Early Performance of the Scintillating Fibre Tracker for the LHCb Upgrade

Jan de Boer

Nikhef, Amsterdam – The Netherlands

On behalf of the LHCb SciFi Collaboration Technology & Instrumentation in Particle Physics (TIPP2023) 4-8 September 2023, Cape Town - South Africa 🔀

FRN

Outline

- LHCb Detector Upgrade
- Scintillating Fibre tracker (SciFi)
- Commissioning
- Early Performance

LHCb detector

Single-arm forward spectrometer designed to study b- and c-hadrons

(2 < η < 5) LHC Run 1 + 2 (2011-2018)

Collected > 9 fb⁻¹

Excellent performance and extended physics program to QCD, EW, direct searches, heavy ions, ...

→ Forward general-purpose detector

LHCb Upgrade I (2019-2022)

LHC Run 3 + 4 (2022-2032)

- Instantaneous limunosity 5 x higher: $\mathcal{L} \rightarrow 2 \times 10^{33} \text{ sec}^{-1} \text{ cm}^{-2}$
- New detector readout and full software trigger at 40 MHz
- Collect 50 fb⁻¹

LHCb Upgrade I (2019-2022)

LHC Run 3 + 4 (2022-2032)

- Instantaneous limunosity 5 x higher: ٠ $\mathcal{L} \rightarrow 2 \times 10^{33} \text{ sec}^{-1} \text{ cm}^{-2}$
- New detector readout and full • software trigger at 40 MHz

RICH2 RICH1

Collect 50 fb⁻¹

to be upgraded

to be kept

FCAI

RICH2

Detector

→ New detector!

The SciFi tracker – unique in its kind

SCI F

Characteristics:

- Total of 12 layers, divided over 3 stations
 - 4 stereo layers per station (0°,+5°,-5°,0°)
- Covering a total area of 340 m²
- > 10.000 km of scintillating fibre
- Total of **524k** readout channels

Requirements:

- Hit efficiency ≈ 99%
- Hit resolution < 100 μ m
- Low material budget $X/X_0 \sim 1\%$ per layer
- Radiation tolerant:
 - 35 kGy near the beam pipe
 - Electronics: $6x10^{11} n_{eq}/cm^2 + 100 Gy$

Scintillating Fibres

Double-cladded round fibres Ø 250 μm (Kuraray SCSF-78MJ) used:

Light emission peak at \sim 450 nm

Attenuation Length of \sim 3.5 m

~300 photons/MIP

Trapping fraction of 5.3%, attenuation, and photon detection efficiency of SiPM:

 \rightarrow only **3-4 photo electrons** detected @ 240 cm for a single fibre

1.3 mm

Cross-section of a single detection layer (fibre mat) in SciFi

Tiny fibres making a large detector

Module: fibre mats + mirror

Cross-section of a single detection layer (fibre mat) in SciFi

Silicon Photomultipliers (SiPMs)

128 channel SiPM array [Hamamatsu MPPC S13552 – H2017] used:

- 128 channel array consist of 2 chips of 64 SiPMs.
- Each SiPM is composed out of 104 parallel Avalanche Photodiodes in Geiger-Mode (pixels)
- Pixel pitch size of 62 x 57 μm , p.d.e. of ${\sim}45\%$
- The 128 channel array is mounted onto a Kapton flex-PCb

The SciFi Tracker uses 4096 arrays → 524.000 SiPM channels

12

Cluster Board

Clusterization Algorithm & Zero-Suppression

Cluster Board

Clusterization Algorithm & Zero-Suppression

SiPM cooling introduces complex services

Cooling of SiPM is required maintain single photon detection capability over the detectors lifetime Due to radiation damage, the dark noise levels would to high after only ~5% of foreseen luminosity

- Monophase cooling liquid (C_6F_{14}) used at the moment
- Vacuum-insulated cooling lines
- 3D printed titanium hollow cold-bar for circulating the fluid to cool the SiPM arrays
- A dry gas is continuously flushed to minimize the humidity inside the coldbox
- Limited space for thermal insulation of coldbox, active heating used on outside

Services performance

- Systematic study carried out to map out correlations of the c-frame services
 - \rightarrow Results used to determine operational parameters

Measurements to determine the dewpoint inside the cold box as a function of the dry gas flow rate

Gas multiplexer for dew point measurements of the exhaust from the coldboxes

Scintiliating Fibre / SiPivi Interface

Dry gas outlet temperature vs heating power

Services performance

- Systematic study carried out to map out correlations on c-frame services
 - \rightarrow Results used to determine operational parameters
- Cooling plant proven to be very stable at a setpoint of -40 °C
 - ightarrow Upgrade ongoing to improve long term stability at a setpoint of -50 °C

Scintillating Fibre / SiPM interface

Connecting lines from the cooling plant to manifold

Time alignments

Coarse BX alignment – TAE runs: wrong events if misaligned

• Fine time alignment - fine time scans: efficiency drop if wrong

• Clock tuning in the digital readout chain: data-transmission problems if wrong

SciFi alignment per Module

Spatial alignment of SciFi required for better track quality

Using long tracks (SciFi + Velo) by the track-based alignment* procedure to improve:

- The number of reconstructed tracks (efficiency)
- The track quality
- *SciFi alignment per Module

Module: fibre mats + mirror

SciFi alignment per Mat

Spatial alignment of SciFi required for better track quality

Using long tracks (SciFi + Velo) by the track-based alignment** procedure to improve:

- The number of reconstructed tracks (efficiency)
- The track quality
- **SciFi alignment per Mat further improves the above, residuals < 0.02 mm

Module:

Physics performance

SciFi as a main tracker: \rightarrow Direct impact on signal mass resolutions

Charmed mesons:

LHCb-FIGURE-2023-011

Physics performance

SciFi as a main tracker: \rightarrow Direct impact on signal mass resolutions

From *pp* collisions :

From *pAr* and *pH* collisions :

Summary & Outlook

The SciFi Tracker has been under beam commissioning since April 2022:

- Functioning tracker for LHCb
- Physics signal mass resolution similar to MC expectations
- Lots of progress towards further optimizing its operation

Outlook:

- Since a couple of days, the LHC beam came back:
 - \rightarrow Finer optimizations on time/thresholds/position alignments
- Ready to take part in PbPb runs this fall
- LHCb detectors to run at Run 3 nominal instantaneous luminosity from next year

Baseline time per datalink

Beam scan data taken from isolated bunch crossings:

• TFC delayed time-step scan with 0.78 ns step size

Baseline time, t₀, define from assymetry:

- Asy = [O(i+1) O(i)]/[O(i+1) O(i)], t₀ defined a Asy = 0
- i present the current time window, O(i) the corresponding cluster occupancy

Timing stability

Deviation of t_0 (from asymmetry) among 4 runs (May 2023)

ightarrow Small intrinsic time resolution

Variation of t_0 over ~1 month (May 2023)

\rightarrow Variation of $\rm t_{0}\,{<}\,2$ ns and following the LHCb clock phase

LHCb-FIGURE-2023-016

LHCb-FIGURE-2023-016

Cluster distributions after time alignment

