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The neutrinoless double beta decay experimental effort continues to make tremendous progress
with hopes of covering the inverted neutrino mass hierarchy in coming years and pushing from the
quasi-degenerate hierarchy into the normal hierarchy. As neutrino oscillation data is starting to
suggest that the mass ordering may be normal, we may well be faced with staring down the funnel
of death: a region of parameter space in the normal ordering where – for a particular cancellation
among the absolute neutrino mass scale, the Majorana phases, and the oscillation parameters – the
neutrinoless double beta decay rate may be vanishingly small. To answer the question of whether
this region of parameter space is theoretically preferred, we survey five broad categories of flavor
model structures which make various different predictions for parameters relevant for neutrinoless
double beta decay to determine how likely it is that the rate may be in this funnel region. We find
that a non-negligible fraction of predictions surveyed are at least partially in the funnel region. Our
results can guide model builders and experimentalists alike in focusing their efforts on theoretically
motivated regions of parameter space.

I. INTRODUCTION

Neutrino oscillations [1–4] provide one of the few
strong motivations for physics beyond the Standard
Model (SM) as it requires at least two massive, ac-
tive neutrinos. Oscillation experiments, however, tell us
about neither the absolute neutrino mass scale nor about
the nature of the neutrino mass: Dirac vs Majorana. One
possible means of probing the latter question is to con-
sider lepton number violating processes which provide a
clear and striking signature that neutrinos are Majorana
particles [5]. The most experimentally promising lepton
number violating process is neutrinoless double beta de-
cay (0νββ) which is the transition of a nucleus with (A,
Z) atomic numbers to (A, Z + 2), accompanied by the
emission of two electrons, but without the emission of
two anti-neutrinos [6]. The observation of neutrino oscil-
lations has already demonstrated that the lepton num-
ber of individual flavors is not conserved; 0νββ could go
one step further marking the first observation that total
lepton number is not a conserved symmetry of Nature
either1. This process is experimentally challenging to
measure (for reviews see [11–15]); however, experiments
continue to make tremendous progress covering more and
more parameter space pushing into the region suggested
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1 Note that the converse need not be true. That is, the non-
observation of 0νββ, e.g. if the atmospheric mass ordering was
found to be inverted, does not guarantee that neutrinos are Dirac
neutrinos. One such scenario is pseudo-Dirac neutrinos [7–10]
where neutrinos are actually Majorana neutrinos but |mββ | may
be quite small even in the inverted ordering.

by neutrino oscillations. Indeed, thanks to the progress
in neutrino oscillation experiments, all neutrino mixing
angles and mass splittings are now measured to a good
accuracy [16] which allows for improved predictions of
the theoretically allowed regions of parameter space for
0νββ experiments.

Somewhat surprisingly, the observed leptonic mixing
pattern seems to be in considerable contrast to the quark
mixing matrix, a difference that could imply a nontriv-
ial connection between the two sectors. Many models
attempting to make sense of the so-called “flavor puz-
zle” of the SM make predictions for the mixing param-
eters, including the so-called Majorana phases and ab-
solute neutrino mass scale, which can be compared with
experimental data. These models provide experimental
targets for a wide variety of neutrino experiments and can
be used to plan experimental stages or requested bench-
mark sensitivities [17, 18]. Making precise predictions is
challenging, however, due to the very large number of fla-
vor models considered in the literature that still provide
acceptable fits to existing neutrino (and possibly quark)
data as they make a wide variety of predictions for the
remaining neutrino parameters.

In this paper we will focus on the predictions related
to flavor models applied to the neutrinoless double beta
decay rate observable, motivated by the predicivity of
flavor models for several parameters which enter this
observable. Taking the exchange of three light Majo-
rana neutrinos as the dominant contribution to 0νββ,
the predicted ranges for the particle physics observable
|mββ | depend critically on the neutrino mass ordering
which remains undetermined by oscillation data: nor-
mal (NO) with m1 < m2 < m3 or inverted (IO) with
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m3 < m1 < m2
2. Of particular interest is the region in

the NO which leads to immeasurably small rates of 0νββ
due to a precise cancellation among the absolute neutrino
mass scale, the Majorana phases, and the oscillation pa-
rameters3; this region is known as the funnel and is often
quantified as values of |mββ | < 1 meV for concreteness.
In this manuscript we will study this region of parameter
space from a theoretical point of view in the context of a
wide range of flavor models taking a bottom up approach
(see [22, 23] for earlier studies before θ13 was measured).

We aim to provide a comprehensive study of viable cat-
egories of conceivable predictions phenomenologically re-
lated to the structure of existing flavor models discussed
in the literature which make predictions for |mββ | and de-
termine the fractions of predicted parameter space which
fall into the funnel region within the constraints of the
latest neutrino oscillation data. That is, we are inves-
tigating whether or not categories of flavor models that
have been studied in the literature containing any con-
ceivable models prefer to be in the funnel. Even though
a particular focus of our work is the funnel region we will
also present a global overview of the preferred regions
of parameter space in these phenomenological categories
of models to demonstrate the existence and location of
theoretically motivated regions of observables. The ad-
vantage of doing such a study before experimental limits
reach the normal hierarchy is to understand what ranges
of observables models predict before the measurements
are made. This can guide future work both from the ex-
perimental and theoretical sides as we identify preferred
regions of parameter space which can serve as targets
to focus experimental efforts on. From the theoretical
side we give a detailed overview of different categories
of flavor models which make predictions for 0νββ, assess
their validity by comparing their predictions to current
knowledge of the mixing parameters and bounds on the
absolute mass scale, and calculate their preferred regions
of parameter space. Our work can thereby provide im-
portant guidance for future model building work. We
focus on the low scale application of these predictions so

our results do not depend on any details of neutrino mass
generation; therefore, we do not include potential renor-
malization group effects on the running of the parameters
that may be present in some scenarios.
This paper is organized as follows: we will start with a

short introduction to 0νββ in sec. II, then we explain and
discuss the categories of predictions we consider including
our results in secs. III, IV, and conclude in sec. V.
II. NEUTRINOLESS DOUBLE BETA DECAY

REVIEW

We start with a short review about neutrinoless double
beta decay. We make the oft-used assumption that the
dominant contribution to 0νββ arrives from the exchange
of three light (mν ≲ 100 MeV [24]) Majorana neutrinos;
see [24–32] for other new physics scenarios which give
rise to 0νββ. The observable in neutrinoless double beta
decay is the decay half-life which is a function of various
physics parameters,

(T 0νββ
1/2 )−1 = G0νββ(Q,Z)|M0νββ(A,Z)|2|mββ |2 , (1)

where G0νββ(Q,Z) is the phase-space factor of the par-
ticular transition which depends on the isotope’s Q value
and is well known, |M0νββ(A,Z)|2 is the nuclear matrix
element which currently presents a considerable source
of theoretical uncertainty [14, 33, 34], and |mββ | is the
effective neutrino mass defined as [35]

|mββ | =
∣∣∣∣∣

3∑
i=1

U2
eimi

∣∣∣∣∣ . (2)

The effective neutrino mass contains the particle physics
information of interest relevant for understanding neu-
trino masses and mixings and is the focus of this paper.
We write it in terms of mixing parameters in the stan-
dard parametrization of the neutrino mixing matrix [4],
the PMNS matrix [36, 37], where we choose to assign the
Dirac CP phase to the second row of the matrix such
that eq. (2) is independent of it4. In this case the PMNS
matrix reads

UPMNS =

 c12c13e
iα/2 s12c13e

iβ/2 s13
(−c23s12 − c12s13s23e

iδ)eiα/2 (c12c23 − s12s13s23e
iδ)eiβ/2 c13s23e

iδ

(−c12c23s13 + e−iδs12s23)e
iα/2 (−c23s12s13 − e−iδc12s23)e

iβ/2 c13c23

 , (3)

2 We define the neutrino mass eigenstates in the usual way with
decreasing amount of νe fraction: |Ue1| > |Ue2| > |Ue3|, see
e.g. [19].

3 While this region is essentially impossible to probe experimen-
tally, it does have the advantage that if it was known that |mββ |
were in the funnel, then we would have good knowledge of both

Majorana phases [20, 21], something that is otherwise essentially
impossible.

4 It is clear from eq. (2) that there can be only two physical phases;
the inclusion of δ in the first row leads to an additional phase
redundancy which does not affect observables.
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where we use the short hand notation cij = cos θij , sij =
sin θij and the Majorana phases α, β where one of them
can be between ∈ [0, π], the other one ∈ [0, 2π]. Thus we
can see that |mββ | is a function of seven free parameters:
the three neutrino masses, two mixing angles and two
Majorana phases [38–40].

A non-trivial feature of the seven parameters is that
the predicted range of 0νββ also depends on the neu-
trino mass ordering. Oscillation experiments are starting
to provide hints for the neutrino mass ordering, in partic-
ular, when combined in global fits which currently show
a preference for the NO [41–43]5. Using the measured
values of the neutrino mass splittings and mixing angles,
|mββ | depends on only three unknown parameters: the
absolute neutrino mass scale which is constrained to be
at most somewhat light, and two Majorana phases which
are completely unconstrained. Note that |mββ | only con-
strains at most one combination of the two phases; unless
|mββ | ≈ 0 it is not possible to determine both Majorana
phases using oscillation data with a detection of 0νββ
alone [20, 21]. Furthermore, the Majorana phases do not
lead to manifest CP violation in 0νββ [47, 48]6, they
affect the 0νββ amplitude in a CP-even way, which ex-
cludes the possibility to determine them by considering
0νββ with the emission of two electrons and its CP con-
jugated process with the emission of two positrons.

The absolute mass scale can, in principle, be con-
strained by beta decay end-point experiments such as
KATRIN [51], but the best constraints up to now come
from cosmology. Constraints vary from

∑
mν < [87, 90]

meV at 95% CL [50, 52]. We take 90 meV [50] as our
fiducial number which then maps onto m1 ≲ 17 meV in
the normal ordering for the best fit oscillation parame-
ters. Current cosmological data seems to be incompati-
ble with the inverted ordering at 95% CL, although the
details of this constraint depend considerably on one’s
choice of priors [53–55]. The currently preferred regions
for the neutrino masses are shown in fig. 1 using oscil-
lation data, the oscillation preference for the normal or-
dering (not used in the statistical tests elsewhere in this
paper), and the cosmological constraint on the sum of
neutrino masses (also not used in the statistical tests else-
where in this paper). Note that the different preferred
regions for each mass are correlated with one another.
We see that m2 has both an upper and lower limit while
either m1 or m3 can be zero. We also see that each mass
state has two disjoint preferred regions due to the differ-
ent mass orderings as well as the important constraint
from cosmology.

5 The hints coming from long baseline accelerator neutrino exper-
iments, however, might be an indication of new physics [44–46].

6 Note that the Majorana phases can lead to CP violating phenom-
ena in other observables, for example in the leptogenesis scenario
where a lepton asymmetry is generated via the decay of heavy,
right-handed neutrinos which depends on the Majorana phases
of these neutrinos [49].

The current best limit on |mββ | is from KamLAND-
Zen with 136Xe [56]

|mββ |exp < (36–156) meV , (4)

where the range of values is due to the range of predic-
tions for the nuclear matrix element. The most optimistic
matrix element values indicate that this constraint starts
to push into the inverted hierarchy while future experi-
ments [57] will further probe a large part of this region,
subject to nuclear matrix element uncertainties. In addi-
tion, future constraints on the neutrino mass scale from
cosmology have important implications for 0νββ [58].
In fig. 2 we show the allowed regions in the |mββ | −

mlightest plane based on our knowledge of oscillation data,
as well as the constraints on the lightest neutrino mass
and upper limits on |mββ |. The regions are drawn at
the 3σ limit which means we impose that the total ∆χ2,
understood as the sum of all ∆χ2 of the mixing angles
and mass splittings, is equal to 11.83 which is 3σ with
2 dof7. This is different from what is commonly done in
the literature where each individual oscillation parameter
is allowed to increase to some critical threshold without
consideration for the total test statistic. We do not im-
pose information in the test statistic for the lightest mass
from cosmological measurements or from |mββ |, although
since the latter only pushes into the inverted hierarchy
it would not affect a discussion of the funnel. We also
do not include a penalty factor for current preference
from the oscillation data for the normal ordering over
the inverted ordering, although this also would not af-
fect the funnel discussion. We avoid those constraints
because they make the distinction between the normal
ordering and the inverted ordering complicated in a way
that depends quite sensitively on the precise statistical
test performed. Finally, we do not include any informa-
tion about δ (even though δ does not affect 0νββ, it is
relevant for specific classes of flavor models) from long-
baseline oscillation data as there is a mild tension among
the two relevant data sets, NOvA and T2K [45, 46] and
most values are allowed in any case. The yellow regions
show the allowed region if all oscillation parameters are
known perfectly at the best fit values from [42]. The only
free parameters in the yellow region are the two Majorana
phases. The blue region shows the enlarged region that
we can expect with the expected precision of the oscil-
lation parameters from DUNE and JUNO [59, 60]. This
shows that the future measurements of the oscillation pa-
rameters by DUNE and JUNO will take us very close to
the perfect knowledge case. The red regions show the

7 The choice of the number degrees of freedom is here is non-
trivial. Our choice is based on the fact that since there are two
physics parameters: |mββ | and mlightests this corresponds to two
degrees of freedom. While they are clearly related to each other,
even with known oscillation parameters, the additional freedom
from the two Majorana phases more than ensures that |mββ | is
a distinct degree of freedom.
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FIG. 1. The current knowledge on the absolute masses of the three neutrinos. The data included is the average of the three
global fits for ∆m2

21, |∆m2
31|, and the preference for the normal ordering [41–43], as well as the cosmological constraint on the

sum of the neutrino masses that does not yet show evidence for neutrino masses [50]. Left: The ∆χ2 for parameter estimation,
where we also note that the minimum χ2 for each state is ∼ 1.75 and thus is an acceptable fit to the data. Right: The 1, 2, 3
σ preferred regions for each mass state, individually. The thicker regions are more preferred.

additional parameter space due to the current oscillation
uncertainties, also taken from [42]. We see that future os-
cillation experiments will constrain the parameter space
further close to the relevant limit of perfect information,
however the oscillation parameters are already measured
rather precisely such that the Majorana phases present
the largest uncertainty in the allowed regions of parame-
ter space. Therefore, predictions which are in agreement
with the oscillation data but additionally predict the Ma-
jorana phases are of particular phenomenological interest
as they prefer only parts of the generally allowed param-
eter space.

We are specifically interested in the funnel region in
NO, which we define as |mββ | < 10−3 eV, consistent
with other analyses in the literature, e.g. [20, 21, 61].
Such small values of |mββ | can only be achieved if the
atmospheric mass ordering is normal and for m1 ∈
[6 × 10−4, 8 × 10−3] eV assuming the best fit values of
the neutrino parameters from oscillations [42]. To un-
derstand the cancellation we interpret the expression for
|mββ | as a quadrilateral in the complex plane, see fig. 3
(see [62] for an alternative graphical representation of
|mββ |). If |mββ | ≈ 0, the quadrilateral reduces to a tri-
angle. Since m1|U2

e1| grows faster with m1 than m2|U2
e2|

and m3|U2
e3| in the NO, there are values of m1 where the

sum or difference of m2|U2
e2| and m3|U2

e3| corresponds
to m1|U2

e1|. The situation is different in IO as the in-
equalities m1|U2

e1| > m2|U2
e2| > m3|U2

e3| are satisfied for
all values of m3 and the currently allowed values for the
mixing matrix elements from [42]. There are no values
of the lightest mass where two sides of the quadrilateral
sum up another side. Therefore, the quadrilateral never
collapses to a triangle and the minimum of |mββ | in the

IO is |mββ | = 19.8 meV with m3 = 2.98 meV. These
values for the absolute neutrino mass scale which lead
to |mββ | < 10−3 eV can be tested with the next gen-
eration of laboratory based experiments like the ECHo
experiment [63], Project 8 [64], and the PTOLEMY ex-
periment [65] as well as cosmological experiments [66–69]
which will be sensitive down to neutrino masses in the
O(10 meV) region. This, combined with the preference
for the NO over the IO from oscillation data, makes a
study of the funnel region most timely.

III. RESULTS FOR MODEL CATEGORY
PREDICTIONS

In this section we will introduce the categories of model
predictions we study, provide an overview of the under-
lying theories, and present the preferred regions of pa-
rameter space and fractions in the funnel.

We start by providing a complete phenomenological
study of categories of models which make predictions for
observables which enter |mββ |. These categories of mod-
els can be further subdivided into groups of model predic-
tions which have the same predictions. These groups of
predictions are defined to cover existing individual mod-
els that are studied in the literature but are expanded
to include other conceivable models with different com-
binations of the same input parameters. An important
condition of our analysis is that we will not be concerned
with whether or not all of these particular phenomenolog-
ical predictions can be fully realized in concrete models,
and we simply consider the option that they could be,
thereby providing a phenomenological starting point for
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FIG. 2. The currently allowed region in the |mββ | −mlightest

plane for both mass hierarchies (the upper band corresponds
to IO, the lower region to NO). The yellow region is the ex-
pected allowed region with perfect knowledge of the oscilla-
tion parameters and the blue region indicates the increased
region allowed due to the expected future precision in the os-
cillation parameters from DUNE and JUNO. The red region
indicates the increased region including the current uncertain-
ties on the oscillation parameters. All contours are drawn at
true 3σ. The current upper limit on |mββ | from KamLAND-
Zen is shown as horizontal gray bands where the darker and
lighter gray regions assume different determinations of the nu-
clear matrix element [56]. The upper bound from cosmology
on the absolute neutrino mass scale in NO [50] is shown as a
vertical gray band.

model builders by investigating conceivable model pre-
dictions.

The model categories and the neutrino parameters
they predict are schematically shown in fig. 4. Starting
from the phenomenological point of view from model pre-
dictions for observables entering |mββ |, we consider cate-
gories of models which make predictions for one or several
of them. Indeed, each phenomenological category makes
predictions at a certain level in the mass matrix. Pre-
dictions for the mixing parameters are generally driven
by the structure of the neutrino mass matrix while pre-
dictions for the neutrino masses depend on the number
of free parameters in the neutrino mass matrix. Models
which affect the neutrino masses typically also predict a
lower (and upper) limit on the lightest neutrino mass,
allowing an additional probe of these categories via ex-
periments sensitive to the absolute neutrino mass scale.

The five model categories we consider in this work are
as follows:

• Generalized CP (§ III B) which makes predic-
tions for all three complex phases only.

• Sum rules (§ III C) which make predictions for the

U2
e3m3

U
2e
2 m

2

π − β

U
2 e
1
m

1

π + β − α

m
β
β

mββ = 0.19 meV
m1 = 4 meV
α = 4.43
β = 1.73
NO

FIG. 3. A visual representation of mββ on the complex plane
in the normal ordering for some choice of the Majorana phases
and the mass of the lightest neutrino. Since the three legs that
make up mββ nearly close in this example, |mββ | is small
enough to be in the funnel.

Generalized CP

Sum Rules

Charged Lepton
Corrections

Texture Zeros

Modular
Symmetries

α, β, δ

θ12, θ13, θ23

Phases:
α, β

Masses:
m1,m2,m3

Mixing Angles:
θ12, θ13

FIG. 4. Overview and categorization of the models studied
and the parameters they predict. The grayed parameters, δ
and θ23, do not affect neutrinoless double beta decay, and not
all flavor models (specifically sum rules) that predict the Ma-
jorana phases α and β also predict δ. Each category contains
groups of models for which we derive results. The groups of
models contain individual models realized in complete scenar-
ios, for example based on underlying symmetries.
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masses and the Majorana phases only8.

• Charged lepton corrections (§ IIID) which
make predictions for the mixing angles and com-
plex phases.

• Texture zeros (§ III E) which make predictions
for all nine parameters in the mass matrix.

• Modular symmetries (§ III F) which also make
predictions for all nine parameters in the mass ma-
trix.

To better understand the predictions of these models,
we compare the number of constraints to the number of
free parameters in the neutrino sector. As we are inter-
ested in neutrinoless double beta decay which can only
happen for Majorana neutrinos, we focus on this case
only, even though the model categories we study here
also allow for Dirac neutrinos. The complex, symmetric
Majorana mass matrix has twelve parameters of which
three phases can be absorbed into the three flavor eigen-
states. Therefore, we are left with nine free parameters.
The Majorana mass matrix Mν is diagonalized as

Mν = UPMNS Dν UT
PMNS (5)

with the PMNS matrix UPMNS [36, 37] and the diagonal
mass matrix Dν which contains the eigenvalues of Mν

which are the light neutrino masses including the Majo-
rana phases Dν = diag(m1e

iα, m2e
iβ ,m3) amounting to

nine free parameters. In appendix A, we give the expres-
sions for the mass matrix elements as a function of the
mixing parameters and mass eigenvalues. Both sides of
eq. (5) are parametrized with the same number of param-
eters: nine. Nevertheless, there is no one-to-one mapping
of the mixing parameters to the matrix elements, all mass
matrix elements depend on a combination of mixing pa-
rameters.

We point out that the nine parameters in the mass
matrix need not be split up in terms of masses (eigen-
values), mixing angles, and complex phases in the usual
way; there are other viable parameterizations of the de-
grees of freedom of the mass matrix. One such example
is with SU(3) generators (e.g. Gell-Mann matrices), see
appendix B.

Focused on the usual parameterizations, the nine free
parameters in the neutrino sector, assuming Majorana
neutrinos, are the three neutrino masses, three neutrino
mixing angles, and three CP phases. Out of these nine
parameters, five have been measured at neutrino oscilla-
tion experiments (three angles, two mass splitting) while
a sixth parameter, the Dirac CP phase will be measured

8 We will consider sum rules for the masses here. There exists
another category of sum rules which involves the angles, these
typically arise in models with charged lepton corrections, see
sec. IIID.

in the future [60, 70]. Out of these five measured param-
eters, only four impact 0νββ as |mββ | does not depend
on θ23 (it also does not depend on δ). Experiments sen-
sitive to the absolute neutrino mass can constrain one
parameter which also plays a role in 0νββ.
Each different class of models not only impacts differ-

ent sets of the physical parameters, as shown in fig. 4,
but also constrains those parameters at different levels.
Some, such as generalized CP or sum rules, provide only
a small number of constraints while others, like modu-
lar symmetries, provide a large number of interconnected
constraints among all the parameters.

A. Numerical approach

In order to quantify the validity of a given model and
also its interplay with the funnel, we perform careful nu-
merical studies, the methods of which are outlined here.
While there are some necessary choices to be made about
the nature of the analyses, they have been made in such
a way as to allow for a direct comparison among the dif-
ferent models and model classes and a representative nu-
merical picture of the relationship between flavor models
compatible with oscillation data and the funnel.
We study the predictions of the flavor models, requir-

ing that the model predictions for the mixing parameters
are in agreement with the experimental data; i.e., these
flavor models correctly describe leptonic mixing and are
hence not ruled out9. We will use the current global fit
data for the mixing angles from [42] to derive the allowed
values for |mββ |. As discussed in the previous section, we
consider the true 3σ allowed regions of parameter space
which corresponds to a total ∆χ2 = 11.83 (3σ for 2 dof)
interpreted as the sum of the individual ∆χ2 of the mix-
ing angles and mass splittings. This approach is different
from what is commonly done in the literature, where the
allowed regions in the |mββ | − mlightest plane (either in
general or for a specific model) are derived by varying the
individual mixing parameters in their 3σ ranges, which
leads to a total ∆χ2 larger than it should be. This dif-
ference in the statistical approach leads to a difference
in our results compared to results in the literature with
other allowed regions being artificially looser than the
quoted statistical significance implies. Another crucial
difference arises from our usage of up-to-date global fit
results of the mixing parameters. In particular, the un-
certainty on ∆m2

31 decreased in the past 5 years from 4%
to 1%; after 2013 the uncertainty on ∆m2

21 and θ12 re-
mained similar, and the improvements in the precision of

9 We only consider priors on the three mixing angles and two mass
splittings, but not on the sign of ∆m2

31, despite some evidence
that it is positive. In case a model also predicts δ we do not
include a prior. Similarly, we do not include any prior on the
absolute neutrino mass scale.
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θ13 [16] do not have a huge impact on the uncertainties
for 0νββ.
To determine the fraction of models in the funnel we

follow several steps for each class of models:

1. We first calculate the number of models which are
viable. These are the models that are in agreement
with the oscillation data.

2. Then we determine which of those have any fraction
within the funnel which we define to bemββ < 10−3

eV.

3. Then we determine the fraction of each model that
is within the funnel as outlined below.

Different classes of models structure their predictions
differently; some provide constraint equations while oth-
ers also introduce new underlying parameters of the
model. Thus, there is not a straightforward means to
consistently sample the model space; a study of one
model (or one class of models) might prefer a differ-
ent statistical test and come to slightly different conclu-
sions. Instead, we use a simple phenomenologically moti-
vated definition that will be equally representative for all
models, although we caution the reader that, even still,
some regions of parameter space may be over-/under-
represented compared to the representative size of the
underlying parameters. We define the fraction within
the funnel as,

f =

∫
funnel

d logmlightestd logmββ∫
d logmlightestd logmββ

, (6)

where the integrals are over the allowed parameter space
for a given model. For the denominator we only take the
NO into account because the mass ordering will be known
at high significance before neutrinoless double beta de-
cay experiments probe the normal ordering. We also con-
sider the same expression with a linear distribution on the
masses (d logm → dm). In addition, we bound the inte-
gral mlightest ∈ [10−4, 10−1] eV and mββ ∈ [10−4, 100] eV
as shown in fig. 2. In some cases this affects the numeri-
cal results somewhat artificially; however, these numbers
are well motivated by existing limits on the lightest neu-
trino mass and |mββ | and the general narrative does not
change much. In addition to the fraction within in the
funnel we also show probability density functions (PDFs)
of each category in the |mββ | −mlightest plane where the
darker the color, the higher the PDF. Due to the common
choice to present these plots in log-log scale the regions
covered in these models are not necessarily uniform in
the colored regions.

We now turn to the five model classes in the following
subsections.

B. Models with generalized CP

In models where CP is a conserved quantity the values
of the CP violating phases are constrained to be 0 or π

[71–76]. On the other hand, the phases can have non-
trivial phases if a discrete symmetry is combined with
a generalized CP symmetry [75]. Apart from the CP
conserving values, possible predictions for the Majorana
phases are π/2, 3π/2 [77–83]. Similar to [84] we con-
sider 16 combinations of values for the Majorana phases
(α, β) ∈ {0, π/2, π, 3π/2}. Out of the 16 combinations,
several map onto each other (see appendix C) such that
there are only 10 independent combinations. All of them
are viable since they only predict the Majorana phases
and the ones with (0, π), (π, 0) predict a region in the
funnel, see fig. 5. We find a ∼ 50% probability (using a
log prior) that these two models are in the funnel. Fur-
thermore, these models cover much of the whole allowed
region for mββ . Since the PDF is not uniform, however,
there is a preference in these models for mββ values close
to the lower allowed bound in IO and towards small val-
ues of the lightest mass in NO, even though all models
are compatible with all values of mlightest as they do not
predict a lower limit on the absolute neutrino mass.

C. Models with mass sum rules

Mass sum rules are relations between the three com-
plex neutrino eigenvalues mie

iαi (for overviews see [85–
87]), and they arise in flavor models where the neutrino
mass matrix depends on two complex parameters only
[88]. Then the three eigenvalues of the mass matrix are
not independent but are related by a sum rule. As one
complex neutrino mass eigenvalue can be expressed as a
function of the other two, these models constrain two pa-
rameters in the mass matrix and therefore these models
predict two parameters of interest in |mββ |.
Mass sum rules can be parameterized with 5 free real

model parameters

c1e
iχ1(m1e

iα)d + c2e
iχ2(m2e

iβ)d +md
3 = 0 , (7)

where d is the power of the sum rule, c1, c2 are the real
coefficients of the sum rule, and χ1, χ2 are the phases.
Note that we have set the coefficient and phase of m3 to
be 1 and 0, respectively.
Up to now 12 mass sum rules have been identified in

over 60 different models [85, 89–148]. These previously
studied sum rules have parameters within certain typ-
ical ranges: c1, c2 ∼ O(1), d = ±1,±1/2, χ1, χ2 =
0, π,±π/2. However other values for these parameters
are possible.
For this study we will remain agnostic about the model

realizations of the mass sum rules and study mass sum
rules with c1, c2 ∈ [1/6, 2/6, 3/6, 4/6, 5/6, 1, 2], d =
±1, ± 1/2, χ1, χ2 = 0, π, π/2, 3π/2. These choices in-
clude 11 realized mass sum rules; additionally, we con-
sider c1 = 2/(

√
3 + 1), c2 = (

√
3 − 1)/(

√
3 + 1), d =

1, χ1 = 0, χ2 = π to fully cover the parameter
space of allowed mass sum rules with constant coeffi-
cients. For the sake of concreteness we do not include
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d = ±1/4,±1/3 as they have not appeared yet in real-
ized sum rules in the literature. Our choice of parameters
to study covers existing models in the literature. It is
conceivable that other models could also be realized with
ratios of larger integers; in order to retain some amount
of predictivity, we truncate the parameters at the level
of existing models in the literature.

A mass sum rule can be interpreted as a triangle in the
complex plane which closes if the sum rule is fulfilled, this
leads to prediction for the Majorana phases depending on

the light neutrino masses. Furthermore, there is a lightest
neutrino mass for which the triangle can close, in some
cases there is also an upper limit on the neutrino masses.
For some coefficients the mass sum rule can never be
fulfilled like −2

√
m1eiα + 1/2

√
m2eiβ −√

m3 = 0, while
in other cases the mass sum rule can only be fulfilled for
one neutrino mass ordering but not for the others, like
m1e

iα − 2m2e
iβ −m3 = 0 which can only be fulfilled in

the NO. All of these predictions affect |mββ |, making this
observable the ideal probe of the existence and type of
mass sum rules. In general, mass sum rules only allow
a small range in the |mββ | − mlightest parameter space
[15]. In fig. 6 we show the allowed ranges for several
representative sum rules. We see that predictions from
sum rules can be very different, and while all sum rules
predict a lower bound on the lightest mass, some of them
also predict an upper bound.
In fig. 7 we show the PDF of models with sum rules.

Out of the 3137 models, 1968 are viable of which 14%
are in the funnel. None of the 12 models realized in
the literature has a fraction in the funnel10. There are
17 models with at least 50% in the funnel and they are
enumerated in appendix D11.
From fig. 7 we also see that sum rules cover the whole

parameter space rather uniformly however none of the
models we studied allows for m1 < 10−4 eV in NO while
there is no lower bound in IO. This can be understood as
in NO there is a hierarchy between the masses, even for
small m1 which requires larger coefficients than we study

10 This statement seemingly contradicts previous results [86, 149]
however this discrepancy arises due to the different choice of χ2

contours.
11 We provide a text file containing all sum rule models at peter-

denton.github.io/Data/0nubb Survey

https://peterdenton.github.io/Data/0nubb_Survey/index.html
https://peterdenton.github.io/Data/0nubb_Survey/index.html
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FIG. 7. The same as fig. 5 but for sum rules.

to fulfill the sum rule for smaller masses. In IO, on the
other hand, m1 and m2 are nearly degenerate such that
cancellations between them can occur, which allows the
sum rule to be fulfilled.

We further investigate the roles the five individual sum
rule parameters play in the behavior of the models as
shown in fig. 8. These figures show, for each value of
each parameter, the fraction of all models that are either
not consistent with oscillation data (orange), consistent
with oscillation data but never in the funnel (green), or
consistent with oscillation data and some fraction in the
funnel (blue). Interesting trends appear. We see that
sum rule models are more likely to be in the funnel for
small c1 and large c2. The exponent d also plays an im-
portant role, particularly that d = 1 is never in the funnel
as in this case the sum rule always leads to values of m3

so large that the quadrilateral for mββ cannot collapse
to a triangle. On the other hand, models with d = −1/2
have the largest fraction (≈ 20%) in the funnel. The val-
ues of χ1, χ2 individually do not drastically impact the
validity or fraction in the funnel, while we find that for
d = −1 over 80% of the models are viable but less than
40% for d = 1/2.

We generally find that more than 50% of the models
studied are viable. For the coefficients c1, c2 we find
that the larger they are, the more viable models we find;
however, c1 = 2 again leads to fewer viable models.

Furthermore, if both coefficients are small, there is only
a small fraction of valid models, which we also show in
fig. 9. Finally, even though the values of χ1, χ2 individ-
ually are not very important for the validity or fraction
in the funnel, we find a correlation between them, and
larger values of both are preferred to find valid models,
see fig. 9. For the other parameters we do not find strong
correlations among them.

Thus, if the data indicates that we could be in the
funnel or if one wants to build specific models that map
onto sum rules that are consistent with current oscillation

data and are or are not in the funnel, this can give some
guidance about what kinds of parameters are likely to
achieve those goals.

D. Models with discrete symmetries in the
neutrino sector and non-zero charged lepton mixing

Many flavor models based on discrete symmetries pre-
dict θ13 = 0 which is in strong contrast to the experi-
mental data which prefers θexp13 ≈ 8.5◦ [150, 151]. There-
fore these predictions from discrete symmetries need
to be corrected. A way to do so is by introducing a
non-diagonal charged lepton mixing matrix as the mea-
sureable PMNS matrix is the product of the neutrino
mixing matrix and the charged lepton mixing matrix
UPMNS = U†

eUν . The introduction of a non-diagonal
charged lepton mixing matrix leads to relations between
the observable mixing parameters, including the Majo-
rana phases. These relations are called mixing sum rules
[18, 152–160] (for reviews, see [161–163]) and are similar
to the relations between the mixing parameters which
arise in models with modular symmetries described be-
low. A non-diagonal charged lepton mixing matrix could,
for example, originate in grand unified theories based on
SU(5) [164] or SO(10) [165, 166] where the structures
of the mass matrices for the charged lepton mass ma-
trix and down quarks coincide [167–170] such that the
charged lepton sector exhibits CKM-like mixings [171].
In [155, 159] a detailed, systematic study of various forms
of Uν , Ue in flavor models has been conducted, and the
expressions for the Majorana phases, as well as for the
mixing parameters, have been derived.
We will consider the cases of two or three rotations

in the neutrino sector and one or two rotations in the
charged lepton sector. For the neutrino mixing angles,
we use θν23 = 45◦, and several cases for θν12 motivated by
different popular symmetry forms of the neutrino mixing



10

1/6 2/6 3/6 4/6 5/6 1 2
0

20

40

60

80

100

c1

%

1/6 2/6 3/6 4/6 5/6 1 2
0

20

40

60

80

100

c2

%

0 π/2 π 3π/2
0

20

40

60

80

100

χ1

%

0 π/2 π 3π/2
0

20

40

60

80

100

χ2

%

-1 -1/2 1/2 1
0

20

40

60

80

100

d

% prob. in the funnel=0

prob. in the funnel>0

invalid

FIG. 8. The 3137 considered sum rule models split into the values of each of the five parameters with one panel for each of the
five parameters. The bars indicate the fraction of models with a specific value of one parameter that are either inconsistent
with oscillation data (orange), consistent with oscillation data but never in the funnel (green), or consistent with oscillation
data and some fraction in the funnel (blue). We only study the case of NO.
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FIG. 9. Fraction of valid models with sum rules for a set of two model parameters where we find correlations.

matrix, i.e. sin2 θν12 = 1/3, 1/2, 1/(2+ϕg), (3−ϕg)/4, and

1/4 with ϕg = (1+
√
5)/2 the golden ratio. We call these

models TBM, BM, GRA, GRB, and HG standing for tri-
bi-maximal mixing, bi-maximal mixing, golden ratio A
form, golden ratio B form, and hexagonal form respec-
tively. Additionally, we consider models with three neu-
trino rotations with θν13 = π/10, π/20, and arcsin(1/3),
which we call T13-1, T13-2, and T13-3 respectively, moti-
vated by existing models in the literature [145, 172–175].
The rotations in the charged lepton sector are free and
are effectively constrained by the measured mixing an-
gles. In fact, for models with θν13 = 0 the charged lepton
corrections are crucial to reproduce the observed mixing
angles. However, charged lepton corrections also impact
the predictions for the other mixing angles such that devi-
ations from maximal θ23 can also be achieved. Therefore
we also include models with two charged lepton rotations.
However, we constrain ourselves to a maximum of a total
of four rotations split between the neutrino and charged
lepton sector as they provide sufficient freedom to repro-
duce the three measured mixing angles. More rotations
or different predicted values of the neutrino or charged
lepton mixing angles might arise, however, in concrete
models [176–178].

To summarize the previous paragraph, we consider one
or two charged lepton corrections where we study all com-
binations of θe13, θe12, θe23 rotations12. Additionally, we
also consider phases in the charged lepton mixing matrix
which are necessary to obtain predictions on the phases
in the PMNS matrix. We introduce the phase matrices
Ψ = diag(1, e−iψ1 , e−iψ2) andQ = diag(1, eiξ1/2, eiξ2/2).
Explicitly, we derive results for the following scenarios

• two rotations in the neutrino sector, one charged

12 We do the rotations in the standard order UPMNS =
(Ue

12)
†(Ue

13)
†(Ue

23)
†ΨUν

23U
ν
13U

ν
12Q.

lepton rotation (15 cases)

UPMNS = (Ue
ij)

†ΨUν
23(π/4)U

ν
12(θ

ν,k
12 )Q

where (ij) ∈ {12, 13, 23}
and k ∈ {TBM, BM, GRA, GRB, HG} (8)

• two rotations in the neutrino sector, two charged
lepton rotations (15 cases)

UPMNS = (Ue
ij)

†(Ue
lm)†ΨUν

23(π/4)U
ν
12(θ

ν,k
12 )Q

where (ij) ∈ {12, 13}, (lm) ∈ {13, 23}, (ij) ̸= (lm)

and k ∈ {TBM, BM, GRA, GRB, HG} (9)

• three rotations in the neutrino sector, one charged
lepton rotation (45 cases)

UPMNS = (Ue
ij)

†ΨUν
23(π/4)U

ν
13(θ

ν,p
13 )Uν

12(θ
ν,k
12 )Q

where (ij) ∈ {12, 13 , 23} (10)

and k ∈ {TBM, BM, GRA, GRB, HG}
and p ∈ {T13-1, T13-2, T13-3}

For the phases contained in Ψ, Q we remain agnostic
about their values and we vary them freely13. Notice
that all four phases are not physical in all cases. In fact,
only for the case of two charged lepton rotations with
θe12, θ

e
13 ̸= 0 do all four phases play a role. The number of

free parameters thus varies in the different scenarios. The
case of three neutrino rotations and one charged lepton
rotation has the same number of rotations as the case
with two of each; however, since the free mixing angles
are always contained in the charged lepton sector, the

13 Simultaneously employing, for example, a generalized CP sym-
metry allows to fix the values of the phases like in [159].
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case of two neutrino rotations and two charged lepton
rotations has the most freedom.

These models make predictions for the mixing angles
and the Majorana phases; therefore, they can be tested in
0νββ experiments. In addition, these models also predict
the CP phase δ; however, we do not include a prior on δ in
our analysis. Nevertheless, this prediction also presents
a crucial test of this class of models [155, 156]. On the
other hand, these models do not predict a lower bound
on the lightest neutrino mass.

For the models with two rotations in the neutrino sec-
tor and one charged lepton rotation, we find that 8 out of
15 models are viable. The BM mixing pattern in the neu-
trino sector cannot be brought into agreement with ex-
perimental data with one charged lepton rotation. Other
mixing patterns are viable assuming a 1-2 or 1-3 rotation
in the charged lepton sector. All models studied with
two charged lepton rotations are viable. In particular, for
BM mixing, two charged lepton rotations are required to
correct both vanishing θ13 and maximal θ12. For three
neutrino rotations and one charged lepton rotation, we
find that only 8 out of 45 models are viable.

These results are in general agreement with results
from the literature [158, 159]. Nevertheless, we notice
that improved precision on the oscillation parameters in
comparison to the time where these studies were done
now disfavors some models which were previously al-
lowed. In total we find that out of the 75 cases, 31 models
are viable.

The predictions for 0νββ experiments are shown in
fig. 10. We find that many models predict a region in the
funnel. As this category of models does not predict the
mass scale, the regions extend to small masses and cover
the quasi-degenerate region disfavored by cosmology as
well. The funnel fractions are very similar in all models
and between 20% and 50%, demonstrating that, in this
category of models, up to a third of the parameter space
can be contained in the funnel14.

E. Models with texture zeros

In models with texture zeros it is assumed that the
complex symmetric Majorana mass matrix has some van-
ishing entries15.

Of particular importance for this paper is the 1-1 ele-
ment of the Majorana mass matrix which coincides with
the observable |mββ |, see [181–188]. A symmetry realiza-
tion of texture zeros can come from an extended scalar
sector and suitable Abelian symmetries [189]. Here, how-
ever, we will remain agnostic of any underlying symme-

14 We provide a text file containing all the charged lepton correction
models at peterdenton.github.io/Data/0nubb Survey

15 Note that one can also consider the case where there are zeros in
the charged- and neutral-lepton mass matrices separately [179,
180]; we will not consider these scenarios.

TABLE I. The fraction of each model that is in the funnel for
the 1-texture zero cases as defined in the text using a log prior
assuming the NO. All six models are viable in some region of
parameter space.

Fraction in funnel

Mee 1

Meµ 0.31

Meτ 0.30

Mµµ 0

Mµτ 0

Mττ 0

TABLE II. The fraction of each model in the funnel for the
2-texture zeros cases as defined in the text assuming the NO.
Models with an X are not viable anywhere in parameter space
at 3σ.

Meµ Meτ Mµµ Mµτ Mττ

Mee 1 1 X X X

Meµ X 0 X 0

Meτ 0 X 0

Mµµ X 0

Mµτ X

try behind texture zeros as well as about the origin of
the neutrino mass term16.
Majorana mass matrices with three or more indepen-

dent texture zeros are already ruled out by current oscil-
lation data [194], as in this case there are more observ-
ables than free parameters. Therefore, we will focus on
one- and two-texture zero mass matrices17.
For the vanishing mass matrix element Mαβ = 0, the

condition

3∑
i=1

UαiUβiDi = 0 , (11)

applies, where Di stands for the elements of the diagonal
matrix D and α, β run over the flavor indices e, µ, τ .
This condition takes the form of a mass sum rule, sim-
ilar to sec. III C, where the coefficients are the mixing
matrix elements. We show explicitly the expressions for
vanishing mass matrix elements in appendix A. In the
case of one-texture zero mass matrices, all six possible
matrices are in agreement with experimental data [182],
although in some case only one mass ordering is allowed,
see tabs. I, II.
There are, in total, 15 two-texture zero matrices of

which seven are in agreement with experimental data

16 There are other models which constrain the number of free pa-
rameters in the mass matrix by imposing that the trace or the
minor of the mass matrix is zero [190–193] which we won’t con-
sider here.

17 The case with no texture zeros is not predictive as there are more
free parameters than observables.

https://peterdenton.github.io/Data/0nubb_Survey/index.html
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FIG. 10. The same as fig. 5 but for models with discrete symmetries and charged lepton corrections.
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FIG. 11. The same as fig. 5 but for 1 texture zeros. Note that the Mee = 0 model predicts that |mββ | = 0 and is thus at the
bottom of the left panel, hence the presence of a model that predicts 100% of the model space in the funnel.

[194–202]. Two of them feature a vanishing e−emass ma-
trix element (Mee = 0, Meµ = 0 or Mee = 0, Meτ = 0)
and therefore predict 100% of the parameter space in
the funnel. Upon imposing two vanishing mass matrix
elements, we obtain four relations between the mixing
matrix elements and observables. The two-texture zero
mass matrices in agreement with experimental data have
one vanishing diagonal element of M , Mηη = 0, η =
(e, µ, τ), and one of the off-diagonal elements in the
electron row vanishes, Meγ = 0 with γ = µ, τ . Lastly,
the case with Mµµ = Mττ = 0 is also in agreement with
current data.

The one-texture zero case leads to two predictions for
Mν as it constrains the real and imaginary parts of this

mass matrix element18. Two constraints also apply to
oscillation and 0νββ experiments. In the two-texture
zero case the number vanishing mass matrix elements
double; therefore, the number of constraints is now four.
In both one- and two-texture zero cases, one can derive
expressions for masses, see appendix A.
In fig. 11 we show the results for the one-texture zero

case. We find that three models are in the funnel where
the model with Mee = 0 is 100% in the funnel and Meµ

and Meτ are partially in the funnel. Additionally, both
models in the funnel predict a lower bound on m1 ≳
4× 10−3 eV in NO.

18 Even if the mass matrix element is chosen to be real there are still
two constraints on the combination of mixing matrix elements
and mass eigenvalues.
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FIG. 12. The same as fig. 5 but for 2 texture zeros. Note that as in fig. 11, the two Mee = 0 models predict that |mββ | = 0 and
is thus at the bottom of the left panel, hence the presence of two models that predict 100% of the model space in the funnel.
On the left panel there is a small sliver of predicted space in the quasi-degenerate region on the top right in the cosmologically
disfavored region.

In fig. 12 we show the results for the two-texture zero
case. We find that only 46% (7/15) of the models are
viable and 28% (2/7) of the viable models are in the fun-
nel, specifically the two Mee = 0 models. Furthermore,
the five non-funnel viable models predict large values of
the lightest mass mlightest > 3× 10−2 eV, which is in the
quasi-degenerate region and is already ruled out by cos-
mology. This means the only actual viable models, when
also including cosmological data, for two-texture zeros
are the models with Mee = 0 and one of either Meµ = 0
or Meτ = 0 which also predict mββ = 0. This is a new
result.

There is another study that looked at a unique class
of models which can be described as texture zeros with
rotational corrections. This study concluded that it was
possible for models to go well into the funnel, although it
is important to note that θ13 was not known at the time
of this study [23].

F. Modular symmetries with fixed modulus

In [87] models based on modular symmetries with a
fixed modulus were studied. In these models only one
field is introduced which, upon obtaining a vacuum ex-
pectation value, breaks the flavor symmetry [203] (for a
review see also [204]). In comparison to models with dis-
crete symmetries where multiple fields are introduced, a
reduction of free parameters is achieved which leads to
more correlations between physical parameters. So far,
five models with the most correlations have been identi-

fied in the literature.19 In these models the symmetric
mixing matrix gets corrected by a 1-2 or 1-3 rotation,
similar to the case of one charged lepton rotation. Then
the three mixing angles and the Dirac CP phase are de-
termined by two free model parameters only. These mod-
els also lead to mass sum rules similar to those discussed
in subsection III C. In this case, however, the coefficients
of the mass sum rule are not constant, but they depend
on the two free model parameters, leading to a correla-
tion among the neutrino masses, Majorana phases, and
mixing parameters. The expressions for the mass sum
rules and the mixing angles can be found in [87]; for con-
venience, we quote them again in appendix E. Similar to
the case of mass sum rules these models predict a lower
and an upper bound on the lightest mass, see sec. III C.
Our results are shown in fig. 13. All five models are

viable, although two of them are only valid in the high
mass region that is disfavored by cosmological data. For
the five models present in the literature, we find that two
are in the funnel at only the 5% or 7% level (log prior).
It is likely that more models with such correlations ex-

ist. Their predictivity of different neutrino observables
makes them an interesting target for future neutrino ex-
periments, even beyond neutrinoless double beta decay
[18].

IV. DISCUSSION

In table III we give an overview of the number of mod-
els contained in each category and the number of allowed

19 Note that there are models with a free value of the modulus field
where a sum rule can arise like in [205].
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TABLE III. An overview of the number of total model groups
contained in each model category, the number of valid model
groups given oscillation data, and the fraction of valid model
groups which penetrate the funnel region in the NO.

Fraction of viable

Model Total Viable models in funnel

Generalized CP 10 10 0.20

Mass sum rules 3137 1968 0.14

Charged lepton corrections 75 31 1.00

1-Texture zeros 6 6 0.50

2-Texture zeros 15 7 0.28

Modular symmetries 5 5 0.40

models, and we provide the fraction of models in the
funnel. We see that some model categories have a sizable
fraction in the funnel; however, we caution the reader
that this could be an over representation due to the mea-
sure chosen, see eq. (6). Finally, some model categories
only feature a small number of viable models; therefore,
the total number of models in the funnel is not so big.

Among the model categories surveyed we find that fun-
nel fractions of ≈ 20–100% are possible, making probes of
the funnel region a crucial target to comprehensively test
different flavor models. Interestingly, most of the mod-
els studied that feature a fraction of parameter space in
the funnel also predict parameter space outside of the
funnel. This allows 0νββ experiments to narrow down
the parameter spaces of the models in the near future,
even without penetrating the funnel region. Exceptions
to this are texture zero models with Mee = 0 which pre-
dict mββ = 0 exactly and are therefore fully contained in
the funnel20.

20 Potentially, some sum rules with coefficients ci > 2 or different
values of d might also be fully contained in the funnel.

Here we focused on models based on symmetries. An-
other approach, referred to as “anarchy” assumes that
the leptonic mixing matrix can be described as the re-
sult of a random draw from an unbiased distribution of
unitary three-by-three matrices [206–208]. In the past it
has been shown that the probability for |mββ | < 10−3

eV is small, around 5% [208], see also [209]. Therefore,
flavor models based on symmetries can be more likely to
predict a region in the funnel in some cases.

Additionally, several models like sum rules, modular
symmetries, and 1-texture-zeros prefer large values for
the lightest mass and present a lower limit on mlightest

within the reach of near future 0νββ experiments [14]
such that the whole region of parameter space can be
probed with cosmology very soon. Generalized CP and
charged lepton corrections, on the other hand, do not
predict the absolute mass scale such that these models
will remain viable independent of a future measurement
of mlightest. We note that these models also predict other
observables which allow us to test these models. In fact,
these predictions are crucial in our assessment of the va-
lidity of these models. We find that for charged lepton
corrections, and 2-texture zeros only roughly half of the
total models are viable due to their predictions for the
mixing angles. In comparison to previous studies in the
literature, an important change is that the precision on
∆m2

31 has improved from 4% to 1% [16], which has a
big effect on the results and, in particular, the validity of
models. Future measurements of the oscillation parame-
ters will further test models; in particular, improvements
on δ and θ12 will probe and distinguish different models
[18] which will further narrow down the number of valid
flavor models. Even though neither δ nor θ23, the two os-
cillation parameters which are currently most uncertain,
plays a role for 0νββ, their measurements indirectly af-
fect our results here as these measurements constrain the
model parameters in that they tell us which models are
valid. For this study we did not include a prior on δ;
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however, models based on generalized CP, charged lep-
ton corrections, texture zeros, and models with modular
symmetries also predict δ; their validity will be tested
with the next generation of experiments, which in turn
will change the 0νββ landscape. Therefore, flavor models
provide a rich model space to test with upcoming exper-
iments, including oscillation experiments and cosmology.

When quantifying the fraction of a model in a funnel,
some choices need to be made related to eq. 6. While
many of our results are presented with a log prior in
mlightest, we also perform all the same calculations with
a linear prior in mlightest; see the right panel in figs. 5, 7,
10, 11, 12, and 13. A linear prior in masses is related to
what one would expect in anarchy for certain mass mod-
els [207]21 while, on the other hand, the other fermion
masses (i.e. their Higgs Yukawa couplings) seem to be
distributed uniformly on a log scale, see e.g. [210]. When
considering a linear prior, the fraction of the model pre-
diction in the funnel is less than or equal to the fraction
in the funnel with a log prior. They are the same in mod-
els which are entirely in the funnel (such as the Mee = 0
texture zero model predictions) or not at all in the fun-
nel. The difference is because models that are partially
in the funnel all contain predictions out of the funnel at
higher values of mlightest. With a linear prior, this re-
gion tends to quickly dominate the comparatively small
region in the funnel. Note that it is conceivable that a
model prediction would have the opposite trend: a larger
funnel fraction with a linear prior than with a log prior.
However, that does not seem to happen with the model
predictions considered here.

Finally, in all of the above computations, we assume
that the predictions in the models are exact at the low
energy scale of neutrinoless double beta decay, and we
assume that the full particle content of the mass model
of neutrinos does not modify these symmetry predictions.
In models where the symmetry arises from a high scale,
presumably related to neutrino mass generation, poten-
tial corrections to the low scale predictions can arise,
however, from renormalization group running effects. In
this case there may be corrections from running that
could have an important impact on the parameters de-
pending on both the flavor prediction structure and the
mass generation model, see e.g. [149, 211–217]. In some
cases such as texture zeros, the flavor prediction may per-
sist down to low scales [201, 218] however, and thus run-
ning has no impact in these cases. On the other hand,
it has been shown that in some mass generation mod-
els the neutrino parameters do not run from the heavy
scale to the low scale at all [219]; thus, any flavor pre-
diction associated with the mass generation mechanism
would be preserved at the scale of oscillations and neu-
trinoless double beta decay. In addition, in the case of

21 For real Dirac matrices the mass part of the anarchy measure is
∆m2

21∆m2
31∆m2

32dm1dm2dm2 while the complex cases have an
additional weighting of m1m2m3 which modifies the prior.

random values (e.g. anarchy) of the mixing parameters
[206, 208], running effects do not significantly change the
funnel narrative under various mass generation scenarios
[220]. Fully exploring this space of both flavor predictions
and underlying mass models at the same time is beyond
the scope of this paper. We can estimate that, in these
scenarios the flavor predictions of, for example, all of the
sum rules considered that land in the funnel may not be
the ones we have shown; however, we anticipate that a
comparable fraction of them will be in the funnel when
scanning over many different mass generation scenarios,
and thus our qualitative results should be independent of
renormalization group running.

V. CONCLUSIONS

An observation of neutrinoless double beta decay will
have a tremendous impact on our understanding of Na-
ture. Apart from proving that lepton number is not a
conserved symmetry of Nature, it can also provide valu-
able insights into other open problems of the SM like the
flavor puzzle. Motivated by the current and anticipated
experimental progress of various neutrino experiments,
we have studied the predicted ranges of mββ and mlightest

of several classes of flavor models. In particular, we fo-
cused on the funnel region in normal mass ordering with
|mββ | < 1 meV, which is experimentally challenging to
probe in order to answer the question of how likely it
is that a model prediction is only realized in the fun-
nel, which would require a massive leap in experimental
progress.
We have considered five broad classes of flavor mod-

els based on different symmetries. After assessing their
validity by comparing their predictions to our up-to-date
experimental knowledge from oscillation experiments, we
calculated the funnel fractions of the valid models. Our
study shows that all of the studied model classes feature
models with parameter space in the funnel. Indeed, the
fractions of viable models that are in the funnel range
from 5–100%. Thus, flavor models may well be more
likely to predict that |mββ | is in the funnel than in the
case of random neutrino mixing matrices, anarchy, where
the funnel probability is around 5%. Additionally, we
have provided PDFs of the predicted mββ −mlightest re-
gions of the classes of flavor models. We find that models
which predict the absolute mass scale generally predict
larger neutrino masses such that cosmological observato-
ries can test them as well in the near future in addition to
crucial tests of the predicted values for the mixing angles
to upcoming oscillation experiments.
Our results can be used to plan the target sensitivity

of upcoming neutrinoless double beta decay experiments
with the goal to probe most of the parameter space mo-
tivated by flavor models (see [221] for a similar study
focusing on existing sum rules in flavor models).
In this study we focused on light Majorana neutrino

exchange as the underlying scenario for 0νββ. Other
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scenarios when new particles are introduced could also
predict a region in the funnel. For example, models with
a sterile neutrino allow for vanishing rates for 0νββ [222–
227]. In particular, depending on the sterile parameters,
a funnel in IO opens up. However, a Bayesian analy-
sis of eV sterile parameters showed that the posterior
probability that |mee| falls into the funnel region is very
small, < 0.3% [228]. On the other hand, models based
on a left-right symmetry do not predict a region in the
funnel [31, 32], neither does a model where a new scalar
interaction [229] is introduced.

As neutrinoless double beta decay experiments con-
tinue to push the limits down into the inverted mass
ordering region, understanding the theoretically favored
regions of parameter space is important to plan for exper-
imental upgrades. In order to unambiguously interpret a
measurement in the context of flavor models presented in
this work, improvements in nuclear matrix calculations
are also needed.
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Appendix A: Expressions for the elements of the
mass matrix

Here we give the expressions for the elements of the
mass matrix as a function of the mixing parameters and
the mass eigenvalues. The number of free parameters
in the Majorana mass matrix and in the mixing matrix
together with the light mass eigenvalues, nine, coincide
as expected. Realistically, we are only able to measure
eight out of the nine free parameters in the mass matrix,
as we have no observable which depends on the individual
Majorana phases.

mee = m1e
iαc212c

2
13 +m2e

iβc213s
2
12 +m3s

2
13 (A1)

meµ = m1e
iαc12c13(−c23s12 − eiδc12s13s23) +m2e

iβc13s12(c12c23 − eiδs12s13s23)

+m3e
iδc13s13s23 (A2)

meτ = m1e
iαc12c13(−c12c23s13 + e−iδs12s23) +m2e

iβc13s12(−c23s12s13 − e−iδc12s23)

+m3c13c23s13 (A3)

mµµ = m1e
iα(−c23s12 − eiδc12s13s23)

2 +m2e
iβ(c12c23 − eiδs12s13s23)

2 +m3e
2iδc213s

2
23 (A4)

mµτ = m1e
iα(−c12c23s13 + e−iδs12s23)(−c23s12 − eiδc12s13s23)

+m2e
iβ(−c23s12s13 − e−iδc12s23)(c12c23 − eiδs12s13s23) +m3e

iδc213c23s23 (A5)

mττ = m1e
iα(−c12c23s13 + e−iδs12s23)

2 +m2e
iβ(−c23s12s13 − e−iδc12s23)

2

+m3c
2
13c

2
23 (A6)

For one vanishing matrix element Mαβ = 0, the ex- pressions for the neutrino mass ratios are [182]

m1

m3
=

Re(Uα3Uβ3)Im(Uα2Uβ2e
iβ)− Re(Uα2Uβ2e

iβ)Im(Uα3Uβ3)

Re(Uα2Uβ2eiβ)Im(Uα1Uβ1eiα)− Im(Uα2Uβ2eiβ)Re(Uα1Uβ1eiα)
(A7)

m2

m3
=

Re(Uα1Uβ1e
iα)Im(Uα3Uβ3e

iβ)− Im(Uα1Uβ1e
iα)Re(Uα3Uβ3e

iβ)

Re(Uα2Uβ2eiβ)Im(Uα1Uβ1eiα)− Im(Uα2Uβ2eiβ)Re(Uα1Uβ1eiα)
(A8)

The condition of two vanishing mass matrix elements
Mαβ , Mδγ , (αβ) ̸= (δγ) can be translated to expressions

for the neutrino masses and Majorana phases [196]

m1

m3
=

∣∣∣∣Uγ3Uδ3Uα2Uβ2 − Uγ2Uδ2Uα3Uβ3
Uγ2Uδ2Uα1Uβ1 − Uγ1Uδ1Uα2Uβ2

∣∣∣∣ ,
m2

m3
=

∣∣∣∣Uγ1Uδ1Uα3Uβ3 − Uγ3Uδ3Uα1Uβ1
Uγ2Uδ2Uα1Uβ1 − Uγ1Uδ1Uα2Uβ2

∣∣∣∣ . (A9)
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α = arg

[
Uγ3Uδ3Uα2Uβ2 − Uγ2Uδ2Uα3Uβ3
Uγ2Uδ2Uα1Uβ1 − Uγ1Uδ1Uα2Uβ2

]
,

β = arg

[
Uγ1Uδ1Uα3Uβ3 − Uγ3Uδ3Uα1Uβ1
Uγ2Uδ2Uα1Uβ1 − Uγ1Uδ1Uα2Uβ2

]
. (A10)

We see that the Majorana phases depend on the value of
Dirac CP phase in the PMNS matrix contained in matrix
elements Uµi, i ∈ [1, 3], Uτ1, Uτ2. Furthermore, from
eq. (A9) we see that the ratios of the neutrino masses
depend on the values of the matrix elements. With the
known values for the mass splittings, we obtain a lower
bound on the lightest mass, depending on which matrix
elements are zero.

From these expressions we see that there is no one-to-
one correspondence between mass eigenvalues and ob-
servables in experiments. This means that only with
a combination of measurements (i.e. different oscillation
channels and an observation of neutrinoless double beta
decay) one can reconstruct the neutrino mass matrix.
This situation is similar to considering only one mea-
surement at oscillation experiments. In one channel one
is only sensitive to a certain combination of parameters.
Only a combination of measurements can tell us the val-
ues of the mixing angles.

In addition, for absolute neutrino mass measurements
such as from KATRIN or cosmology and neutrinoless
double beta decay we are left with one measurement of
one combination of parameters assuming no prior knowl-
edge of the results from other experiments; one can there-
fore predict something for oscillation experiments as well.
In reality, we already have measurements from oscilla-
tions such that predictions from an absolute mass mea-
surement do not contribute new knowledge for oscillation
experiments.

Appendix B: Gell-Man SU(3) generators and the
mass matrix

The mass matrix need not be parameterized as three
masses, three mixing angles, and three phases. Other pa-
rameterizations are possible. One such explicit example
is with SU(3) generators, such as the Gell-Mann matri-
ces, see e.g. [230]. That is, the mass matrix from eq. (5)
can be written as

M = Mscale

8∏
i=1

exp(aiλi) , (B1)

where the eight ai ∈ R are free parameters as is Mscale

which sets the dimensionful scale and the λi are some
traceless representation of SU(3) such as the Gell-Mann
matrices. The dimensionful scale parameter can also be
thought of as the trace part of M . This could imply
novel flavor structures similar to texture zeros by requir-
ing some subset of the ai to be zero. One could also

TABLE IV. Pairs of values for the Majorana phases α, β in
models with generalized CP which lead to different results
for |mββ |. Some pairs are equivalent to others; these are in
the table to the right. The bolded pairs are the ones which
predict a region in the funnel.

(α, β)

(0,π)

(π,0)

(0, 0)

(π, π)

(α, β)

(0, π/2) or (0, 3π/2)

(π/2, 3π/2) or (3π/2, π/2)

(π, π/2) or (π, 3π/2)

(π/2, 0) or (3π/2, 0)

(π/2, π/2) or (3π/2, 3π/2)

(π/2, π) or (3π/2, π)

TABLE V. Parameters of sum rules which lead to at least a
50% fraction in the funnel with a log prior.

c1 c2 d χ1 χ2 Fraction in funnel

1 2 −1/2 π/2 0 0.74

1 2 −1/2 3π/2 0 0.74

4/6 1 −1/2 3π/2 0 0.67

4/6 1 −1/2 π/2 0 0.62

5/6 1 −1/2 3π/2 0 0.59

5/6 1 −1/2 π/2 0 0.58

5/6 2 −1/2 π/2 0 0.58

5/6 2 −1/2 3π/2 0 0.58

1 2 −1/2 0 π/2 0.58

1 2 −1/2 0 3π/2 0.58

1/3 1 −1/2 0 π/2 0.56

4/6 5/6 −1/2 π/2 0 0.54

4/6 5/6 −1/2 3π/2 0 0.54

1/6 1/6 −1/2 π π 0.54

1/3 1 −1/2 0 3π/2 0.54

1/6 1/2 −1 0 0 0.51

1/6 4/6 −1 0 0 0.51

consider representations other than the Gell-Mann ma-
trices, such as cyclic representations [231]. Investigating
the phenomenology of such flavor models is beyond the
scope of this work.

Appendix C: Independent generalized CP models

In table IV we list the phase combinations which are
independent for models with generalized CP. We see that
it is sufficient to constrain α to be between [0, π] and
β ∈ [0, 2π] to cover the whole parameter space.

Appendix D: Sum rules in the funnel

In table V we show the parameters of sum rules which
lead to at least a 50% fraction in the funnel with a log
prior.
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Appendix E: Expressions for physical parameters in
models with modular symmetries

Here we give the expressions for the oscillation param-
eters and the sum rule in models with modular symme-
tries, first derived in [87]. The parameters θ, ϕ are free
model parameters.

• A model based on A4 symmetry was studied in
[232]. Two cases arise, depending on the assump-
tion on the charged lepton mixing matrix. The
expressions for the mixing parameters remain the
same in both scenarios.

sin2 θ12(θ) =
1

3− 2 sin2 θ
, (E1)

sin2 θ13(θ) =
2

3
sin2 θ , (E2)

sin2 θ23(θ, ϕ) =
1

2
+

sin θ13(θ)

2

√
2− 3 sin2 θ13(θ)

1− sin2 θ13(θ)
cosϕ ,

(E3)

δ(θ, ϕ) = arcsin

(
− sinϕ

sin 2θ23(θ, ϕ)

)
, (E4)

The parameters in the sum rule (see eq. (7)) in case
I are

c1 = −e−2 iϕ − i e− iϕf2 sinϕ ,

= −e−2 iϕ

√
3 sin(2θ)− cosϕ cos(2θ)− i sinϕ√
3 sin(2θ)− cosϕ cos(2θ) + i sinϕ

(E5)

c2 = −e− iϕ 2√
3 sin(2θ)− cosϕ cos(2θ) + i sinϕ

(E6)

d = 1 (E7)

In the second scenario the coefficients of the mass
sum rule are related to the coefficients in the first
case by

c
(II)
1 = c

(I)
1 e−4 iϕ , (E8)

c
(II)
2 = −c

(I)
2 e2 iϕ . (E9)

• A model based on two modular S4 symmetries has
been studied in [233]:

sin θ13 =
sin θ√

3
, (E10)

tan θ12 =
cos θ√

2
, (E11)

tan θ23 =

∣∣∣∣∣∣
cos θ +

√
2
3e

iϕ sin θ

cos θ −
√

2
3e

iϕ sin θ

∣∣∣∣∣∣ . (E12)

tan δ = − 5 + cos(2θ)

1 + 5 cos(2θ)
tanϕ . (E13)

The parameters in the sum rule read

c1 =
1

cos2 θ − eiϕ sin(2θ)
, (E14)

c2 = − tan θ + 2 eiϕ

2 e3 iϕ − e2 iϕ cot(θ)
, (E15)

d = −1 . (E16)

• In [234] a model with a modular S4 symmetry has
been investigated:

sin θ13 =
1√
3
sin θ , (E17)

tan θ12 =
1√
2
cos θ , (E18)

tan θ23 =

∣∣∣∣∣2 eiϕ tan θ +
√
3/2

(
1 + i

√
3
)

3
√
2/3−

(
1−

√
3 i
)
eiϕ tan θ

∣∣∣∣∣ , (E19)

tan δ = − (cos(2θ) + 5)
(√

3 sinϕ− 3 cosϕ
)

(5 cos(2θ) + 1)
(√

3 cosϕ+ 3 sinϕ
) . (E20)

The parameters of the sum rule are

f1 =
2/(cos θ sin θ)

(−2− 2 i
√
3)eiϕ + i(i+

√
3) cot θ

, (E21)

f2 = − (i +
√
3 + 2(− i +

√
3)eiϕ cot θ) tan θ

2(− i +
√
3)e3 iϕ − (i +

√
3)e2 iϕ cot θ

, (E22)

d = −1 . (E23)

• The model studied in [235] is based on a A5 sym-
metry which leads to the following expressions with
ϕg = (1 +

√
5)/2 the golden ratio:

sin θ13 =

√
1

10
(5 +

√
5) sin θ , (E24)

tan θ12 =
2

1 +
√
5

1

cos θ
, (E25)

tan θ23 =

∣∣∣∣∣∣
√√

5ϕg − e− iϕ tan θ√√
5ϕg + e− iϕ tan θ

∣∣∣∣∣∣ , (E26)

tan δ =
4
√
5 +

√
5 sin(ϕ)

(
2
(√

5 + 2
)
cos2(θ) + 1 +

√
5
)

Dδ
,

(E27)

Dδ = 4

√
5 +

√
5 cos(ϕ) cos(2θ)

[
(
√
5 + 2) cos(2θ)

+3 + 2
√
5
]
+

√
2 sin(2θ)

[
(5
√
5 + 11) cos(2θ)

+19 + 9
√
5
]
cos(2θ23) . (E28)
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The coefficients of the sum rule are

c1 = e−2 iϕ

(
1−

√
5
)
e2 iϕ cot θ +

(√
5 + 1

)
tan θ − 8eiϕ(

1−
√
5
)
e2 iϕ tan θ +

(√
5 + 1

)
cot θ + 8eiϕ

,

(E29)

c2 =
10(√

5− 5
)
e2 iϕ sin2 θ + 4

√
5eiϕ sin(2θ) +

(
5 +

√
5
)
cos2 θ

,

(E30)

d = 1 . (E31)
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