Vector Boson Scattering

- Vector boson scattering (VBS) is one of the prominent phenomena at the LHC to probe the electroweak sector of the Standard Model.
- Tests the electroweak symmetry breaking mechanism with Higgs boson regularizing the VBS amplitude.
- Tree level sensitivity to quartic gauge couplings (QGCs).

jet mm jet • Very rare production at the LHC.

- Largest electroweak to strong production ratio among other VV combinations.
- Final state with two same-sign leptons, two forward jets, and neutrinos identified as missing transverse energy.

W*W*jj Production

• Two jets with large invariant mass and rapidity separation tag VBS events.

Electroweak W*W*jj Production in ATLAS A golden channel of vector boson scattering

Shalu Solomon | Brandeis University On behalf of the ATLAS Collaboration

Major Backgrounds

- WZjj process where one of the leptons falls outside of the detector acceptance is the dominant background. The background is modelled using Monte Carlo simulation and is validated in a three lepton region.
 - Non-prompt leptons correspond to leptons with a hadronic origin but wrongly identified as prompt leptons. Fake leptons are jets wrongly identified as leptons. The background is suppressed by applying a b-jet veto and is derived from data.
 - Charge flip affects mainly electrons due to Bremsstrahlung effects and can also occur in high p_T tracks when there is an ambiguity in determining the track curvature.
 - *V*γ background enters electron channels through photon conversions.

• All the other backgrounds such as top, triboson, etc., have only small contributions.

Cross-Section Measurement

- A profile likelihood fit is performed to obtain background yields and uncertainties that maximize the likelihood with the observed data. Normalization of signal and WZjj background are kept freely floating.
- The measured physics objects do not reflect the kinematics of the underlying true particles due to the detector inefficiencies and limited resolution.

Description	$\sigma_{\mathrm{fid}}^{\mathrm{EW}},\mathrm{fb}$	$\sigma_{\rm fid}^{\rm EW+Int+QCD}$, fb
Measured cross section	$2.88 \pm 0.21 (\mathrm{stat.}) \pm 0.19 (\mathrm{syst.})$	$3.35 \pm 0.22 (\mathrm{stat.}) \pm 0.20 (\mathrm{syst.})$
MG_AMC@NLO+Herwig	$2.53 \pm 0.04 (\text{PDF}) \pm_{0.19}^{0.22} (\text{scale})$	$2.93 \pm 0.05 (\text{PDF}) \pm_{0.27}^{0.34} (\text{scale})$
MG_AMC@NLO+Pythia	$2.55 \pm 0.04 (\text{PDF}) \pm_{0.19}^{0.22} (\text{scale})$	$2.94 \pm 0.05 (\text{PDF}) \pm \substack{0.33\\0.27}$ (scale)
Sherpa	$2.44 \pm 0.03 (\text{PDF}) \pm_{0.27}^{0.40} (\text{scale})$	$2.80 \pm 0.03 (\text{PDF}) \pm_{0.36}^{0.53} (\text{scale})$
POWHEG BOX +PYTHIA	2.67	—

- The detector effects are stripped off from the observed events through unfolding.
- Unfolded cross-section is our best understanding of the underlying true cross-section in data.

• Cross-sections are extracted for electroweak and inclusive production of $W^{\pm}W^{\pm}jj$, and the results agree with Standard Model predictions.

Search for aQGC

Reference

CoefficientTypeNo u f_{M0}/Λ^4 exp. obs. f_{M1}/Λ^4 exp. obs.	Initarisation cut-off Lower and upper limit at the respective unitarity bound $[TeV^{-4}]$ $[TeV^{-4}]$ [-3.9, 3.8] -64 at 0.9 TeV, 40 at 1.0 TeV [-4.1, 4.1] -140 at 0.7 TeV, 117 at 0.8 TeV [-6.3, 6.6] -25.5 at 1.6 TeV, 31 at 1.5 TeV [-6.8, 7.0] -45 at 1.4 TeV, 54 at 1.3 TeV	framework of effective field theory to search for anomalous QGC.	• In the context of Georgi-Machacek model, a search for $H^{\pm\pm}$ produced through vector boson fusion is performed.
f_{M7}/Λ^4 exp. obs. f_{S02}/Λ^4 exp. obs. f_{S1}/Λ^4 exp. f_{T1}/Λ^4 exp. obs. f_{T1}/Λ^4 exp. obs.	$ \begin{bmatrix} -9.3, 8.8 \\ [-9.3, 8.8 \end{bmatrix} = -33 \text{ at } 1.8 \text{ TeV}, 29.1 \text{ at } 1.8 \text{ TeV} \\ [-9.8, 9.5] = -39 \text{ at } 1.7 \text{ TeV}, 42 \text{ at } 1.7 \text{ TeV} \\ [-5.5, 5.7] = -94 \text{ at } 0.8 \text{ TeV}, 122 \text{ at } 0.7 \text{ TeV} \\ [-5.9, 5.9] = -23.5, 23.6] = -23.5, 23.6] = -23.2 \text{ at } 1.2 \text{ TeV}, 4.9 \text{ at } 1.1 \text{ TeV} \\ [-0.36, 0.36] = -7.4 \text{ at } 1.0 \text{ TeV}, 12.4 \text{ at } 0.9 \text{ TeV} \\ [-0.158, 0.174] = -0.32 \text{ at } 2.6 \text{ TeV}, 0.44 \text{ at } 2.4 \text{ TeV} \\ \end{bmatrix} $	 Limits are set on eight dimension-8 operators. 	$f = 10^{3} \qquad \text{ATLAS Preliminary} \qquad \text{Obs. 95\% CL upper limit} \\ f = 10^{3} \qquad \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \qquad \text{Expected limit} (\pm 1\sigma) \\ f = 10^{3} \qquad \text{Expected limit} (\pm 2\sigma) \qquad \text{Expected limit} (\pm 2\sigma) $
• Limits on a setting all c	-0.38 at 2.5 TeV, 0.49 at 2.4 TeV -0.56, 0.70] -0.63, 0.74] -2.60 at 1.7 TeV, 10.3 at 1.2 TeV -2.60 at 1.7 TeV, 10.3 at 1.2 TeV 	ved by $\int_{-1}^{4} \int_{-1}^{4} \int_$	• Model independent upper limits at 95% CL are extracted on $\sigma(H^{\pm\pm}) \times B(H^{\pm\pm} \to W^{\pm}W^{\pm}).$
 Contribution violate unit 	ons above a certain energy scale <i>E</i> tarity are removed by restricting <i>n</i>	E_c that $P_{WW} < E_c$. $e_{WW} < E_c$. $e_{L} = -2$ e_{-3} e_{-3} e_{-3} e_{-3} e_{-3} e_{-3} e_{-3} e_{-3} e_{-3} e_{-4} e_{-5} e_{-5} e_{-5} e_{-3} e_{-4} e_{-5} e_{-3} e_{-3} e_{-4} e_{-5} e_{-4} e_{-5} e_{-4} e_{-5} e_{-4} e_{-5} e_{-4} e_{-5} e_{-4} e_{-5} e_{-4} e_{-5} e_{-4} e_{-5} e_{-4} e_{-5} e_{-	• Largest excess is observed for $m_{H^{\pm\pm}} = 450 \text{ GeV} \text{ at } 2.5\sigma.$

• Results are interpreted within the

Search for H^{±±}

• Constraints are consistent with zero.

m_{ww} cut-off [TeV]

ATLAS Collaboration, ATLAS-CONF-2023-023, Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

