideal. A particle jet
can contain up to O(100) particles whereas an
image of a jet will contain O(1000) pixels, and as
noted in [27] the images are indeed very sparse
with 5-10% of pixels being active. When instead
considering a sequence or tree of particles as the
representation a notable issue that arises is that
the particles must be ordered in some fashion to
be used by the deep learning model, e.g. a recur-
rent neural network or recursive neural network.
However, the constituents of a particle jet have no
intrinsic ordering.

More natural ways of representing particles
have been found by adopting point cloud based
formalisms from the wider machine learning com-
munity as particle clouds [12]. This kind of repre-
sentation treats a collection of particles as a graph
structure G = (V, E) where each individual parti-
cle serves as a node V = {1, . . . , n} with potential
edges E ⊆ V × V connecting them. In this work,
we compare two separate models that operate on
data represented in this way.

The simplest case of representation learning on
particle clouds is when the set of edges is empty
E = ∅. This will lead to the particles taking on
the form of an unordered set, and was originally

proposed for the Particle Flow Network (PFN)
model [11] adapting from the Deep Sets [30] frame-
work. The key idea here is that input feature
vectors xi ∈ RF are mapped with an equivariant
function into a latent feature vector hi = ψ(xi).
In practice that would be a multilayer perceptron
(MLP) with shared weights for all elements of the
set.

To make predictions for the particle jet as a
whole the latent feature vectors must be aggre-
gated using a permutation invariant pooling, such
as summing, averaging or taking the max value.
Following the PFN and Deep Sets papers, summa-
tion

∑
i∈V is chosen as the global pooling opera-

tion. Figure 3 (b) in conjunction with Figure 3 (c)
show the complete network architecture where the
output of the Deep Sets block connects to global
pooling in the network head. The global particle
representation is concatenated with jet features
before being passed into a final MLP mapping
towards the regression target. Note that the rec-
tified linear unit (ReLU) [31] is used as activation
function, and dropout [32] is applied in the head
of the network.

Spatial information can be used to further
increase the expressivity of a point cloud based
model. The ParticleNet [12] architecture uses edge
convolution (EdgeConv), first introduced as a
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Fig. 3: Illustration of model architectures: (a) EdgeConv block for ParticleNet, (b) Deep Sets block for
PFN, and (c) Network head shared by both models

building block of dynamic graph convolutional
neural networks (DGCNN) [33], to incorporate
information on the local neighborhood of each par-
ticle. Detector coordinates in the (η, ϕ)-plane are
used to calculate the Euclidean distance matrix
from pairwise distances between particles. The k-
NN algorithm is then applied to construct edges
connecting each particle to its k nearest neighbor-
ing particles.

Messages between every point xi and its neigh-
bors xj are learned using an asymmetric edge
function ψ(xi,xj − xi) implemented as an MLP
with shared weights. Permutation invariant aggre-
gation in the form of averaging 1

k

∑
i∈Nk

i
over the

learned edge features for the k nearest neighbors
is used to update every node in the particle cloud.
A shortcut connection [34] from the original node
features is added to the output of the aggrega-
tion before passed being passed through the ReLU
activation function. This concludes the EdgeConv
block shown in Figure 3 (a).

If multiple EdgeConv blocks are stacked after
one another the input graphs are dynamically
updated by calculating the pairwise distance

matrix from the latent feature space learned
by the previous block. Global average pooling
1
n

∑
i∈V is applied on the output of the last Edge-

Conv block as it is passed into the network head
in Figure 3 (c). An identical procedure to that in
the PFN model is applied, where the jet features
are concatenated with the pooled particle features,
and finally passed through one last MLP mapping
towards the regression target.

The models are implemented in PyTorch [35]
as part of the weaver deep learning framework for
high energy physics [36]. Weaver supports han-
dling common particle physics data formats such
as ROOT [37] or Awkward Array [38], as well
as distributed training, and model inference. To
scale up the training on cluster resources where
GPUs are distributed over separate nodes the code
must support collective communications to syn-
chronize gradients over machines. Different back-
ends can be chosen in PyTorch for this purpose
such as Message Passing Interface (MPI) [39] for
CPU parallelization, or NVIDIA Collective Com-
munication Library (NCCL) [40] for multi-GPU
communication.
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4 Kubeflow pipeline

The analysis was carried out on the Kubeflow-
based machine learning platform at CERN [15].
Kubeflow is an open-source machine learning
toolkit that supports the entire machine learn-
ing lifecycle by providing features such as note-
books, pipelines, hyperparameter optimization,
distributed training, model serving, and model
monitoring. Kubeflow is built on top of Kuber-
netes [41], a container orchestrator, leveraging the
scalability, ease of use and integration of cutting-
edge infrastructure technologies. Deployed as a
set of Kubernetes resources, Kubeflow application
code runs as a collection of micro-services that
communicate with each other and process user
workloads.

Machine learning workflows typically take the
form of a directed acyclic graph that begins
with data processing, proceeds through model
training, and ends with an inference phase of
the trained model. Kubeflow facilitates develop-
ing such workflows by offering several features,
including a web interface for managing, tracking,
and running pipelines, an engine for scheduling
pipeline steps, a software development kit (SDK)
for defining and running pipelines using Python,
and higher-level abstraction tools like KALE [42],
which convert notebooks to pipelines. Regardless
of how a pipeline is defined, it is always con-
verted to a Kubernetes YAML [43] definition file
before being submitted for execution. A pipeline
runs as a sequence of pods (containers), with each
pipeline step waiting for its dependencies to com-
plete successfully before proceeding. The pipeline
developed for this study is shown as part of the
Kubeflow user interface (UI) in Figure 4.

Pipelines offer benefits in resource utilization.
By allowing users to define hardware require-
ments for each step, pipelines ensure that GPUs
are only utilized when needed, for example dur-
ing training and inference steps. Other steps that
use CPU-only resources make GPUs available for
other users in the cluster. Additional features
include support for pipeline scheduling which
enables automatic execution of repeated or peri-
odic workflows, running pipelines with different
input parameters without any code changes, and
grouping pipeline runs into experiments making it
easier to track and compare similar runs.

4.1 AutoML experiment

The Kubeflow Katib component [44] offers a
streamlined process for automated machine learn-
ing (AutoML) supporting hyperparameter tuning,
early stopping and neural architecture search.
Here we use hyper-parameter optimization, that
includes three main steps: 1. implementing a script
that trains a model and takes hyperparameters
as command line arguments, 2. building a docker
image with all dependencies to run the script, and
3. specifying a YAML file with the definition of
the hyper-parameters. The YAML file defines the
search algorithm, early stopping options, maxi-
mum number of parallel jobs, hardware resources,
and other options. The YAML file can be gen-
erated manually, using an SDK, or using the
high-level KALE tool.

Katib schedules search jobs in the form of
multiple trials, each trial corresponding to a
unique combination of hyperparameters as seen in
Figure 5. A trial can be a Kubernetes job running
a script in a single pod, a pipeline where multi-
ple pods run sequentially or a distributed training
job where multiple pods run synchronously uti-
lizing multiple GPUs to train the model. Being
framework-agnostic, Kubeflow supports running
search jobs with any machine learning framework.

In this study, Katib trials were executed using
the PyTorchJob Kubernetes custom resource [45].
The Kubeflow training operator component pro-
vides distribution on the level of containerization;
training a single model using multiple cluster
GPUs that can be located in different machines.
In addition to implementing the training to use
distribution strategies, it is necessary to specify a
YAML definition of a distributed job. The YAML
definition includes many attributes, including the
number of worker replicas, memory, and command
line arguments to the machine learning code. The
PyTorchJob also includes S3 credentials to access
the training data stored in a bucket on CERN
object storage.

To optimize the performance of ParticleNet
and PFN, Katib was configured to use the Ran-
dom Search algorithm [46] to find the optimal set
of parameters for minimizing the test loss. The
total number of trials was set to 60 for both models
with 10 trials running in parallel using one GPU
each to achieve fast scheduling of pods on the clus-
ter. Each trial ran for 50 epochs, with the batch
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Fig. 4: Kubeflow UI for a jet energy regression pipeline run. The pipeline consists of three steps: 1.
hyperparameter tuning using Kubeflow’s AutoML component Katib, 2. exporting the optimal PyTorch
model to the ONNX format, and 3. serve the exported model over HTTP with KServe

size set to 500. The initial learning rate is set as
part of the hyperparameter optimization process.
After 70% of epochs, 35 in this case, a scheduler
starts decreasing the learning rate exponentially
on a per-epoch basis down to 1% of the initial
value at the end of training. The model with the
lowest validation loss is chosen as the final model
for each trial, and is then run on the evaluation set
to get the test loss that we are trying to minimize.

With reference to Figure 3 (b) and 3 (c), the
search space for the hyperparameter tuning was
defined as follows for PFN:

– linear layers: N ∈ {1, 2, 3, 4, 5}
– linear layer units: n ∈ {50, 100, 200, 400}
– linear layers: M ∈ {1, 2, 3, 4, 5}
– linear layer units: m ∈ {50, 100, 200, 400}.

The search space for ParticleNet, with respect to
Figure 3 (a) and 3 (c), was defined as:

– EdgeConv blocks: E ∈ {1, 2, 3}
– nearest neighbors: k ∈ {4, 8, 16}
– linear layers: N ∈ {1, 2, 3}
– linear layer units: n ∈ {50, 100, 200}
– linear layers: M ∈ {1, 2, 3}
– linear layer units: m ∈ {50, 100, 200}.

Lastly, the mutual hyperparameters considered
were:

– dropout rate: d ∈ [0; 0.5]

– initial learning rate: lr ∈ [10−5; 10−2]
– optimizer: optim ∈ {AdaGrad, Adam, AdamW,
Ranger, RMSProp}.

The completion of trials can be viewed directly
from the Katib UI, while Kubeflow’s TensorBoard
component allows tracking the progress of indi-
vidual training runs. To set up a TensorBoard
server, it is necessary to specify a model output
path, either on a persistent volume claim (PVC)
within the cluster or an S3 object storage end-
point. As long as the model training is writing
to the specified location, the model performance
can be monitored in real-time using TensorBoard
servers.

4.2 Exporting the optimal model

Once the optimal hyperparameters for both
PFN and ParticleNet models have been deter-
mined through the hyperparameter tuning pro-
cess, the optimal PyTorch model is exported to
the ML framework agnostic Open Neural Net-
work Exchange (ONNX) format [47]. This enables
seamless integration with other ML tools, such as
NVIDIA Triton Inference Server [48] for model
serving, and eases the deployment process.

The second step of the Kubeflow pipeline
involves running a PyTorchJob to carry out this
conversion. It retrieves the optimal PFN and
ParticleNet models from the S3 bucket, converts
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Experiment

Trial

PyTorchJob PyTorchJob

Trial

Worker 0Worker nWorker 0 Worker n

Fig. 5: The structure of an Experiment Kuber-
netes custom resource. An AutoML experiment
consists of multiple trials, with each trial repre-
senting a unique combination of hyperparameters.
Each trial monitors a PyTorchJob, which can sub-
mit one or more workers to train the model. Once
completed, the Experiment resource retains the
outcomes of all trials and the optimal trial result
based on predefined metrics

them to ONNX format, and stores the resulting
ONNX models back into the same S3 bucket. The
PyTorchJob can be defined using a YAML file that
specifies the necessary configurations, such as the
PyTorch model input path and the ONNX model
output path, network configuration, and hardware
resources to run the export job.

When exporting a model to ONNX, a config-
uration file is created alongside the model file to
facilitate serving the model using Triton. We made
a schema in the Protocol Buffers (protobuf) [49]
format with model input/output dimensions, data
types (32-bit float) and graph optimization level
for ONNX Runtime. This was compiled into a
Python file that can be used to automatically
generate model configuration in protobuf text for-
mat with the correct input and output dimensions
when exporting a model in PyTorch.

ONNX Runtime defines a static computa-
tional graph for the model as opposed to the
dynamic one used by PyTorch during training,
which allows for various graph optimizations that

can improve inference performance, such as graph-
level transformations, node eliminations, node
fusions, and layout optimizations. An extended
optimization level is available that enables com-
plex node fusions. However, these optimizations
were found to cause issues when serving Parti-
cleNet, and as a result they were only applied to
PFN. A more basic graph optimization level with
semantics-preserving graph rewrites that removes
redundant nodes and redundant computation was
chosen for ParticleNet.

To allow Triton to accept dynamically varying
batch sizes, we configured the maximum batch size
to be 100k in the model configuration file. Batch
requests that large are not necessarily recom-
mended due to the spiky network load they would
produce and the excessive amount of memory that
must be allocated to the inference server.

The export job produces an output directory
structure, as shown in Figure 6, that follows Tri-
ton’s specifications. The base model repository is
in our case an S3 bucket path and a unique id for
every pipeline run. The top-level repository can
contain many subdirectories (or pseudo-folders
since object storage has a flat address space), each
representing distinct models. The optimal ONNX
model is placed in a numeric sub-folder signify-
ing model version during exportation, and the
automatically generated model configuration file
is placed alongside that folder.

<model-repository-path>/

<model-name>/

config.pbtxt

<version>/

model.onnx

...

...

Fig. 6: Model repository layout for Triton Infer-
ence Server with ONNX backend

4.3 Model serving

After exporting the optimal PFN and ParticleNet
PyTorch models to the ONNX format and storing
them in an S3 bucket, the models are served using
custom InferenceService resources. An Inference-
Service is the interface used for deploying models
on Kubeflow’s inference platform KServe [50].
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Fig. 7: A diagram depicting model serving using KServe, highlighting load balancing of user inference
requests and the scalability of predictor pods

The InferenceService can be specified using
a YAML file with various configuration options,
such as hardware allocation for the server (CPU,
GPU and memory), runtime version of the pre-
dictor, and the path to the model repository.
In order to make authenticated requests to S3
storage, a Kubernetes ServiceAccount with the
required access rights was deployed on the cluster
and attached to every InferenceService.

KServe relies on Knative [51] for scaling server-
less workloads and supports scale-to-zero, opti-
mizing cost efficiency. Istio [52], another key tech-
nology in KServe, acts as a service mesh that uses
Kubernetes sidecars (containers deployed along-
side a main container in a pod) for network
traffic management, providing features such as
progressive “canary” model rollouts, traffic rout-
ing, ingress management, logging, load balancing,
and security.

Triton is utilized as the predictor for the Infer-
enceService. It is an open-source inference server
capable of serving multiple models concurrently,
supporting various machine learning frameworks.
We have specified the ONNX Runtime as plat-
form in the model configuration file telling Triton
explicitly which backend to use.

The complete inference workflow is illustrated
in Figure 7. The InferenceService creates Triton

pods that retrieves the ONNX model and con-
figuration from S3 object storage. The pods act
as REST endpoints [53] that can be queried over
HTTP. When user sends inference requests, a load
balancer is responsible for receiving them and dis-
tribute them to available inference server pods.
The pods can scale up or down dynamically based
on the volume of incoming requests. Servers pass
the input data through the deep learning model
and return model output to the load balancer that
sends it back to the user.

5 Results

5.1 Hyperparameter optimization

The results of the hyperparameter tuning using
Random Search can be analyzed to some extent
with Pearson’s correlation coefficient. Table 2
shows the correlation of all continuous and ordi-
nal hyperparameters with the inverted test loss for
the models with the lowest validation loss during
each training run. Because the choice of hyperpa-
rameters is stochastic for every trial it is difficult
to isolate the impact of a single hyperparameter
on the model’s performance, and thus particularly
high correlation scores are not expected here. Note
also that the correlation is limited to the search
space laid out in Section 4.1.
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Table 2: A two-fold presentation of the results from hyperparameter tuning. The upper part of the
table shows the Pearson correlation between hyperparameters and the inverted test loss for PFN and
ParticleNet. The bottom part lists the top three best sets of hyperparameters found for both models with
the corresponding test loss values for those trials. Gain signifies the relative improvement in loss for each
trial compared to the standard corrections baseline (LBaseline = 9.427e-2), and is computed as ∆L/LModel

Model E k N n M m d lr optim L Gain [%]

ρhp,1/L
PFN 0.27 -0.21 -0.08 0.33 -0.54 -0.39
ParticleNet 0.22 -0.04 0.17 -0.21 0.02 0.40 -0.39 -0.34

top trials

PFN
5 50 3 400 9.45e-3 1.08e-3 Ranger 8.768e-2 7.52
5 50 4 100 4.13e-2 7.60e-4 Adam 8.770e-2 7.49
3 200 4 400 8.58e-2 7.33e-4 RMSProp 8.770e-2 7.49

ParticleNet
3 16 3 50 3 200 1.16e-2 8.72e-3 Ranger 8.746e-2 7.79
3 16 2 100 2 100 1.14e-1 1.84e-3 Ranger 8.752e-2 7.71
3 8 2 50 3 200 8.70e-2 2.50e-3 AdamW 8.755e-2 7.68

The table suggests that for PFN, having more
linear layers with fewer units in the Deep Sets
block is weakly associated with a lower loss. For
ParticleNet, having more EdgeConv blocks with
additional linear layers and fewer units offers an
advantage. The number of nearest neighbors k in
ParticleNet’s particle graph appears uncorrelated
with a lower loss. The remaining correlation val-
ues exhibit similar behavior for both models. The
loss is relatively unaffected by the number of lin-
ear layers in the network head, but more units in
these layers tend to yield a lower loss. Increased
dropout negatively impacts the regression task
with the most certainty among all correlation
results. Finally, a lower learning rate tends to
produce better results.

The best hyperparameters found for both
models, as listed in the lower section of Table 2, do
tend to align with the Pearson correlation scores.
For the PFN model, the top three trials all used a
configuration with more linear layers (3–5) in the
Deep Sets block and fewer units (50–200), which
aligns with the correlation scores observed for
these parameters. Similarly for ParticleNet, the
top three trials incorporate more EdgeConv blocks
(3) with a higher number of linear layers (2–3) and
fewer units (50–100), reflecting the corresponding
correlations. The initial learning rate and dropout
across the top trials are, with exception for the
optimal ParticleNet trial’s learning rate, notably
low as suggested by the Pearson correlation.

To further highlight the impact of poorly
adjusted dropout and learning rate we can com-
pare the average of those parameters for trials that

fall in the upper and lower quartiles ranked by test
loss. For PFN, the average initial learning rate for
trials in the lower quartile of losses was 3.0e-3,
while for trials in the upper quartile it was higher,
at 5.6e-3. Similarly, the average dropout for tri-
als in the lower quartile was 0.11, compared to a
significantly higher 0.31 in the upper quartile. A
similar pattern was observed with the ParticleNet
model, with the average initial learning rate for
trials in the lower quartile being 3.3e-3, compared
to 6.3e-3 in the upper quartile, and the average
dropout for trials in the lower quartile being 0.16,
compared to 0.31 in the upper quartile.

A high learning rate allows the model to learn
quickly, but it may also cause the model to over-
shoot the optimal solution and not converge well.
The aim of dropout on the other hand is for the
model to learn more robust, generalizable repre-
sentations of the data. However, if the dropout
rate is too high, as is the case for many trials in
the upper loss quartile, the model may struggle to
learn from the data at all, leading to underfitting.

The optimizer algorithm as a nominal variable
falls outside the scope of the correlation analysis.
However, Ranger proved to be the most success-
ful. It combines LookAhead [54] with k = 6 and
α = 0.5, and an inner RAdam optimizer [55]
with β1 = 0.95, β2 = 0.999 and ϵ = 10−5.
RAdam can help to stabilize the learning rate
and adapt it based on the variance of the gradi-
ent, making it a robust option when the learning
rate is ill-adjusted. Furthermore, LookAhead has
empirically been shown to improve convergence
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by considering multiple directions in the parame-
ter space. It also mitigates the impact of poorly
chosen hyperparameters on training by smoothing
out noisy gradient updates.

The gain measure in Table 2 represents the
percentage improvement in test loss achieved by
the PFN and ParticleNet models over the stan-
dard jet energy corrections loss value. This metric
serves as an indicator of the models’ relative per-
formance, providing a quantifiable measure of the
benefits realized through hyperparameter opti-
mization. The gain observed for the optimal PFN
configuration is 7.52% whereas the optimal Parti-
cleNet model achieves a 7.79% improvement over
the baseline.

In this study, Random Search proved straight-
forward to set up and it showcased favorable
practical properties. Random state is the only
input parameter, the algorithm allows for trials
to be discontinued or restarted without jeop-
ardizing the experiment, and compared to grid
search, it is more efficient for a given computa-
tional budget [46]. However, Katib offers several
other AutoML algorithms such as Bayesian opti-
mization [56] or Hyperband [57] that could be
considered for future work since they have great
potential to more effectively find an optimal set of
hyperparameters.

It should be noted that more advanced algo-
rithms often rely on additional input parameters
that may alter the outcome which adds a level of
complexity in the setup. Furthermore, while Ran-
dom Search is embarrasingly parallel, Bayesian
Optimization uses Gaussian process regression to
iteratively model the search space and is therefore
inherently sequential. Trials can still be queued in
parallel, but the choice of parameter configuration
for back-to-back trials is less informed than when
the algorithm is run sequentially. Hyperband, on
the other hand, is an extension of Random Search,
and offers more efficient resource allocation to
trials that matter by invoking early stopping
on poorly performing configurations. However,
adjusting resource allocation when candidate con-
figurations have different convergence rates is an
open challenge [57], a circumstance occurring in
our experiment with varying learning rates and
models with differing numbers of layers and hid-
den units.

5.2 Model complexity and inference
performance

Table 3 compares the complexity of the optimal
PFN and ParticleNet models in terms of loss,
number of parameters, and Multiply-Accumulate
operations (MACs). MACs represent the number
of multiplications and additions performed during
a single forward pass, indicating computational
complexity. While ParticleNet achieves a lower
test loss than PFN due to the inclusion of parti-
cle locality information, it has significantly higher
computational complexity. A smaller number of
nearest neighbors in the particle graph and fewer
channels in the linear layers can be considered for
reducing the complexity while still maintaining
good performance [12].

Table 3: Comparison of model complexity for the
optimal configuration of PFN and ParticleNet

Model Loss # Params MACs

PFN 8.768e-2 355.45k 1.43M
ParticleNet 8.746e-2 123.47k 47.59M

The optimal PFN and ParticleNet models are
served as REST endpoints using the Triton Infer-
ence Server running on top of KServe. We used
the Python Triton client to request predictions for
different batch sizes to evaluate how these mod-
els compare, and how request batch size affects
roundtrip time, inference time, and overhead. The
roundtrip time encompasses the total duration
for a request to be processed, including both
HTTP request time and inference time. Mean-
while, the overhead, calculated as the difference
between roundtrip time and inference time, rep-
resents additional delay induced by factors such
as data serialization / deserialization and network
latency. The results of these tests for both mod-
els when served either on a CPU or a Tesla V100
GPU are displayed in Figure 8.

In the context of model performance, PFN
achieve lower roundtrip times than ParticleNet
due to its much lower computational complex-
ity. However, the difference is less pronounced
for smaller batch sizes. The larger overhead at
small batch sizes affects both models similarly,
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Fig. 8: Comparison of prediction request roundtrip time (left), device inference time (middle) and over-
head (right) for PFN and ParticleNet ONNX models served with Triton. The represented values are based
on the average processing time for 1k repetitions with randomly selected jets, covering a range of batch
sizes from 2 to 1024

thereby reducing the relative performance differ-
ence between the models.

For very fast models such as PFN running on
GPU the inference time is minimal due to the low
model complexity and the high parallel processing
capabilities of the GPU. This leads to overhead
being the dominating factor in the roundtrip time.
Conversely, for slower models like ParticleNet, the
inference time especially when processing large
batch sizes is substantially longer than the over-
head time. As a result, the overhead comprises a
fraction of the roundtrip time in that scenario.

We can note that PFN with extended ONNX
graph optimization (PFN Opt.) shows perfor-
mance enhancements compared to PFN with
basic graph optimizations. Extended graph opti-
mizations go beyond the simple, semantics-
preserving transformations of basic optimizations,
and applies complex node fusions after graph par-
titioning, tailoring the computation to the specific
execution provider (CPU or GPU). This results in
more efficient computations that are better suited
to the architecture of the hardware on which the
model runs.

The faster inference time on GPU compared
to CPU for both PFN and ParticleNet mod-
els can be primarily attributed to the difference
in the underlying architecture of these hardware
platforms. GPUs are specifically designed for high-
throughput, parallel processing and are capable
of executing thousands of threads simultaneously.
This characteristic is particularly beneficial for

inference tasks which involve large-scale matrix
operations that can be parallelized effectively. In
contrast, CPUs have fewer cores and are opti-
mized for sequential tasks. Furthermore, the per-
formance gap can be widened when the batch size
is large, as larger batch sizes enable better utiliza-
tion of the GPU’s parallel processing capabilities,
leading to a faster per-jet inference time.

GPU inference and overhead times are also
more consistent compared to CPU times. When
allocating a processor in a Kubernetes cluster the
instance is assigned a virtual processor (vCPU)
shared across different processes, and due to
their general-purpose nature, CPUs are typically
tasked with managing a wider variety of processes,
including system operations and other applica-
tions running in the background. A scheduler
managed by the kernel has to coordinate time
slots on the physical CPUs, which can lead to
more variability in the availability of resources for
the inference tasks. In contrast, GPU allocations
on Kubeflow will currently result in a dedicated
GPU for the task, resulting in more consistent
performance.

When faced with the choice between CPU and
GPU for deep learning inference it really depends
on the hardware resources available and applica-
tion requirements. Hardware accelerators such as
GPUs provide superior throughput but often come
with increased costs and power consumption. For
applications with moderate inference workloads
and less stringent response time requirements,
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CPU-based inference may be more cost-effective.
In contrast, high-throughput, low-latency applica-
tions can benefit significantly from GPU invest-
ment. It is also noteworthy that while a dedicated
GPU will yield good results when benchmark-
ing, virtualization of these resources as vGPUs
could lead to better resource utilization [58], which
is especially important as demand for hardware
accelerators continues to increase.

5.3 Jet energy response flavor
dependence

In this section, we present the analysis of the fla-
vor dependence of the calibrated energy response
produced by the optimal PFN and ParticleNet
models. Figure 9 displays the median response for
each jet flavor obtained using the two deep learn-
ing models and the standard corrections baseline.
Both models exhibit a reduction in the differ-
ences between jet flavors compared to the baseline.
A notable improvement in flavor dependence of
the energy calibration is observed between light
quark jets and gluon jets, which has been a known
shortcoming in standard jet energy corrections.

The uncertainty for each data point, repre-
sented by the error bars in Figure 9, is calculated
using the statistical bootstrapping method. By
randomly sampling all response values 30 times,
new sets of response values are generated similar
in magnitude to the original dataset. The median
is computed for each sample, followed by the stan-
dard deviation of the 30 median values, which
provides an uncertainty for each point. There are
fewer s, c and b jets in the QCD sample compared
to the amount of u, d and g jets contributing to
them having a higher bootstrapped uncertainty.
The sample also has fewer jets in the endcap region
compared to barrel region resulting in a higher
uncertainty for the median response in the right
plot in Figure 9 compared to the left one.

The sum of absolute errors (SAE) is used to
evaluate the improvement in flavor dependence.
It can be computed directly from the points
in Figure 9 by summing the absolute difference
between the median response for each flavor and
the mean of the same points. Mathematically, it

can be expressed as:

SAE =
∑
flavor

|R50%, flavor −
1

n

∑
flavor

(R50%, flavor)|

(2)
where flavor = {u, d, s, c, b, g} represents the com-
plete set of jet flavors in the QCD sample. The
relative improvement in flavor dependence for a
model compared to the standard JEC is denoted
by α and is defined as:

α = 1− SAEModel/SAEBaseline. (3)

The values that α can take on ranges from any
negative value to one, where a negative value
indicates that the model performs worse than
the standard correction, zero corresponds to no
improvement, and α = 1 would mean that the
median response produced by the deep learning
model is identical for all jet flavors.

As seen in Table 4, the improvement in fla-
vor dependence varies across different pT inter-
vals for both models. In the very low pT region
(30GeV < pgenT < 100GeV), the improvements in
flavor dependence are modest. As the pT intervals
become larger, both models demonstrate more sig-
nificant improvements. Which of the two models
perform better in a certain pT interval or detector
region varies. However, the differences in perfor-
mance between them become less pronounced as
pT increases. It is also worth noting that the
improvement in flavor dependence is not uniform
across the barrel and endcap regions. For both
models, the improvement is generally larger in the
endcap region, especially in the intermediate and
high pT intervals.

Flavor response differences and even more so
their differences between different generators are
an input to both ATLAS and CMS flavor-related
uncertainties. If the flavor responses become more
alike, because the underlying jet properties are
taken into account, as demonstrated in Table
4 and Figure 9, then one can also expect the
uncertainties based on generator differences to be
decreased.

5.4 Jet energy resolution

The performance of the regression models can also
be assessed by examining the relative jet energy
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Fig. 9: Median energy response separated by jet flavor in the barrel region (left) and the endcap region
(right). The improvement over the baseline is about 40% in the barrel region and 50% in the endcap
region of the detector for both models

Table 4: Summary of jet energy regression results. Improvements in flavor dependence and energy reso-
lution produced by PFN and ParticleNet compared to baseline JEC are presented in multiple pT intervals
and detector regions

Interval [GeV] Model αbarrel [%] βbarrel [%] αendcap [%] βendcap [%]

30 < pgenT < 100
PFN 8.04 0.23 12.01 0.97
ParticleNet 6.71 0.64 17.97 1.25

100 < pgenT < 300
PFN 23.25 1.43 49.59 6.93
ParticleNet 24.52 1.61 45.07 7.07

300 < pgenT < 1000
PFN 57.52 4.53 68.05 12.90
ParticleNet 56.11 4.81 70.02 11.93

pgenT > 1000
PFN 68.62 7.95 37.91 4.97
ParticleNet 68.34 7.75 37.56 9.37

resolution. We define it here as the interquar-
tile range (IQR) divided by the median for the
response:

s̄ =
R75% −R25%

R50%
. (4)

The IQR serves as a measure of response res-
olution. Both the median and IQR are robust
statistics, meaning that they are less affected by
outliers compared to the mean and standard devi-
ation respectively. The uncertainty of the relative
resolution is measured using the same bootstrap-
ping technique as in the previous section and

results are shown in Figure 10. As the high pT and
endcap region are less populated as indicated in
Figure 1, the uncertainties are sizeable for endcap
high pT jets.

The improvement in relative resolution for a
model with respect to standard corrections is
denoted here as β. We define it as one minus the
ratio of relative jet energy resolution between the
models and the baseline:

β = 1− s̄Model/s̄Baseline. (5)
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Fig. 10: Relative jet energy resolution in the barrel region (left) and the endcap region (right) binned
logarithmically. The bottom panels show the ratio between the relative resolution produced by the deep
learning models and the relative resolution after standard jet energy corrections

When examining the results presented in
Table 4, we observe that both PFN and Parti-
cleNet models achieve improvements in the energy
resolution compared to the baseline. The improve-
ments vary across different pT intervals, with the
largest improvements observed in the intermedi-
ate to high pT intervals for both models. This
behavior can be attributed to several factors. High
pT jets generally have more complex substruc-
tures and are more likely to undergo hard parton
splittings, resulting in a higher multiplicity for
the jet. This increased complexity leaves more
room for improvement for machine learning-based
approaches. The effect of pileup also diminishes at
higher pT resulting in less noisy data to train on.
Owing to the limited amount of training data in
the endcap region for jets with pgenT > 1000GeV
and reaching the kinematic limit of phase space in
that regime, the improvements achieved through
deep learning are comparatively smaller there.

6 Conclusion

In this paper, we presented a deep learning based
workflow for calibrating the energy of particle
jets in the CMS detector. By utilizing advance-
ments in learning on particle clouds in the form
of the PFN and ParticleNet models, we man-
aged to improve upon standard jet energy cor-
rections derived solely from kinematic quantities.

The results, categorized into jet energy resolution
and flavor dependence, suggest that the perfor-
mance of both networks is generally comparable,
with larger improvements at higher pT. The most
notable difference between the two models is that
the inclusion of locality information in ParticleNet
results in a slightly better energy resolution at the
expense of higher model complexity and inference
time.

We have also demonstrated the potential of the
Kubeflow platform for operationalizing ML work-
flows in high energy physics. As the field is wit-
nessing a growing integration of ML techniques,
the capabilities offered by Kubeflow, supporting
the continual development of scalable ML solu-
tions, are becoming increasingly more relevant.
The pipeline we developed for this work enabled
us to efficiently scale up our AutoML experiments
on cloud resources and serve the optimal mod-
els as easily queryable REST endpoints. Having
each step in the pipeline defined using Kubernetes
custom resources allows for fine-grained access
to hardware resources on the cloud and well-
versioned, reusable machine learning workflows.
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