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Abstract. The ATLAS experiment at CERN is one of the largest scientific
machines built to date and will have ever growing computing needs as the Large
Hadron Collider collects an increasingly larger volume of data over the next
20 years. ATLAS is conducting R&D projects on Amazon Web Services and
Google Cloud as complementary resources for distributed computing, focusing
on some of the key features of commercial clouds: lightweight operation,
elasticity and availability of multiple chip architectures.

The proof of concept phases have concluded with the cloud-native, vendor-
agnostic integration with the experiment’s data and workload management
frameworks. Google Cloud has been used to evaluate elastic batch computing,
ramping up ephemeral clusters of up to O(100k) cores to process tasks requiring
quick turnaround. Amazon Web Services has been exploited for the successful
physics validation of the Athena simulation software on ARM processors.

We have also set up an interactive facility for physics analysis allowing end-
users to spin up private, on-demand clusters for parallel computing with up
to 4000 cores, or run GPU enabled notebooks and jobs for machine learning
applications.

The success of the proof of concept phases has led to the extension of the
Google Cloud project, where ATLAS will study the total cost of ownership
of a production cloud site during 15 months with 10k cores on average, fully
integrated with distributed grid computing resources and continue the R&D
projects.
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1 ATLAS Cloud Projects: Leveraging Key Partnerships

The ATLAS experiment [1l], conceived several decades ago, was accompanied by the
development of its computing model to meet its unique needs. At that time, the IT landscape
was inadequate for its requirements. To overcome this challenge, ATLAS and the other LHC
experiments embarked on their own path and developed the Worldwide LHC Computing Grid
(WLCG) [2].

Since then, technology and the IT industry have rapidly advanced, leading to significant
changes in the landscape. Cloud computing has reached a level of maturity where it offers
substantial advantages. Today, some of the main motivations for investing in projects with
commercial cloud computing providers are:

1. Knowledge and technology transfer: Learning from the industry’s solutions to large-
scale computing problems.

2. Finding additional sources of computing power that can be utilized on a stable or
elastic basis.

3. Gaining access to architectures that are not readily available on-premise.

4. Minimizing efforts associated with infrastructure and maintenance.

Driven by these motivations, the ATLAS experiment has actively pursued various
research and development initiatives in cloud computing in the last ten years. In recent years,
ATLAS has conducted longer-term cloud computing initiatives, significantly improving the
integration of compute and storage [3]. This has been achieved through the adoption of a
cloud native approach that is not restricted to a particular cloud provider. The ability to run
fully fledged ATLAS sites in the cloud has expanded the scope of the cloud activities, which
will be the central focus of this article.

This article delves into two main projects undertaken in recent years, highlighting the
gained experience. The first project involved a fruitful collaboration with Amazon Web
Services (AWS), spanning from July 2020 to May 2023. The credits for this project were
acquired through California State University at Fresno.

The second project formed a stable relationship with Google Cloud Platform (GCP),
commencing around 2018. Engagements with the Google Cloud team have played a pivotal
role in shaping our cloud integration strategy. The most recent funding round with Google
Cloud covers the 15-month period from July 2022 to October 2023. During this time, ATLAS
entered into a “User Subscription Agreement for the US Public Sector”, allowing for a fixed
cost and flexible resource consumption model. The primary objective of this collaboration
with Google Cloud is to evaluate the feasibility and gain experience in running a fully-fledged
ATLAS site on the cloud. It is our aim to execute all ATLAS workloads, ideally replicating
a similar mix as found on other sites. Towards the end of the project, a whitepaper detailing
the Total Cost of Ownership is expected to be released. By leveraging these partnerships
with industry-leading cloud providers, ATLAS has successfully developed a comprehensive,
cloud-native integration model and implemented it at scale.

2 Cloud native integration

ATLAS Distributed Computing comprises two primary components responsible for the
centralized orchestration of data and jobs. The high-level integration model can be seen
in Figure[I]and will be described in the following subsections.

2.1 Storage integration through Rucio

Rucio [4] serves as the distributed data management system within ATLAS. Sites
participating in the project are required to provide Rucio Storage Elements, which store the
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Figure 1: Cloud integration elements

data local to each site and are utilized for job input/output operations. Storage and data
management have seen significant advancements in the realm of cloud computing. A pivotal
development has been the adoption of standard protocols, specifically HTTP, by Rucio and
the WLCG middleware.

In the cloud environment, the Rucio Storage Element is implemented as an Object Store
bucket [5]. Cloud storage platforms typically support the concept of Signed URLSs, which
enable authorized read, write, and delete operations on specific files for a predetermined
period. This is achieved by downloading a signing key that can generate signed HTTP URLs.
By incorporating the signing key into the Rucio and File Transfer Service (FTS [7/]]) servers,
essential functionalities such as download, upload, deletion, and third-party copy can be
implemented. These actions cater to the typical data access requirements within the ATLAS
project.

2.2 Compute integration through PanDA

PanDA [6] is the distributed workload management system used in ATLAS. Sites are
expected to provide a PanDA queue configured on top of their local batch system.

In the cloud context, compute integration within the ATLAS project relies on
Kubernetes [8] as a shared foundation for executing both batch and interactive workloads.
Leading cloud providers offer on-demand Kubernetes clusters that can be easily set up using
a few clicks or command line interactions.

The resource-facing component of PanDA, known as Harvester [9]], directly interfaces
with Kubernetes clusters [[10] and utilizes its native job controller for submitting batch jobs.
To resemble a grid worker node, the Kubernetes cluster is equipped with CVMFS [L1]], a
read-only file system that contains ATLAS physics and middleware software. This integration
allows a pod in Kubernetes to function as a virtual worker node within the grid infrastructure.

During the evaluation of workload management systems for the Vera Rubin experiment,
PanDA’s cloud readiness played a significant role in providing a competitive advantage. The
ability of PanDA to seamlessly integrate with cloud infrastructure, specifically the Google
Cloud interim data facility used by Vera Rubin, allowed for immediate utilization of the
resources.

Additionally, as a side project, novel interactive physics analysis techniques were
explored. By leveraging commonly available Helm charts [12], JupyterHub [13], Dask [14]



and Dask Gateway [15] can be installed on Kubernetes. This infrastructure enables
interactive, distributed, pythonic physics analysis and facilitates the utilization of machine
learning applications. It is important to note that this setup was primarily conducted for
research and development purposes and is not a standard component of the conventional
ATLAS site infrastructure.

3 Use cases and experience
3.1 ATLAS-Google Cloud site

The primary objective of the ongoing ATLAS-Google Cloud project is to operate an ATLAS
site, consisting of a Rucio Storage Element and a conventional PanDA queue utilizing x86
CPUs. ATLAS grid sites can vary significantly in size, with pledged grid sites ranging
from several hundred vCPUs to as large as 40000 vCPUs. Notably, there are exceptional
cases like the ATLAS trigger farm [16], which boasts 100000 vCPUs, and the Vega
SuperComputer [[17] in Slovenia, which often contributes a few hundred thousand vCPUs.

The ATLAS-Google Cloud site operates with a capacity of either 5 000 or 10000 vCPUs
(see Figure ), depending on the allocated budget. The PanDA queue configuration does
not impose any restrictions and is open to executing any ATLAS grid payloads. However, as
part of the Total Cost of Ownership (TCO) studies, specific job types have occasionally been
limited within the queue to investigate potential cost differences associated with varying I/O
profiles.

Since the start of operations, the ATLAS-Google Cloud site has experienced a 5% failure
rate in terms of wallclock time which amounts to around 240 000 failed jobs. This aligns with
the expected performance of ATLAS pledged resources. Several aspects should be taken into
consideration:

1. Increased failure rate during the initial weeks of the project: Configuring the
infrastructure optimally posed challenges during the early stages.

2. Spot instance-related failures: The queue has been utilizing Spot instances. Spot
instances [18] refer to virtual machine instances that are available at significantly reduced
prices, but can be preempted by the cloud provider at any point in time. Typically, spot
preemptions account for a fraction of job failures, but the frequency can increase during
periods of high cloud usage. Approximately 40 000 out of 240 000 failed jobs were attributed
to spot preemptions (non-exhaustive study, some cases could be missed).

3. Failure rate during Google Kubernetes Engine (GKE) cluster auto-upgrades: Failures
have been observed during the periodic auto-upgrades of the GKE cluster, where updates roll
through all nodes and result in the termination of running jobs. We relate approximately
10000 out of 240000 failed jobs to these upgrade events (again non-exhaustive study).
Optimization of the auto-upgrade configuration has not been attempted.

During the operation of our cloud site, an important observation has been the critical
reliance on high network usage and data replication for the experiment. Given the scale of
our site, substantial egress (data transfers out of the cloud) reaching several PB per month
is necessary. However, it’s worth noting that cloud egress is metered and can significantly
impact the monthly bill. As we approach the project’s completion, one of our key priorities
is to explore potential solutions to address this challenge. This may involve minimizing
the volume of egress or establishing an interconnect between Google Cloud and a research
provider to benefit from lower network fees.
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Figure 2: Size of the PanDA queue at Google Cloud and types of jobs executed

3.2 Elastic usage of cloud resources

One significant advantage of cloud computing is its elastic nature, allowing for the flexible
allocation of resources based on specific needs and timeframes. This stands in contrast to
the traditional ATLAS grid, where work is distributed throughout the year to avoid leaving
resources unused.

In the context of the Active Learning [19] use case, which involves the iterative generation
of Monte Carlo samples, it is essential to optimize the speed of each iteration, ideally within
a day. By executing Monte Carlo generation chains of varying sizes, we were able to scale up
a cluster to accommodate approximately 100000 slots (see Figure [3). This achievement is
noteworthy, considering that all resources operate within a single Kubernetes cluster, a single
Google Cloud availability zone, and can be managed by a single engineer. During the ramp-
up period, our resource capacity made us the second-largest contributor to ATLAS, surpassed
only by the contribution from the Vega Supercomputer.
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Figure 3: Size of the PanDA queue at Google Cloud during scaling exercise

3.3 Heterogeneous architectures

Traditionally, ATLAS computing has revolved around workloads that are well-suited for
parallel execution on x86 cores. Our computing infrastructure comprises hundreds of
thousands of x86 cores distributed worldwide. However, the outside world has been rapidly



advancing in machine learning applications, and certain countries have been heavily investing
in SuperComputers and High-Performance Computing (HPC) systems. These systems are
increasingly leveraging GPU architectures to maximize computational power within specified
power constraints. Furthermore, the CPU component of SuperComputers is becoming more
heterogeneous, featuring processors such as ARM or PowerPC.

3.3.1 GPU

For the majority of our current computing requirements, which consist of traditional
applications, there is no inherent need for GPU accelerators. Consequently, ATLAS sites
typically do not procure GPU cards specifically for ATLAS work. However, some sites
possess GPUs for research and development purposes or to cater to other experiments that
actively utilize GPUs. Presently, there are approximately 10 sites out of around 150 in the
ATLAS grid that offer GPUs, although the specific number of GPUs associated with each
queue remains uncertain to the authors.

ATLAS users who wish to utilize GPUs often face challenges in finding resources at the
scale they require. Similarly, it can be difficult to identify users with GPU-based applications
who are interested in participating in a project.

In collaboration with one user working on a new implementation of simulation-
based inference, we have partnered to address this issue. The user’s method relies
on large ensembles of deep neural networks to approximate the exact likelihood, with
additional neural networks employed to model systematic uncertainties in the measurements.
Practically, this analysis necessitates O(100) GPUs to achieve an acceptable turnaround time
for the user.

To accommodate this, we have established a PanDA queue with up to 200 NVIDIA T4
GPUs. The GPU nodes are provisioned on-demand, ensuring that no infrastructure costs are
incurred when no payloads are available. This PanDA queue currently represents the most
active GPU usage for ATLAS and has enabled analyses with a level of precision that would
have otherwise been unattainable without engaging in an exceedingly costly infrastructure
setup.

3.3.2 ARM

ARM processors have gained attention due to their increased power efficiency, offering
significant energy savings compared to traditional processors. This has led to the adoption
of ARM architecture in some SuperComputers. Additionally, some ATLAS grid sites
have expressed interest in utilizing ARM processors to reduce their electricity bills and
environmental impact. However, these sites are cautious and prefer to wait until the ATLAS
software has been built and validated for ARM before making any significant purchases.

In collaboration with the ATLAS software and ATLAS middleware installation teams
[20], we have successfully deployed the software baseline on CVMEFS. This allowed us to
set up an arm64 PanDA queue, which we scaled up to accommodate 2,500 vCPUs. With
this queue, we were able to execute the first-ever ATLAS arm64 tasks. Furthermore, the
physics validation for Athena [21]] Simulation and Reconstruction, two main components
of the ATLAS software, was successfully completed in September 2022 and March 2023,
respectively. Although this validation represents only a portion of the ATLAS Software,
it serves as an important milestone towards making ATLAS payloads compatible with
ARM processors. Moreover, this achievement encourages sites to consider adopting ARM
processors, as they can be confident in the readiness and viability of the ATLAS Software on
this architecture.



3.4 Interactive analysis with Jupyter and Dask

We have successfully deployed Jupyter and Dask on Google Cloud, providing users with an
interactive analysis environment. Notebooks are pre-configured with Dask plugins, and users
can easily create private clusters through Dask Gateway using a few lines of Python code.

We integrated the JupyterHub instance with ATLAS IAM, allowing any ATLAS user
to connect to the notebook server without the need for manual user management. We also
created two images that users can request when starting a notebook. The PHYSLITE and
columnar analysis environment image is commonly used with Dask for parallel processing in
Python, while the Machine Learning environment image contains popular ML software like
TensorFlow and its dependencies and is often used with GPU nodes.

Additionally, we optimized the setup to be cost-effective on Google Compute Engine.
Critical components are assigned to on-demand nodes that are not subject to preemption,
ensuring their stability. Dask Workers, on the other hand, are assigned to an autoscaled pool
of cheaper Spot nodes to reduce costs since the work can be repeated without impacting the
overall task. We also introduced the option to run notebooks on special nodes with dedicated
GPUs or 1.4 TB of memory.

The cloud environment is well-suited for this infrastructure due to its dynamic nature,
allowing users to evaluate Dask at various scales. Tests conducted by our users involved
clusters with up to 4 000 workers, which demonstrated that the duration of tasks decreased
proportionally to the number of workers. From a cost perspective, the overall cost remained
roughly the same, with some overhead when running a larger cluster.

The analysis detailed in section[3.3.1] was developed and tested on an ML notebook with
a GPU. It was later submitted in batch to hundreds of GPUs in parallel. Additionally, for this
specific use case, we provided the option to boot notebooks with 1.4 TB of memory for a
fitting step that required a significant amount of memory. This completed the self-contained
environment for users within our Google Cloud infrastructure.

4 Conclusions

ATLAS Distributed Computing has made significant strides in the cloud space, transitioning
from small-scale tests to large-scale, production environments. Along the way, we
have encountered challenges but have overcome them with innovative solutions. These
achievements have not only benefited the ATLAS cloud environment but also the entire
ATLAS community, providing additional computing resources for advanced research and
facilitating knowledge and technology transfer. Furthermore, many of the cloud technologies
and practices we have adopted are being implemented on-premises as well.

Our User Subscription Agreement with Google Cloud has allowed us to explore all
aspects of the cloud and gain valuable experience with cloud costs. Unlike in the grid
environment, where certain costs are hidden, the cloud environment provides detailed
metering of storage, compute, and network usage, including notable costs such as egress
charges. To mitigate these egress costs, one of our priorities for the remainder of the ATLAS-
Google Cloud project is to evaluate the possibility of establishing an interconnect between our
cloud infrastructure and ESnet [22], which will link us to all WLCG sites through LHCONE.
This interconnect would help reduce, though not eliminate, the egress cost.

Additionally, we are in the process of completing a Total Cost of Ownership study led by
independent collaborators. The conclusions of this study will guide the future direction of our
cloud projects and may provide insights into which activities are more cost-effective. Overall,
the ATLAS project’s journey in the cloud has been marked by challenges, achievements and
the pursuit of cost optimization. By leveraging the cloud’s capabilities and addressing its



associated costs, we are driving innovation and advancing the field of high-energy physics
computing.
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