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1 Introduction

It is well-known [1–3] that the tree-level equations of string cosmology in d spatial dimensions,
provided they possess d abelian isometries,1 are invariant under a continuous O(d, d) group
of transformations involving the spatial parts of the metric gµν and Kalb-Ramond tensor
Bµν , as well as the dilaton ϕ. Such a symmetry has been argued to hold only at tree level in
the string loop expansion but to all orders in the α′ expansion [5], a property that has been
explicitly checked up to O((α′)3) [6–8]. In the particular case in which Bµν is set to zero
(to which we limit our considerations in this paper), such a symmetry reduces to a discrete
Zd

2 scale-factor-duality (SFD) group together with time reversal T [9, 10]. In the strictly
isotropic case the symmetry is further reduced to the four-dimensional group ZSF D

2 ⊗ ZT
2 .

In a recent impressive paper, Hohm and Zwiebach (HZ) [11] have shown that, mod-
ulo field redefinitions and integrations by parts, the most general reduced (i.e. just time-
dependent) cosmological action takes a particularly simple and manifestly O(d, d)-invariant
form. For the case of an isotropic FLRW Universe the HZ action depends on just a single
even function F (H) of the Hubble parameter H(t). Further developments of the HZ approach
have been given in several subsequent papers [12–21].

In a very recent paper two of us [22] have reformulated in a Hamiltonian-like formalism
(see section 2 for more details) the HZ result, and have shown that this allows to characterise
in a simple way the conditions2 under which the field equations lead to regular cosmologies
smoothly connecting an initial phase of low-energy pre-big bang evolution to its SFD ⊗ T -
related post-big bang configuration. Under these conditions, the solutions (that can be

1The generalization to d′ abelian isometries with d′ < d has been discussed in [4].
2These conditions include the requirement that the HZ function F (H), describing the α′-corrected gravita-

tional Lagrangian density, is non-analytic in the complex-H plane, as expected [23] from the known coupling
between massless and massive string modes. The importance of a non-trivial branch-point structure in F (H)
has also been stressed in a recent application of this formalism to two-dimensional black holes [24].
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interpreted as a class of possible “string vacua”) rather than breaking (say in the isotropic
case) the original ZSF D

2 ⊗ ZT
2 symmetry down to nothing (which is the case at lowest order

in α′, whereby four distinct solutions are generated by the symmetry group [25]), are instead
invariant under a diagonal Z2 subgroup, connecting just pairs of duality-related solutions.
As a very special case it was easy to recover the regular bouncing solution found by a trial
and error procedure in [26, 27].

Resolving the curvature singularity separating the pre- and post-bounce phases would
remove, of course, one of the most important obstacles facing the pre-big bang scenario.
However, as widely discussed for instance in [28, 29], there are obvious theoretical and phe-
nomenological shortcomings with a naive cosmology connecting the two SFD ⊗ T -related
solutions.

One of these is related to the choice of initial conditions: in a typical pre-bounce solution
both curvature and string coupling (g2

s = eϕ) grow. Let us recall, for instance, that in a d-
dimensional isotropic cosmology the initial time evolution of the dilaton and of the Hubble
parameter H is given by

ϕ ∼ −
(
1 +

√
d
)

ln(−t), H = 1√
d (−t)

, t → −∞ , (1.1)

so that both coupling and curvature go to zero in the far past (t → −∞). This led [30] to
invoke a principle of “Asymptotic Past Triviality” governing the Universe’s initial conditions.
Indeed, it was argued in [30] (see also [31]) that generic (i.e. inhomogeneous and anisotropic)
solutions becoming asymptotically trivial in the far past would be affected, as time grows, by
gravitational instabilities leading, chaotically, to the formation of different trapped surfaces
in different parts of the Universe, with a stochastic distribution of values for both curvature
and string-coupling and a singularity in the future. Inside each trapped surface the geometry
would become increasingly “velocity dominated” (i.e. with sub-dominant spatial gradients)
as one approaches the singularity, and akin to the homogeneous solutions we have discussed
above for the pre-bounce phase.

Thus, in different parts of the Universe, different realisations of the pre-big bang initial
conditions will be effectively generated with a whole spectrum of small initial curvatures and
couplings.3 Regions with sufficiently small initial curvature and coupling would then lead
to a long phase of dilaton-driven inflation, as described by eq. (1.1). In other words, the
principle of Asymptotic Past Triviality justifies our assumptions on the “initial” evolution of
the homogeneous solutions, while allowing a whole spectrum of initial data (such a principle,
by the way, is also needed for phenomenological reasons [32]). In this paper we will restrict
our attention to cosmologies satisfying this “Asymptotic Past Triviality” requirement.

Turning now to the late time duality-related solution, however, this would pose serious
problems if it could be trusted. In fact, at late times the dual solution to (1.1) is given by:

ϕ ∼
(√

d − 1
)

ln(t), H = 1√
d t

, t → +∞ , (1.2)

so that the curvature goes to zero also in the far future but the coupling, instead, blows
up. That means that, while we could trust the tree-level, low-curvature approximation in
the far past, we cannot do the same in the future even if a regular bounce induced by

3This is due to the presence of two classical symmetries resulting in as many arbitrary integration con-
stants [30].
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the α′ corrections copes with the high-curvature intermediate phase. Even if the coupling
decreases during the short-lived bounce (as it indeed happens in the solutions discussed
in [22]), eventually it will increase without limits implying that string loop corrections –and
even non-pertubative effects– will eventually come into play (when exactly depends of course
on the initial data).

These corrections break the duality symmetry, making the post-bounce evolution quite
unlike its pre-bounce counterpart. Two important consequences come immediately to mind:
i) the generation of a non-trivial dilaton potential, and ii) the turning on of cosmological
perturbations and particle production. A third one, more typical of string theory, is the
possible stabilization of the extra spatial dimensions (in which strings necessarily live) and
the isotropisation of our three-dimensional space.

In this paper we move a first step in the direction of addressing these important problems
by considering, on top of the α′ corrections, the effects of a non-perturbative dilaton potential
V (ϕ). We shall discuss, via both numerical and analytical methods, under which conditions
these effects result in a stabilisation of the dilaton and in new kinds of interesting cosmologies
at late times. It should be recalled, in this context, that the unavoidable presence of a non
perturbative potential in a scenario with growing dilaton, and its possible stabilisation effects
on both the curvature and the string coupling, were considered also in previous papers (see
e.g. [33–36] and references therein). In that case, however, the higher order α′ corrections
were missing, and the conclusion was that there was no stable fixed point with frozen dilaton
towards which a background starting from the string vacuum could be attracted. Here we will
show how such a conclusion may change if we work with the HZ-modified string cosmology
equations.

The rest of the paper is organized as follows: in section 2 we generalize the approach
of [22] by including a non vanishing dilaton potential. We will also make more precise the
meaning of the “Hamiltonian” reformulation introduced in [22] by connecting it to the so-
called Routhian approach to dynamical systems in classical mechanics [37]. In section 3 we
shall discuss, for the duality-invariant case with V (ϕ) = 0, some general properties of regular
isotropic bouncing solutions, extending the results of [22] to more complicated evolutions,
and arguing that they all belong to the same topological class of background geometries.
In section 4, we will consider the effects of a dilaton potential in the isotropic case. We
first discuss (subsection 4.1) the case of a potential with a local minimum V0 = 0 and
show that, under suitable initial conditions given in the regime of low-curvature pre-big
bang inflation, there are regular solutions which, after the bounce, asymptotically approach
a FLRW attractor of matter-dominated type with a stabilized dilaton. We then consider
(subsection 4.2) the case of V0 > 0, in which similar initial pre-big bang conditions lead again
to late-time dilaton stabilisation, but with an associated geometry describing a de Sitter
inflationary phase (in both the String and Einstein frames because of dilaton’s stabilization).
In section 4.3 we discuss the range of initial conditions compatible with these final attractors.
In section 5 we extend our considerations to the anisotropic case showing that late time
attractors with a constant dilaton (and both V0 = 0 and V0 > 0), when they exist, must be
isotropic. Section 6 summarizes our results and offers some concluding remarks. Finally, in
appendix A, we present an example of solution in which the initial perturbative evolution
ends up, at late times, in its time-reversed counterpart.
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2 Basic equations in a Routhian formalism

We shall write our equations in terms of the background fields defined in the so-called String
frame (see e.g. [28, 29]), in which the O(d, d) symmetry is manifest. Limiting ourselves to
the gravi-dilaton system with time-dependent field variables {ϕ, gµν} and a d-dimensional
spatially flat (but possibly anisotropic) spatial metric, we thus set ϕ = ϕ(t), g00 = N2(t),
gij = −δija2

i (t), where ai = eβi .
In such a case, by using the convenient “shifted dilaton” variable, defined by

ϕ = ϕ −
∑

i

βi, (2.1)

the effective action for the string cosmology equations, including higher-curvature string
corrections to all orders in α′, as well as a non-perturbative dilaton potential V (ϕ), can be
written, slightly extending [11], as:

S ≡
∫

dtL = −1
2

∫
dt Ne−ϕ

[
N−2 ϕ̇

2
+ F

(
N−1β̇i

)
+ 2 (α′)(d−1)/2V (ϕ)

]
,

F = −N−2∑ β̇2
i + O(α′) + . . . , (2.2)

where the dot denotes time derivatives.4 Here N−1β̇i = Hi is the ith-Hubble parameter, and
the function F (Hi) in the isotropic case reduces to the function introduced in [11]: it can be
written as an infinite (and not necessarily convergent) series of even powers of the Hubble
parameter, and includes, in principle, the all-order α′ corrections predicted by a given string
model.5 Note that, in order to keep the usual dimensions for V , and to make it appear in the
action with the same dimensions as the kinetic terms, we have multiplied V by (α′)(d−1)/2.
In the following, when α′ is not explicitly written, we shall be using units in which α′ = 1.

By varying the action (2.2) with respect to N , βi and ϕ, and defining fi = ∂F/∂Hi, we
obtain the following Euler-Lagrange equations in the cosmic-time gauge N = 1:

ϕ̇
2

= F −
∑

i

fi Hi + 2 V, ḟi = fi ϕ̇ + 2∂V

∂ϕ
, 2 ϕ̈ = −

∑
i

fiHi + 2∂V

∂ϕ
. (2.3)

To zeroth order in α′ one has F = −
∑

H2
i , and recovers the well known (see e.g. [28, 29])

tree-level low-curvature string cosmology equations.
In such a context, for any given function F (Hi) we have a corresponding scenario of

string cosmology evolution. However, as shown in [22], the models characterized by a reg-
ular bouncing transition, and describing a smooth evolution from the pre- to the post-big
bang phase, must correspond to non-holomorphic functions F (Hi) that satisfy, on top, quite
complicated equations. To select such models it is better to work with the inverse functions
Hi(fj), which gives the Hubble parameters Hi as a power series in fj = ∂F/∂Hj .

To this purpose, as shown in [22], one can conveniently adopt a “partial Hamiltonian”
approach to the action (2.2) (also known as Routhian approach in a classical mechanics

4Note that, besides the presence of V , there is also an overall factor (−1/2) w.r.t. the action used in
ref. [22].

5These are only known, unfortunately, at a relatively low order. In the spirit of the pre-big bang scenario
we have not included a string-scale-size “cosmological constant” which arises in non critical dimensions (e.g.
for d ̸= dc = 9 for the superstring) by simply assuming that (dc − d) compact dimensions are flat and frozen
at the string length scale.
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context, see e.g. [37]), and perform a Legendre transformation on just a subset of the original
coordinates N, ϕ, βi, in our case on just the latter d Lagrangian coordinates βi. Denoting by
πi the momentum conjugate to βi one defines:

πi = ∂L

∂β̇i

= −1
2e−ϕ ∂F

∂Hi
= −1

2e−ϕfi ≡ e−ϕzi, (2.4)

where we have introduced, for later use, the more useful rescaled momenta zi = −fi/2. The
associated Legendre transformation defines the so-called Routhian R(N, ϕ, πi)

R(N, ϕ, πi) =
∑

i

πi β̇i − L = Ne−ϕ

[
1
2N−2 ϕ̇

2
+ 1

2

(
F −

∑
i

β̇i
∂F

∂β̇i

)
+ V

(
ϕ +

∑
i

βi

)]
,

∂R
∂πi

= β̇i , (2.5)

where the latter equation is to be used to express β̇i in terms of the πi. Introducing, as
in [22], a reduced “Hamiltonian” h(zi), the above two equations can be rewritten as

R(N, ϕ, πi) = Ne−ϕ

[
1
2N−2ϕ̇

2
+ h(zi) + V

(
ϕ +

∑
i

βi

)]
,

h(zi) ≡ 1
2

(
F −

∑
i

β̇i
∂F

∂β̇i

)
= 1

2
∑

z2
i + O(α′) + . . . ,

∂h

∂zi
= Hi . (2.6)

Note that the last equation for Hi = N−1β̇i basically inverts the functions fi = fi(Hj), giving
Hi = Hi(zj) = Hi(−1

2fj).
Hence, in this new context, a given model is specified by the choice of h(zi) and of V (ϕ),

and equations (2.3) can be rewritten in Routhian language as a combination of the Euler-
Lagrange equations for N and ϕ and the Hamilton equations for βi, πi, namely ∂R/∂πi =
β̇i , ∂R/∂βi = −π̇i. Using (2.4), and after setting at the end N = 1, these equations can be
finally rewritten in terms of zi as:

ϕ̇
2

= 2 h(zi) + 2V, żi = zi ϕ̇ − ∂V

∂ϕ
, ϕ̈ =

∑
i

zi
∂h

∂zi
+ ∂V

∂ϕ
, (2.7)

where, as usual, the first equation (the Hamiltonian constraint) together with the second
set imply the last equation. These are the equivalent of equations (2.3) in the Routhian
formalism.

Later in the paper we shall deal with cases in which some of the scale factors coincide.
In these cases it is more convenient to deal with just the subset of distinct scale factors.
Let us consider, as the simplest example, the fully isotropic case, βi = β. We can easily go
over from a given model specified by the function F

(
N−1β̇i

)
to the isotropic case by defining

F
(
N−1β̇

)
≡ F

(
N−1β̇i = N−1β̇

)
. Note, however, that when going to the Routhian written in

terms of the momenta π congiugate to β, we get π = ∑d
i=1 πi → dπ1 (where we just picked

one representative πi). The relation:
H = ∂R

∂π
(2.8)

remains of course valid since it is an immediate consequence of the definition of R. However,
it is now more convenient (although not necessary) to define

z ≡ 1
d

eϕπ = − f

2d
, (2.9)

– 5 –
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so that z and H coincide to leading order in the α′ expansion Equation (2.8) thus becomes:

h(z) = d

2z2 + O(α′) + . . . ; H(z) = 1
d

∂h(z)
∂z

= z + O(α′) + . . . , (2.10)

which can be used, if necessary, to reconstruct h(z) from H(z). For later use let us rewrite
the Routhian equations (2.7) in the present case:

ϕ̇
2

= 2 h(z) + 2 V, ż = z ϕ̇ − ∂V

∂ϕ
, ϕ̈ = z

∂h

∂z
+ ∂V

∂ϕ
. (2.11)

Generalization of the above procedure to the case discussed in section 5 in which βi =
β for i = 1, . . . , d and βi = β̃ for i = d + 1, . . . , d + n is straightforward. The general
equations (2.7), (2.11) will be the starting point of our subsequent discussion.

3 More on regular isotropic bouncing solutions with V ≡ 0

In this section we shall recall a few results concerning exact bouncing solutions of eqs. (2.11)
with α′ corrections but without dilaton potential, and describing the smooth evolution of
a d + 1-dimensional isotropic background from the initial regime of eq. (1.1) to the final,
duality-related post-big bang regime of eq. (1.2).

We will show, in particular, that the curvature bounce illustrated in [22] can be imple-
mented also in a generalised (and highly non-trivial) way like, for instance, through a phase
of oscillating background curvature. However, all possible types of bouncing backgrounds
obtained in this context, irrespectively of their (possibly) complicated kinematics, always
belong to the same topological class in a sense defined below.

Let us first recall that, as discussed in [22] for the V = 0 case, the possible existence of
regular bouncing solutions is controlled by the analytic properties of the function h(z) and
its associated “companion” in eq. (2.10), H(z) = −H(−z) = (1/d)(∂h/∂z). For a regular
bounce to occur we must require that h(z), which grows from zero to positive values for
z ≪ 1, exhibits a second zero at z = z2 (and, of course, also at z = −z2). Assuming h(z) to
be continuous and differentiable, this implies that H(z) itself vanishes at (at least) one point
z0 < z2 and to have local extrema at various points (z1, . . . ) in that interval.

Simple examples satisfying such conditions (like, for instance, h(z) ∼ (1/2)z2 [1 − z2/2
]
)

have been considered and discussed in [22]. There is also, however, the possibility of more
complicated models6 described by a function H(z) which has several extrema (or zeros) in
the range {0, |z2|}. Consider, for instance, the model described by the following effective
Hamiltonian:

h(z)
d

= 1 − cos z − 2 ϵ

9 π2

[
1 +

(
z2

2 − 1
)

cos z − z sin z

]
, (3.1)

which gives, via (2.10)

H(z) = sin z

[
1 + ϵ

(
z

3π

)2
]

. (3.2)

By assuming ϵ < 0, and using the constraint ϕ̇ = ±
√

2h following from eqs. (2.11) without
dilaton potential, we can then obtain the corresponding model of regular bounce illustrated
in the plane {ϕ̇(z),

√
dH(z)} by the parametric plot of figure 1.

6Some of these models can be excluded a priori by being impossible to realise in string theory. These
includes models in which, at intermediate times or near the bounce, the solution enters the perturbative
region in a way incompatible with the known perturbative effective action.
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z
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-1

1

2

H(z)

expanding pre-big bangexpanding post-big bang

-4 -2 2 4
ϕ


-2

-1

1

2

d H

Figure 1. Left: the blue curve is the function H(z) of eq. (3.2) for d = 3 and ϵ = −0.5. Along a
given branch, positive or negative, the total shaded area subtended by the curve vanishes. Right: the
red curve describes the parametric plot of a numerical solution of eqs. (2.11) for the previous H(z)
and for V (ϕ) = 0. The black dashed bisecting lines (satsfying the condition ϕ̇ = ±

√
dH) represent

the asymptotic regimes of initial low-energy expansion from the string vacuum, and final, post-big
bang, decelerated expansion.

The left panel of figure 1 is the plot of the curve H(z). The zeros of H correspond to
the values of z at which the curve intersects the horizontal axis, such as ±z0 positions of the
points z0, the extrema of H to maxima and minima such as ±z1. The shaded area subtended
by the curve, for both the positive and the negative range of z, vanishes, such that the points
±z2 marking the end of the shaded region correspond to the intersection of the curve with
the vertical axis. Also, the contribution of ϵ introduces a modulation of the peaks which
leads to a series of alternated local minima and maxima.

This last property is present also in the parametric plot of the right panel, producing a
series of points where |H| reaches a local maximum or a zero (corresponding to a transition
from expansion to contraction or viceversa), even for ϕ̇ non-vanishing. The existence of these
peculiar points leads to the “vortex-like” red curve of figure 1. Note that the turning points
of the parametric curves around H = 0 and | ˙̄ϕ| ≃ 2.25 are smooth, even though they might
look cusps: this is only due to the overall size of the plot. It should be stressed, finally, that
for ϵ → 0 the “bottom” of the red curve, corresponding to the point ϕ̇ = 0 which formally
marks the transition from the pre- to the post-big bang regime (i.e. from the right to the left
sector of the parametric plane), tends to approximate the origin from below, H → 0−. In
that case one would just recover an example of the cases mentioned in the previous footnote
6, as the solution would follow a low energy trajectory incompatible with the perturbative
string cosmology equations.

The given example clearly displays the possibility of regular bouncing scenarios de-
scribed by solutions which are always self-dual in the absence of a dilaton potential, but
which may be characterised by a high-energy string phase with rapidly oscillating Hubble
parameter, implying sudden (but smooth) transitions connecting expanding ↔ contracting
geometries.

Hence, in this general context, the word “bounce” in no way should be interpreted as
meaning a localised transition from initial contraction to final expansion. More appropriately,
with the word “bounce” we mainly refer in this paper to the absolute value of the curvature
scale, occurring during a possibly extended (in string units) epoch needed to convert the ini-
tially accelerated, growing curvature expansion to the final decelerated, decreasing curvature
expansion.

– 7 –
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The class of solutions compatible with this scenario in principle is large, and controlled
by the analytical properties of h(z) (whose correct expression should be provided by string
theory). However (in the absence of a dilaton potential), all such solutions are topologically
equivalent with respect to the following geometric property of the curve describing the given
solution in the parametric plot of figure 1: the vector connecting the origin to a point on the
curve undergoes a clockwise rotation of 3π/2 as one goes from the beginning to the end of
the curve. The same is true for solutions smoothly connecting a contracting initial phase to
the related final contracting one. The only difference is that the initial and final parts of the
curve lay in the bottom-left and bottom-right sectors of the plane, respectively, and thus (as
already noted in [22]) the rotation occurs in the anticlockwise direction.

4 Regular isotropic bouncing solutions and dilaton stabilisation with V ̸=0

As discussed in the introduction a tree-level string cosmology, even if it implements a regular
bounce, cannot be realistic. As a first step towards making the model more realistic let
us now include into the effective string cosmology equations the contributions of a non-
perturbative dilaton potential V (ϕ), which goes to zero in the small coupling limit g2

s → 0
(t → −∞) with an instanton-like suppression of the type V ∼ e−const/g2

s , and which becomes
non-negligible in the opposite large time limit, thus breaking the duality symmetry and
modifying the final, post-bounce asymptotic configuration. We may expect, in this way, not
only a modified dilaton dynamics but also a modified final evolution of the cosmic geometry
(no longer necessarily duality-related to that of the initial low-energy solution).

We are interested, in particular, in a “realistic” post-bounce scenario with the dilaton
stabilized at a final constant value ϕ0 such that g2

s(ϕ0) = eϕ0 <∼ 1, and in which the asymptotic
solution can approach the phase of standard cosmological evolution described by the Einstein
gravitational dynamics (with no need of string loops and/or α′ corrections). We shall thus
consider an effective dilaton potential which has a local minimum V = V0, needed to stabilise
the dilaton, and which can be parametrised in a phenomenological way (and in units α′ = 1)
as follows:

V (ϕ) = A e−B(ϕ)/β
[(

c2 − B(ϕ)
)2

+ δB(ϕ)
] [

1 − q B−1(ϕ)
]

, (4.1)

where
B(ϕ) = 1 + α g2

s

α g2
s

= 1 + α eϕ

α eϕ
, (4.2)

and where A, c, α, β, δ and q are constant parameters controlling various features of V .
In particular, A (together with c) controls the overall magnitude of the potential; B is

some kind of inverse ’t Hooft coupling, λ−1
t , in the weak coupling limit (with α ∼ Nc, the

number of colors) while it approaches from above a finite value, here conventionally set to
one, in the strong-bare-coupling limit.7

In the presence of a local minimum of V at ϕ = ϕm, the parameter δ controls V0 ≡ V (ϕm)
i.e. V0 is non-vanishing if and only if δ is non-vanishing (as illustrated in figure 2). The position

7This is the idea of the dilaton runaway scenario [38] (see also [39, 40] for its possible observable conse-
quences) which is based on the assumption [41] that the limit ϕ → +∞ is non singular and characterized by
finite (and perhaps realistic) values for both the gauge and gravitational coupling (in string units). However,
our simple description of that regime (through the relation between B and ϕ) is over-simplistic since it ignores
the fact that loop corrections, besides generating a non trivial potential, will also modify the whole kinetic part
of the action [38]. This, in turn, would make the passage from the S-frame to the E-frame more complicated
than in the perturbative regime.
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Figure 2. The red curves show an example of dilaton potential asymptotically approaching the
maximum at large ϕ values, and obtained from (4.1) with q = 0. The black curves show an example
of “runaway” potential, asymptotically going to zero for q = 1 and stabilising to a non-vanishing
constant value for 0 < q < 1. Solid curves are plotted with δ > 0, and are characterised by a local
minimum V0 > 0. Dotted curves correspond to the same potential plotted however for δ = 0, and
with a local minimum V0 = 0. All curves are plotted for c = 2, α = 10. We have used A = 0.22,
β = 3.5 for the red curves, and A = 1, β = 2.5 for the black curves.

ϕm of the local minimum, if present, is mainly controlled by c and α, while the parameter
β mainly controls the height of the first potential peak. Also, the asymptotic behaviour
of V (ϕ) at large positive values of ϕ depends on the parameter q: for q ≤ 0 the potential
approaches there its maximal constant value; for 0 < q < 1 the potential approaches from
above a non-vanishing positive constant.8 Finally, for q = 1 the potential is asymptotically
vanishing thereby realizing the so-called “dilaton runaway scenario” of [38] (see also [39, 40]).
Figure 2 gives a simple qualitative illustration of the various possible cases.

The specific “shape” and the amplitude of the potential strongly depend on the numer-
ical values of the various phenomenological parameters, and the values used in figure 2 have
been chosen mainly for the purpose of a clear graphical illustration of the possible differ-
ences. What is important to stress is that, depending on the values of such parameters (and
on the initial conditions which identify the particular background whose evolution we are
following from the asymptotic, low-energy regime), the potential may significantly affect the
background evolution not only during the bounce, but also, and most important, in the final
asymptotic post-bouncing regime. In addition, as we shall see below, the dilaton’s evolution
is best understood in the E-frame, in which it behaves like a minimally coupled scalar, while
the potential in (4.1) refers to the S-frame. We stress again that the well known connection
between the two frames in the perturbative regime can be strongly modified at large positive
ϕ in the runaway scenario of [38]. This being said we may expect, in general, three possible
late-time dilaton evolutions.

The first case is the one in which the potential is unable to substantially modify the
overall dilaton evolution: the dilaton keeps monotonically growing both before and after the
bounce, and (with the appropriate model of α′ corrections) we recover a regular transition
from the expanding pre- to post-bang regime like in the cases with no potential (see [22] and
section 3). This will typically happen if the overall scale A of the potential is small enough

8Such a constant is negative if q > 1, but since in this paper we are mainly interested in a scenario where
the dilaton growth is trapped by the potential (see below) without reaching the large ϕ regime, it will be
enough to concentrate our discussion on the range 0 ≤ q ≤ 1.
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as compared to the value of H and ϕ̇ when the dilaton is in the region of sizeable potential.
Describing the late time physics corresponding to that case is not simple and will depend on
whether the Einstein-frame potential falls asymptotically to zero, to a positive constant, or
even grows indefinitely. Since the passage to the E-frame is not simple at large bare coupling,
we shall postpone this case to some future work.

The second case is the one in which the potential is high enough to stop the growth
of dilaton, and the dilaton bounces back towards the small coupling regime, monotonically
approaching the asymptotic limit ϕ → −∞: in that case the final background configuration
after the bounce is exactly the time-reversed of the initial one, thus implementing a (new type
of) regular bounce from expanding pre- to contracting post-bang regimes (see appendix A).

Finally, the third (and phenomenologically most interesting) case is the one in which
the dilaton gets trapped in the local minimum of the potential. The rest of this paper will be
devoted to illustrate and discuss this last possibility, which has three important consequences.
With an appropriate choice of the parameters of eq. (4.1), the potential can produce i) the
stabilisation of the dilaton at a final asymptotic value ϕ = ϕ0 = const; ii) a final evolution of
the metric of standard type, corresponding to a dust-dominated FLRW geometry if V (ϕ0) = 0
or to a de Sitter geometry if V (ϕ0) > 0; iii) the isotropisation of the final geometry if we
start from anisotropic initial conditions. The first and second effects will be studied in this
section, where we will concentrate on the case of an isotropic scenario. The isotropisation
phenomenon will be discussed in section 5.

4.1 FLRW attractors for a local minimum V0 = 0
For a first illustration of the dilaton stabilisation mechanism we will start considering an ini-
tially expanding (d + 1)-dimensional isotropic background geometry, asymptotically evolving
from the string perturbative vacuum according to eqs. (2.7), and a dilaton potential given by
eq. (4.1) with δ = 0 (such that V = 0 at the local minimum ϕ = ϕm, see the dotted curves
of figure 2).

Also, to stress the differences induced by the potential on the evolution of the back-
ground geometry, let us directly present a numerical integration for the same model of α′

corrections producing the regular bounce first derived in [26]. As shown in [22], such a model
provides a regular solution of the Lagrangian equations (2.3) corresponding to the inverse
HZ function H(f) given by

H(f) = − f

2 d
+ α′

(
f

2 d

)3
. (4.3)

Adopting the Hamiltonian formalism for isotropic backgrounds, and using in particular
eqs. (2.10) (recalling that in the isotropic case, z = −(f/2d)), we obtain that the above
model is described by the effective Hamiltonian9

h(z) = d

2

(
z2 − α′ z

4

2

)
, (4.4)

where, unlike in the previous paper [22], we will use units in which α′ = 1.
Starting with this result, we can now easily provide a qualitative illustration of the

dilaton stabilisation (and of the related effects) produced by the potential by performing
a numerical integration of eqs. (2.11), for any given model of potential specified by the

9The expression given in eq. (4.4) matches, up to the first α′ correction, the expression of F (H) for the
heterotic string [8].
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Figure 3. The red curve describes the parametric plot of a numerical solution of eq. (2.7), with
the potential (4.1) and the Hamiltonian (4.4). We have set d = 3 and α′ = 1 for the Hamiltonian,
A = 0.1, α = 10, β = 3, c = 2, δ = 0, q = 1 for the potential, and ϕ = −3.5, z = 0.01 for the initial
conditions. The black dashed half-line corresponds to the initial trajectory evolving from the string
perturbative vacuum and described by eq. (1.1).

parameters of eq. (4.1). We shall consider, to this purpose, a simple example of runaway
potential with q = 1, but the results we are presenting can be reproduced for other classes
of potentials with 0 ≤ q < 1, and with different asymptotic behaviour (see figure 2). It
should be stressed, however, that the value of q (and of other parameters) may be relevant
to define the region of initial conditions compatible with the attraction to the final regime
with stabilised dilaton, as we shall discuss in section 4.3.

We shall impose on our initial conditions, fixed in the region where the dilaton potential
(and the α′ corrections) are still negligible, to satisfy the low energy pre-big bang equations
ϕ̇ =

√
dH. The numerical solution we obtain, with appropriate (small enough) values of

the initial condition for ϕ and z, gives then the results illustrated by the parametric plot
of figure 3. As already stressed we have chosen a potential with δ = 0 and q = 1, and the
numerical values of the other parameters are specified in the caption of the figure.

Note that we find again a regular bounce, described by a smooth curve turning clockwise
in the plane of the figure (as repeatedly stressed in [22]). With respect to the case without
potential, however, the curve describes a “deformed heart-like” path (no longer symmetric
with respect to the vertical axes), and we have two types of deformations. A first deformation
occurs in the pre-bounce regime (the upper right quadrant of the figure), where the effects of
the potential first come into play (together with those of the α′ corrections). The physically
more significant deformation occurs however in the final, post-bounce regime (upper left quad-
rant), corresponding to a drastic change of the dilaton dynamics because of its trapping in the
potential minimum. The produced result is an oscillating final regime, as shown in figure 3.

The final asymptotic effect of dilaton stabilisation and background oscillations can be
explicitly illustrated also by plotting the time behaviour of the numerical solution for H(t)
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Figure 4. Time evolution of H (red curve) and ϕ (black curve) for the same numerical solution of
figure 3. The black dashed curve describes the (unbounded) growth of the Hubble parameter for the
low-energy pre-big bang solution of eq. (1.1).

and ϕ(t). The result, shown in figure 4, again emphasises the differences between the initial
and final regimes which (because of the potential) are no longer duality related.

The dilaton stabilisation and oscillation effects are even more evident if we consider
the parametric plot of H = H(ϕ), or its 3d-version (i.e. the same parametric plot expanded
as a function of time). Limiting our attention to the final, post-bounce regime we obtain
the results shown, respectively, by the left and right sectors of figure 5. They clearly show
that the oscillating background approaches an oscillating regime where the dilaton asymp-
totically reaches a final (constant, non vanishing) value ϕ0 < 0, and the Hubble parameter
is asymptotically decreasing to zero.

To obtain a more precise information on the type of final geometry and show, in partic-
ular, that it describes a phase of standard (FLRW type) evolution (and not a post-big bang
evolution of the string cosmology type), it is convenient to discuss the analytical solutions of
eq. (2.11) in the late-time regime where the final asymptotic value of the dilaton ϕ0 coincides
with the position of the local minimum ϕ0 = ϕm, the trapped dilaton is oscillating around
ϕm, and the potential can be approximated in functional form as:

V (ϕ) ≃ 1
2m2 (ϕ − ϕm)2 . (4.5)

If the potential (4.1) has a local minimum, and if δ = 0, then the minimum V0 = 0 is
located at ϕm = − ln[α(c2 − 1)]. In such a case, by expanding V (ϕ) up to second order
around ϕm, we can also find the value of m2 in terms of the other parameters, and we obtain
m2 = (2A/c2)(c2 − q)(c2 − 1)2 exp(−c2/β).

We also note that, at late enough times (depending on the given initial conditions), the
curvature scale is small enough (in units α′) so that the higher order α′ corrections can be
neglected. With these approximations, the equations (2.11) can be rewritten as

(
ϕ̇ − d H

)2
= d H2 + m2 (ϕ − ϕm)2 ,

Ḣ = H
(
ϕ̇ − d H

)
− m2 (ϕ − ϕm) ,

ϕ̈ = d Ḣ + d H2 + m2 (ϕ − ϕm) . (4.6)
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Figure 5. Left: two dimensional parametric plot of H = H(ϕ). Right: its three-dimensional version
with explicit time evolution, H(t) = H[ϕ(t)], for the numerical solution of figure 3. In the three-
dimensional plot the variables H and ϕ have been multiplied by 103 for a better graphic illustration
of the damped oscillations regime.

Looking for oscillating solutions, compatible with the asymptotic limit ϕ = ϕ0 = ϕm and
H = 0 for t → +∞, we set:

ϕ(t) − ϕ0 ≃ M

tγ
sin(ωt + θ) (4.7)

(where θ is an arbitrary phase parameter), and we find that the above equations (4.6) are
satisfied, to leading order in 1/tγ , provided that γ = 1, ω = m

√
d − 1, and

H(t) = 1
t

Mω√
d (d − 1)

[
1 +

√
d cos(ωt + θ)

]
. (4.8)

Finally, by expanding our solution for small values of M and Ṁ/Mω, we find at the first sub-
leading order that Mω ≃ 2(d − 1)/

√
d, and that our asymptotic solution can be written as:

ϕ(t) = ϕ0 + 2(d − 1)
t ω

√
d

sin(ωt + θ),

H(t) = 2
t d

[
1 +

√
d cos(ωt + θ)

]
. (4.9)

We have checked that the percent difference between these analytical expressions and the
previously presented numerical solutions is very small ( <∼ 10−7) at large times.

Note that the time-averaged behaviour of the geometry gives ⟨H⟩ ≃ (2/d)t−1, cor-
responding to a scale factor a(t) ∼ t2/d, which exactly reproduces the time evolution of a
standard, dust-dominated, FLRW cosmology. The role of the effective dust fluid, in this case,
is played by the oscillating dilaton, which produces a phase of final post-bounce evolution
very similar to the dust-like phase of post-big bang evolution dominated by the oscillations
of the Kalb-Ramond axion (see e.g. [42, 43]).
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What may look surprising, however, is that the oscillations in (4.9) have a large and
constant amplitude (relative to the non-oscillating term) forcing H(t) take both positive and
negative values.10 This is due to the fact that, as already mentioned, the dilaton does not
behave in the string frame as a minimally coupled scalar. On the other hand, we might have
expected that the stabilisation of the dilaton leads to the asymptotic identification of the S
and E-frames.

The computation of the E-frame Hubble parameter (see e.g. [29]) gives, from eq. (4.9)
(and in terms of the S-frame cosmic time t):

HE(t) = eϕ/(d−1)
(

H − ϕ̇

d − 1

)
≡ 2

t d
eϕ/(d−1) . (4.10)

We find again the dust-like behaviour, HE ∼ (2/d)t−1, but this time with very small and
damped oscillations due to the presence of ϕ(t) in the exponential factor. For ϕ → const, the
E-frame time coordinate is simply given by tE = t exp[−ϕ/(d − 1)], and one exactly recovers
dust dominated evolution HE = 2/(tE d). In other words, even if the dilaton has damped
oscillations, the passage to the Einstein frame is important for it to behave like a genuine
minimally-coupled massive scalar.

Let us finally discuss, for the above given potential, the range of initial conditions com-
patible with the scenario we have discussed, i.e. the trapping of the dilaton in the V0 = 0
minimum and the final associated regime of standard (dust-like) cosmic evolution. In partic-
ular, we would like to find out whether or not such initial conditions are highly fine-tuned.

In the isotropic case (see section 5 for the extension to anisotropic cosmologies) the
initial conditions consist of giving ϕ, ϕ̇ and H at some initial time t0 in the far past. However,
for any given model (i.e. for a given h and V ) the Hamiltonian constraint (i.e. the first of
eqs. (2.11)) can be used to fix the initial value of ϕ̇ in terms of the other two. Furthermore,
assuming that the evolution starts at sufficiently small coupling eϕ, where V is absolutely
negligible, the second of eqs. (2.11) implies the conservation law e−ϕz = κ−1, namely:

eϕ = κ z(ad) ∼ κz(
√

d H)
√

d ∼ κ (
√

d H)1+
√

d ∼ κ (
√

d z)1+
√

d , (4.11)

with κ a constant and the various approximate relations becoming exact in the t → −∞
limit. This means that changing κ does change the initial conditions. Instead, changing
ϕ and H (or z) while keeping κ fixed, amounts physically to the same initial conditions
simply referred to a shifted initial time. In other words, we expect the basin of attraction
to the FLRW late time solution to be one-dimensional. It is given by some interval(s) in κ,
a physical quantity given by a suitable combination of the coupling constant and curvature
that remains constant during the very early time evolution. See in particular section 4.3 for
a discussion of the basin of attraction towards a final regime of stabilised dilaton, decreasing
curvature and decelerated expansion illustrated in this subsection.

4.2 de Sitter attractors for a local minimum V0 > 0

Another interesting cosmological scenario, still describing a regular bouncing evolution from
the string perturbative vacuum but approaching a different final configuration, can be ob-
tained with a slight modification of the dilaton potential used in the previous section.

10We are grateful to Robert Brandenberger and Jerome Quintin for having raised this point.
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Figure 6. Left: the red curve describes the parametric plot of a numerical solution of eq. (2.11),
with the potential (4.1) and the Hamiltonian (4.4) (with α′ = 1 and d = 3). Differently from the
previous figures we have set δ = 0.04 ̸= 0 to have a non-vanishing V0 at the local minimum, and
β = 1, A = 1 (to simplify the graphics). All the other parameters are the same as in the figures of
section 4.1: α = 10, c = 2, q = 1, and the initial conditions are z = 0.01 and ϕ = −3.65. The black
dashed half line describes the initial trajectory evolving from the string perturbative vacuum, as in
figure 3. Right: parametric plot H = H(ϕ) for the same numerical solution, in the asymptotic range
of large positive times.

Starting again with the general form (4.1) of V (ϕ), but including also the contribution
of a (small) non-vanishing parameter δ, one finds that, in the presence of a local minimum,
the latter is still approximately located for small δ at ϕ = ϕm ≃ − ln[α(c2 −1)] (as illustrated
in figure 2), but the associated potential energy is in general non-vanishing. In the limit
δ ≪ 1, by computing the potential at the above minimum to first order in δ , we obtain in
particular V0 = V (ϕm) ≃ Aδ(c2 − q) exp(−c2/β).

Such a difference is important because the local minimum responsible for the dilaton
stabilisation mechanism also controls the asymptotic value of the post-bounce Hubble pa-
rameter, and for δ > 0, V0 > 0 one finds that the background geometry approaches a final
phase of standard de Sitter evolution. In that case, as we shall see, the final value ϕ0 of the
dilaton no longer coincides with the position of the local minimum, i.e. ϕ0 ̸= ϕm.

In order to illustrate the qualitative aspects of this modified scenario it may be appro-
priate to present, first of all, the results of a numerical integration of eqs. (2.11) using for
h(z) exactly the same model of α′ corrections as in the previous section 4.1, and specified
by eq. (4.4). In such a way all differences are only due to the modified potential, and in
particular to the new contribution of a parameter δ ̸= 0.

We shall impose initial conditions satisfying as before the low-energy pre-big bang dy-
namics, specified (for t → −∞) by the constraint ϕ̇ =

√
dH. The numerical integration of

eqs. (2.11) with the particular value δ = 0.04 then gives the result illustrated in figure 6.
The left sector shows again a regular curvature bounce from the pre- to the post-big bang
regime, similar to the case considered in the previous section and illustrated in figure 3.
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Figure 7. Time evolution of H(t) and ϕ(t) for the same numerical solution of figure 6. The final
asymptotic regime is characterised by a constant value of H0 > 0 and a constant dilaton ϕ0 ̸= ϕm.

The differences from that case are all concentrated in the final post-bounce regime (upper-
left quadrant), showing that now the background oscillations due to the stabilisation of the
trapped dilaton are no longer approaching the origin of the axes {ϕ̇ = 0, H = 0}, but a new
asymptotic (de Sitter) limit with H = H0 = const, and H0 > 0.

These oscillations around the new final attractor {ϕ0, H0} are more clearly shown if
we concentrate our graphic analysis on the post-bounce region of large positive times, as
illustrated by the parametric plot H = H(ϕ) presented in the right sector of figure 6, where
we have used the previous numerical solution in the range t > 0. The final value of H0 is
controlled by the value of the parameter δ in the dilaton potential, and for δ → 0 one recovers
the FLRW scenario with H → 0 discussed in the previous section (see figure 5). For our
illustrative purpose we have plotted a numerical solution with δ = 0.04, but it should be
stressed that, for small enough δ, the curvature scale H0 of the final de Sitter regime can be
fixed at values arbitrarily smaller than the string scale (H0 ≪ λ−1

s ), thus avoiding the need
of taking into account α′ corrections for an analytical description of this regime.11

Another important difference from the case with δ = 0 (not so evident, even if we
compare the right plot of figure 6 with the similar one of figure 5), is that the final value
of the stabilised dilaton, ϕ = ϕ0, no longer coincides with the minimum of the potential,
ϕ = ϕm = − ln[α(c2 − 1)]. A better illustration of this effect can be obtained by plotting
the time evolution of H(t) and ϕ(t), shown in figure 7. The first plot shows that the final
value of H0 is non-vanishing, while the second plot clearly shows the difference between the
stabilised value ϕ0 and the position of the local minimum ϕm.

For an analytical discussion of this scenario in the final asymptotic regime and, in
particular, for a physical interpretation of the difference between ϕ0 and ϕm, let us now
consider eqs. (2.11) in the large time limit where we can neglect α′ corrections. By evaluating
such equations at the final attractor position, where ϕ = ϕ0, H = H0, ϕ̇ = 0 = Ḣ, we than
obtain the conditions

d H2
0 = −

(
∂V

∂ϕ

)
ϕ0

, d (d − 1)H2
0 = 2 V (ϕ0). (4.12)

They clearly show that i) for a non-vanishing value of H0 the final stabilised dilaton ϕ0
cannot be localised at the potential minimum ϕm (where ∂V/∂ϕ = 0); conversely, ii) if the

11In any case, the value of H0, and then of δ, cannot be too high (δ ≪ 1), otherwise it is unlikely for the
dilaton to be trapped in a final stabilised configuration.
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final attractor coincides with the minimum position, ϕ0 = ϕm, then we cannot avoid the final
regime of standard evolution with decreasing curvature and a final value H0 = 0 (consistently
with the second equation (4.12) and with the fact that, as discussed in section 4.1, in such a
case the potential at the minimum is vanishing, V0 ≡ V (ϕ0) = V (ϕm) = 0).

Combining the two equations (4.12) we also obtain a condition on ϕ0 which can be
written as [

∂

∂ϕ

(
V e

2 ϕ
d−1

)]
ϕ=ϕ0

= 0, (4.13)

showing that the stabilised value ϕ0 corresponds to the minimum of an “effective” potential
Ṽ ∼ V exp [2ϕ/(d − 1)]. Interestingly enough, and consistently with the scenario of a sta-
bilised dilaton, Ṽ (ϕ) is nothing else that the dilaton potential for the action (2.2) written in
the E-frame (see e.g. [29]). This is, as in the case of V0 = 0, a consequence of the dilaton being
a minimally coupled scalar only in the E-frame. We stress that the above effective potential
contains an explicit dependence on the number of spatial dimensions, and this, as already
noticed, may affect the late-time post-bounce evolution of the gravi-dilaton background.

The difference between ϕ0 and ϕm can be analytically estimated (again, in the asymp-
totic regime of low enough curvature scales corresponding to V0 ≪ 1, δ ≪ 1) by perturbatively
expanding the potential around the minimum as

V (ϕ) = V0 + m2

2 (ϕ − ϕm)2 . (4.14)

By inserting this expression into the condition (4.13), and solving for ϕ0, we obtain (to first
order in V0/m2)

ϕ0 ≃ ϕm − 2 V0
m2(d − 1) + O

(
V 2

0
m4

)
. (4.15)

On the other hand we recall that for our potential (4.1), and for small values of δ, we have
V0 ≃ Aδ(c2 − q) exp(−c2/β). By computing m2 = (∂2V/∂ϕ2)ϕ=ϕm , and expanding the ratio
V0/m2 in powers of δ we obtain

V0
m2 = δ

c2

2 (c2 − 1)2 + O(δ2), (4.16)

so that for δ ≪ 1 we have also V0/m2 ≪ 1. In this approximation we can then obtain
an analytical estimate of the de Sitter curvature scale H0 in terms of V0 and we find, from
eqs. (4.12), (4.15):

H0 ≃
[ 2 V0

d (d − 1)

]1/2 [
1 + O

(
V0
m2

)]
. (4.17)

The range of initial conditions compatible with a final attractor corresponding to a
stabilised dilaton and a final de Sitter geometry will be discussed in section 4.3. The only
difference from the previous case is that δ ̸= 0 and V0 ̸= 0.

4.3 A numerical study of the initial conditions
Here we provide a numerical study of the initial conditions that are necessary for reaching
a post-bounce phase with a stabilised dilaton. To this purpose we restrict ourselves to the
approach presented at the end of section 4.1 with the potential given in eqs. (4.1) and (4.2) in
which, we recall, we have set α′ = 1. We also limit the discussion to the case d = 3 although
similar conclusions hold for generic d.
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Figure 8. The blue regions represent the basins of attraction for a post-bounce phase with stabilised
dilaton, with the initial condition z = 0.01 and κ ranging as a function of β. We have adopted a
dilaton potential (4.1) with V0 > 0 and fixed the parameters of the potential to be α = 10, c = 2,
δ = 0.01 and q = 1. The magnitude of the potential, controlled by A, varies from smaller (left) to
higher (right) values.

For the numerical code we set the initial conditions at zin = 0.01 and have checked
that, as long as zin ≪ 1, the results are independent of zin provided we keep κ fixed. We
will then discuss how the allowed range of κ compatible with a stabilised dilaton varies as
a function of A, β and q while keeping fixed values for the other parameters i.e. α = 10,
c = 2 and δ = 0.01. Concerning this last choice, we anticipate that the attraction basins do
not appreciably change if δ = 0, so that the same discussion can be applied also to the case
V0 = 0, corresponding to the FLRW post-bouncing phase of section 4.1. On the other hand,
if δ is so large that the local minimum has a height comparable to the peaks of V , the basin
of attraction can be considerably reduced.

Our first results are shown in figure 8, where we have considered the runaway potential
with q = 1 and varied β and A. The range of κ leading to a stabilised dilaton is illustrated by
the blue regions reported in the figure, showing that the lower the magnitude of the potential,
the larger is the basin of attraction.

In particular, for A = 0.01, κ may vary of about two orders of magnitude when β = 3.
This roughly corresponds to an initial amplitude of the dilaton in the range ϕ ∈ [−15, −9.5].
This range drops dramatically to ϕ ∈ [−14.6, −13.6] when A increases to 0.5. This case also
exhibits a shift of the peak value of β to the lower value β = 2.

To give an alternative discussion, in figure 9 we have set β = 3 and varied κ as a function
of A and q, exploring then the basin of attraction for different behaviours of the potential in
the limit ϕ → +∞. Independently of the value of A, the general trend is that a larger range
of κ is achieved when the runaway potential tends to vanish at ϕ = +∞. On the contrary,
the range of κ is suppressed when the potential in the same limit reaches its maximum.

Let us finally note that, for d = 3, if the initial value of κ is outside the allowed range
of figure 9 then the dilaton cannot be stabilised, it “bounces back” to −∞, and the final
background evolution asymptotically corresponds to the time reversed of the initial one (i.e.
to the second one of the three cases mentioned in section 4, and illustrated in more detail in
appendix A). This happens because for d = 3 the (naively computed) effective potential in
the E-frame never goes to zero as ϕ → +∞. However, for higher values of d, or for different
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Figure 9. The blue regions represent the basins of attraction of the post-bounce phase with a
stabilised dilaton with initial condition z = 0.01 and κ ranging as a function of q. We have adopted
the dilaton potential (4.1) with V0 > 0 and fixed the parameters of the potential to be α = 10, c = 2,
δ = 0.01 and β = 3. The magnitude of the potential controlled by A varies from smaller (left) to
higher (right) values.

Figure 10. The same as figure 9, but we have fixed A = 0.1 and varied the number of spatial
dimensions. The blue regions represent the basins of attraction of the post-bounce phase with a
stabilised dilaton. The red regions correspond to initial conditions leading to a post bounce phase
with unbounded growth of the dilaton. In the white regions, the final post bounce phase corresponds
to the time reversal of the initial one.

choices of the potential, the situation can be different and there are two possibilities for a
non-stabilized dilaton: the dilaton runaway scenario (with growing dilaton both before and
after the bounce) corresponding to the first case of section 4, and the previous case of a
bouncing dilaton.

This is illustrated in figure 10, where we have varied the number of spatial dimensions
keeping fixed A = 0.1 and with all other parameters fixed at the same values as in figure 9.
The red regions, appearing for d > 3 and lying outside the attraction basin, correspond to
initial conditions leading to a final unbounded growth of the dilaton.
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5 Dilaton stabilisation and isotropisation by α′ corrections and V ̸= 0

In this section we consider the case of a generically anisotropic initial (pre-bouncing) cos-
mology described by a Bianchi-I type metric, and address the question of whether, in the
presence of a potential, it can also admit late time attractors with a stabilised dilaton. Fur-
thermore, we can ask whether such attractors, when they exist, are isotropic. This is, of
course, an important question since we do not want to fine-tune the initial conditions to be
isotropic: like in the standard inflationary scenario we would like initial anisotropy to be
washed out at late times. We remind the reader that the low-curvature Kasner-like solutions
of string cosmology do not have such a property: the ratio between the initial shear and the
volume-expansion rate remains essentially constant in the lowest-order solutions [44].

Taking into account α′ corrections and a dilaton potential the situation can change.
We know that, in principle, there are multi-trace terms in the original HZ action (and con-
sequently in our “Hamiltonian” h(zi)). Such terms, by coupling different Hi’s can mimic
effective “viscosity terms”, which are known to be able to wash out (or limit the growth of)
the initial anisotropies (see e.g. [45] and references therein). However, we have not made yet
a systematic study of this possibility, also because such multi-trace terms are supposed to
emerge only at order α′3 (or higher) in the curvature expansion [11]. Fortunately, late-time
isotropisation of an initial anisotropic metric can also occur as a result of the presence of
V (ϕ) alone, which induces a non-linear dependence upon ∑βi.

It is known, in fact, that the presence of homogeneous and isotropic sources (like, for
instance, the effective radiation fluid describing the back-reaction of the amplified perturba-
tions) may lead to a final asymptotic regime of isotropic expansion even starting from an
initial regime with both expanding and contracting dimensions (see e.g. [46]). In our context
the role of the homogeneous source can be played by the potential energy of the stabilised
dilaton, and the implementation of such an isotropisation mechanism only requires starting
from initial conditions compatible with the final stabilising attractor (see the discussion at
the end of this section). In particular, the following simple result can be obtained from the
relevant equations (2.7):

Whenever there is a late-time attractor with constant ϕ and zi the attractor must be isotropic,
i.e. zi = z = z0, and consequently Hi = H = H0.

The proof is simple: if ϕ = ϕ0 = const then ϕ̇ = −
∑

i Hi and the last two eqs. (2.7)
become, in the attractor limit,∑

j

Hj

 zi + ∂V

∂ϕ
= 0 ;

∑
i

ziHi + ∂V

∂ϕ
= 0 . (5.1)

The first set of equations tells us already that zi, at the attractor, is independent of i, which
is consistent with the last equation and gives

d z0 H0 = −
(

∂V

∂ϕ

)
ϕ=ϕ0

. (5.2)

Then the first of eqs. (2.7) gives the further constraint:

d2H2
0 = 2 (h)zi=z0

+ 2 V (ϕ0). (5.3)
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The system of equations (5.2), (5.3) (equivalent to the previous eqs. (4.12) if the attraction
point is located in the low-energy regime) is not over-constrained, and typically admits a
finite number of solutions for ϕ0 and z0, and thus for H0, once h(zi) is given.

The existence of such attractors is confirmed by a numerical study of eqs. (2.7). Under a
suitable choice of the potential and of the initial conditions one can find indeed regular solu-
tions described, in the parametric plane {ϕ̇, Hi}, by smooth curves (like those of figures 3, 6),
connecting the initial anisotropic configuration to the same final fixed point attractor. Let
us give immediately an explicit example for an anisotropic, Bianchi-I type gravi-dilaton
background whose dynamical evolution is controlled by this simple, α′-corrected, effective
Hamiltonian:

h(zi) = 1
2
∑

i

z2
i − c2

α′

8
∑

i

z4
i . (5.4)

For c2 = 2, and in the isotropic d-dimensional limit, we recover the Hamiltonian (4.4) used in
the numerical examples of the previous sections. We also note that (after taking into account
the overall factor −1/2 of difference in the definition of h) this model of Hamiltonian exactly
coincides with the model of anisotropic α′ corrections presented in ref. [22] but without the
multi-trace term considered in that paper.

For a better graphical illustration of the numerical solution it is convenient to consider
a potential with a non-vanishing local minimum V0 > 0, so that the final isotropic attraction
point in the {ϕ̇, H} plane is different from the origin. We will thus consider a potential of
the “runaway” type with δ = 0.01, and with all the same values of the other parameters
as those used in the plot of figure 6 (except for the numerical values A = 0.1 and β = 3).
Also, we shall work with a d + n-dimensional space, where d dimensions are expanding with
scale factor a1 and n dimensions are expanding with scale factor a2, imposing, as initial
conditions at t → −∞, Hi → 0, that the solution satisfies the low-energy pre-big bang
equation dH2

1 + nH2
2 = ϕ̇

2
, with H1 ̸= H2 and H1 > 0 , H2 > 0. In this limit, the solution

can be explicitly written as [29]

ai ∼ (−t)−γi , γi > 0,
∑

γ2
i = 1, Hi = γi

t
, ϕ ∼ −

(∑
γi + 1

)
ln(−t), (5.5)

and we can define a constant κ, as in section 4.1, which controls the initial conditions and is
determined by the initial values of ϕ, H1 and H2 as follows:

κ = eϕ
[

d H1 + n H2√
d + n

]−(1+d γ1+n γ2)
∼ eϕ

[
d z1 + n z2√

d + n

]−(1+d γ1+n γ2)
, (5.6)

where the last equality holds in the limit t → −∞, in analogy with what discussed in the
isotropic case. The initial anisotropy is imposed by choosing γ1 =

√
(1 − n ϵ)/(d + n) and

γ2 =
√

(1 + d ϵ)/(d + n), satisfying, for any ϵ, the Kasner condition of (5.5) i.e. dγ2
1 +nγ2

2 = 1.

The numerical results are illustrated in figure 11 for d = 1 and n = 2 (however, the
results is qualitatively the same for different choices of d and n, for instance d = 3 and
n = 6). As clearly shown in the figure, in spite of the very different (largely anisotropic)
behaviour of the d and n spatial dimensions both before and during the bounce, after the
bounce they all converge (after an oscillating epoch) to the same attraction point, controlled
by the dilaton trapped in the potential minimum. Note that the two parametric curves for
H1 and H2 plotted in the left sector of figure 11 are not topologically equivalent in the sense
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Figure 11. Left: parametric plot of a numerical solution of eqs. (2.7) with the potential (4.1) and
the Hamiltonian (5.4), written for c2 = 2, α′ = 1. We have assumed an anisotropic configuration with
d coordinates with momentum z1 and n coordinates with momentum z2. The red curve describes the
evolution of the d Hubble parameters H1, the black curve of the n Hubble parameters H2. The initial
anisotropy is specified by ϵ = 0.3 and we have chosen an initial parameter (see eq. (5.6)) κ = 0.073.
Finally, we have set d = 1, n = 2, and used the following numerical values for the potential: A = 0.1,
α = 10, β = 3, c = 2, δ = 0.01, q = 1. Right: parametric plot of H1(ϕ) (red curve) and H2(ϕ)
(black curve) for the same numerical solution, in the asymptotic range of large positive times. The
attraction point is localized at H0 ≃ 0.016, ϕ0 ≃ −3.4, according to eqs. (4.15)–(4.17).

explained at the end of section 3, as one is turning clockwise, the other anti-clockwise, in
the parametric plane {ϕ̇, H}. This difference from the solutions of section 3 is due to the
presence of the dilaton potential.

The final oscillations, as well as the isotropic convergence towards the same final at-
tractor {ϕ0, H0}, are clearly displayed if we restrict the parametric plots to the large time
limit, obtaining the behaviour of H1(ϕ) and H2(ϕ) illustrated in the right sector of figure 11.
Given the numerical values of the potential parameters, and using eqs. (4.15)–(4.17), we can
easily compute the coordinates ϕ0, H0 of the attraction point, and check that they coincide
with the result shown in the figure.

Let us now discuss the basin of attraction for this class of anisotropic backgrounds
following the same discussion presented in section 4.3. To this purpose we will use of the
definition of κ of eq. (5.6) to study the initial conditions in the parametric plane {ϵ, κ}.
For what concerns the potential, following the results obtained in the isotropic case, we will
consider the illustrative example with A = 0.01, α = 10, β = 3, c = 2 and δ = 0.01, choosing
d = 1 and n = 2 for the geometrical shear. This limit ϵ to range from 0 (isotropic limit) to
0.5 (highest anisotropy) in order for the γi’s to be real. The results we obtain are shown in
figure 12 for the cases q = 0 and q = 1.

In both cases the basin of attraction remains quite stable, regardless of the amplitude of
the initial geometrical shear. The case of a potential reaching its maximum at ϕ = +∞ (q =
0) looks quite intriguing, since in this case a shift towards slightly higher and multi-valued
regions of κ emerges. However, the overall permitted amplitude of κ is quite insensitive to
the degree of initial anisotropy: hence, the mechanism proposed to get a suitable post-bounce
phase with a stabilised dilation looks pretty robust to guarantee also a final isotropisation,
regardless of the amplitude of the anisotropy in the pre-bounce perturbative vacuum.
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Figure 12. The blue regions represent the basins of attraction of the post-bounce phase with a
stabilised dilaton and spatial isotropisation in the parametric plane {ϵ, κ} in 1 + 2 dimensions. Here
we have adopted the dilaton potential (4.1) with V0 > 0 and fixed the parameters of the potential to
be A = 0.01, α = 10, c = 2, δ = 0.01 and β = 3. We show the separate results for q = 0 (left) and
q = 1 (right).

6 Summary and outlook

Let us start by summarizing the main results of this paper. We started by making more pre-
cise and general the reformulation given in [22] of the Hohm-Zwiebach approach to “classical”
(i.e. at lowest order in the string loop expansion but at all orders in α′) string cosmology. We
did this by appealing to the Routhian formulation of dynamical systems in which part of the
degrees of freedom are treated in a Hamiltonian approach (through the standard Legendre
transform) while the rest of the variables is kept at the Lagrangian level. This approach is
known to be most useful when some of the former degrees of freedom are cyclic variables lead-
ing to corresponding conservation laws. This is precisely the situation for the d scale-factors
of a Bianchi I cosmology to which the HZ treatments applies. We have also stressed that,
in this case, when the Hamiltonian of the system obeys the conditions spelled out in [22],
the regular bouncing solutions preserve a subgroup of the SFD ⊗ T global symmetry, unlike
the lowest-order singular ones that break it spontaneously. These regular solutions can be
classified as being “self-dual”.

We have then added to the Lagrangian a non-perturbative, local dilaton potential. In
this case, having assumed the principle of “Asymptotic Past Triviality” formulated in [30],
the above-mentioned conservation laws are still valid in the asymptotic past but are explicitly
broken as soon as the potential starts to be felt. As a result we are still able to give the
initial data in terms of the asymptotically conserved quantities.

After having specified the potential in terms of a few parameters we have studied nu-
merically, and in certain simple situations analytically, the evolution of the system at late
times. The main results of this analysis can be summarized as follows:
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• The presence of the potential (always taken not exceeding V of order one in string
units) does not seem to affect the existence or non-existence of regular bounces: this
seems to depend essentially only on the form of the kinetic part of the Hamiltonian as
discussed in [22]. Nonetheless, the potential can affect the cosmological evolution both
during and, even more dramatically, after the bounce.

• For choices of the Hamiltonian leading to a regular bounce, the late-time cosmology is
determined by the shape of the potential and by the initial conditions. Several cases
are possible, not all equally interesting for physics.

• In the isotropic case we have seen three possible behaviors at late time: i) the dilaton
can go through the potential barriers and ends up again in the same dual asymptotic
solution as the one encoutered in the V = 0 case; ii) it can be “reflected” by the
potential and go back to −∞ (see appendix A for details), in which case the final
cosmology is just the time-reversal of the initial one; iii) finally, and most interesting,
the dilaton can be stabilized at the minimum of an effective potential Ṽ (not necessarily
identical to the given V ) and the late time evolution is either a matter-dominated
FLRW decelerating cosmology, or a de-Sitter like accelerated expansion, depending on
the value of the potential at the minimum.

• For anisotropic initial conditions the situation is similar with an extra welcome feature:
whenever the dilaton is stabilized at late times, the attractor is isotropic so that the
regular bounce, with the help of the potential, washes out any initial anisotropy.

For the future, several interesting questions remain to be addressed:

• To implement in these scenarios a stabilizing mechanism for the internal compact di-
mensions (assumed to satisfy the usual T -duality symmetries).

• To add the Kalb-Ramond Bµν field (possibly in its axionic dual form) in order to exploit
the full O(d, d) symmetry of the HZ action. We recall that the axion plays an important
role in the traditional pre-big bang scenario via the curvaton mechanism [42, 43]. It is
not clear whether, in this new context, such a mechanism is still needed (see below).

• Computing perturbations in these new scenarios is an important but non trivial prob-
lem since it requires to break the abelian isometries of the homogeneous solutions. On
the other hand, bouncing scenarios, unlike ordinary inflation, do not suffer from a trans-
planckian problem (see e.g. [47]) so that initial conditions can be given in the perturba-
tive, asymptotically trivial, regime. In particular, if the final attractor is de-Sitter-like
(as in section 4.2), we may expect various branches in the spectrum of abiabatic scalar
and tensor perturbation (neglecting the isocurvature axionic perturbations discussed
in [42, 43]): perturbations going out of the horizon during the initial perturbative phase
of dilaton-driven inflation (leading to a steep blue spectrum [28]), those coming from
the (relatively short) high curvature bounce and, finally, perturbations generated by
the final frozen dilaton de Sitter phase and expected to be nearly scale-invariant.

At a more conceptual level we wish to emphasize again the two most important open
issues:

1. Can the Lagrangians, Hamiltonians, or Routhians that implement a regular bounce
correspond to the dimensional reduction of some general covariant action to the case
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of an homogeneous background with d abelian isometries? Constructing such an ac-
tion, at least perturbatively in the spatial gradients, would be also most important
phenomenologically, in particular for the study of perturbations.

2. This whole approach is deeply routed in the duality symmetries of string theory but
we are still lacking tools for finding out whether the particular duality-invariant models
that looks phenomenologically promising do follow from any specific consistent string
theory.

A From expanding pre-big bang to contracting post-big bang

As discussed in section 4, one of the possible effects of the potential (4.1) is that of producing
an effective potential barrier which stops the growth of the dilaton and “reflects back” the
dilaton towards the large negative values of the perturbative string vacuum.

Such an effect, combined with the curvature regularisation due to the α′ corrections,
leads to a new interesting type of bouncing scenario where the final background is no longer
described by the duality-transformed initial solution (indeed, duality is broken by the pres-
ence of the potential), but it nevertheless corresponds to the time-reversed version of the
initial solution. Hence, if we start with an initial (isotropic, (d + 1)-dimensional) pre-big
bang configuration describing growing dilaton, growing curvature, and accelerated expansion
(ȧ > 0, ä > 0):

a ∼ (−t)−1/
√

d, H = 1√
d (−t)

> 0, ϕ ∼ −
(
1 +

√
d
)

ln(−t), ϕ̇ =
√

d H > 0, t → −∞,

(A.1)
(see also eq. (1.1)), we end up with a post-bounce configuration asymptotically describing
decreasing dilaton, decreasing curvature, and decelerated contraction (ȧ < 0, ä > 0):

a ∼ (t)−1/
√

d, H = − 1√
d (t)

< 0, ϕ ∼ −
(
1 +

√
d
)

ln(t), ϕ̇ =
√

d H < 0, t → +∞.

(A.2)
A simple illustration of this scenario can be provided by a numerical integration of

eqs. (2.11) with appropriate values of the initial conditions, which in our case are controlled
by the parameter κ of eq. (4.11), defined at large negative times by κ = eϕ

(√
d H

)−(1+
√

d).
According to eq. (A.1) this parameter goes to a constant for t → −∞. Such a constant
depends on the initial value of the dilaton and, as discussed in section 4.1, it is equivalent
(but more convenient) to specify initially the value κ rather than that of ϕ. For initial values
of κ small enough with respect to the parameters controlling the height of the potential, the
numerical integration gives the results reported in figure 13 (see the caption for the used
numerical values).

In the left panel we have the parametric plot describing a smooth, regular transition from
the initial configuration (A.1) to the final configuration (A.2). The corresponding evolution
of the dilaton, which reaches a maximum and then bounces back to the asymptotically
perturbative regime, is shown in the right panel of the figure. Note that the red curve
describing the parametric evolution of H(ϕ̇) starts and ends at the origin, is still turning
clockwise in the parametric plane, but it is not topologically equivalent to the curves given
in the plots of section 3 and section 4.1, (always associated with a final expanding regime).
Indeed, in the parametric plot of figure 13 the vector connecting the origin to a point on the
red curve undergoes a clockwise rotation of π (and not 3π/2) as one goes from the beginning
to the end of the curve.
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Figure 13. Left: parametric plot obtained with a numerical solution of eq. (2.11) with the poten-
tial (4.1) and the Hamiltonian (4.4). We have set d = 3, α′ = 1 for the Hamiltonian, A = 1/3, α = 10,
β = 3, c = 2, δ = 0.01, q = 1 for the potential, and κ = 0.0075 for the initial conditions at t = −200.
The black dashed bisecting line describes the initial evolution (A.1) expanding from the perturba-
tive regime (upper-right quadrant), and the final time-reversed contracting evolution (A.2) (lower-left
quadrant). Right: time evolution of the dilaton according to a numerical integration of (2.11) per-
formed with the same parameters and the same initial conditions.
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