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Abstract
In this work we present a novel strategy to evaluate multi-variable integrals with quantum circuits.
The procedure first encodes the integration variables into a parametric circuit. The obtained circuit
is then derived with respect to the integration variables using the parameter shift rule technique.
The observable representing the derivative is then used as the predictor of the target integrand
function following a quantum machine learning approach. The integral is then estimated using the
fundamental theorem of integral calculus by evaluating the original circuit. Embedding data
according to a reuploading strategy, multi-dimensional variables can be easily encoded into the
circuit’s gates and then individually taken as targets while deriving the circuit. These techniques can
be exploited to partially integrate a function or to quickly compute parametric integrands within
the training hyperspace.

1. Introduction

Many scientific and engineering problems require the evaluation of numerical integrals of varying
complexity of the form:

I(α) =

ˆ xb

xa

g(α;x) dnx, (1)

where the bold symbols correspond to vectors, xa and xb define the integration domain and g(α;x) is an
integrand which depends on the integration variables (x) and some parameters (α).

There are many numerical integration methods which tackle this problem, and the choice usually
depends on the characteristics of the integrand functions and the integral region. For instance,
low-dimensional well-behaved integrals can be successfully integrated with quadrature methods. However,
achieving the same precision with more complicated or higher-dimensional integrands will lead to a
significant increase in computational costs.

In those cases, Monte Carlo (MC) methods are often favored due to their ability to handle a wider range
of integrand functions without imposing stringent requirements and a convergence rate that does not
depend on the dimensionality of the integrand. An important feature of MC methods is the possibility of
binning partial results so that differential distributions in any of the integration variables can be obtained.
However, in exchange for their flexibility, they suffer from slow convergence and require a large number of
function evaluations. To mitigate these issues, various techniques have been proposed to speed up the
integration process, by reducing the number of integrand evaluations while producing accurate results [1–5].
In the context of particle physics, these advantages have made the VEGAS [6, 7] MC algorithm into the gold
standard for numerical integration. Over the past decade, there have been numerous attempts to further
improve the algorithm without modifying the underlying strategy. Some examples are the implementation of
the algorithm in new hardware devices [8, 9], which offer a raw speed-up over traditional computing; the
usage of multi-channel techniques [10], which exploit prior knowledge of the behavior of the different pieces

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/ad5866
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/ad5866&domain=pdf&date_stamp=2024-6-25
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8061-1965
https://orcid.org/0009-0005-8605-234X
https://orcid.org/0000-0002-0079-6753
mailto:juan.cruz.martinez@cern.ch


Quantum Sci. Technol. 9 (2024) 035053 J M Cruz-Martinez et al

of the integrand; or machine learning (ML) techniques to enhance the importance sampling
algorithm [11, 12].

However, all these methods suffer from the same drawback: obtaining a result requires the repeated
numerical evaluation of the integrand in the region of interest. In addition, even if the integral smoothly
depends on parameters which are not integrated over (like α in equation (1)), any change in them requires a
complete new run.

In references [13, 14] a new approach has been proposed which can be utilized to circumvent this issue.
These methods are based on using artificial neural networks (aNN) to build a surrogate model for the
primitive of the integrand. Such a surrogate can keep the dependence on both the integration variables and
the function parameters within the integration domain in which it has been trained. By subsequently
training the derivative of the model to approximate the integrand it is possible to recover its primitive. While
the computational cost does not disappear (it is translated to the training process), it allows for the
evaluation of the integral (or the marginalization of the integrand over any of the variables) for any choice of
parameters within the training range at almost zero additional cost.

In this paper we apply the same strategy in a quantum machine learning (QML) [15–19] context to
estimate the value of integrals of the form of equation (1). The unique aspects of quantum circuits renders
them an exceptional tool for this methodology. In the classical version, we need to train the derivative of the
aNN. By taking the derivative, the architecture of the network can considerably change, possibly leading to a
costly hyperparameter search in order to find the optimal model [14]. With a quantum circuit instead, we
can exploit their properties in order to obtain the derivative using the parameter shift rule (PSR) [20–23],
therefore using the same architecture for the derivative and its primitive.

For doing this, we use Qibo [24–30], a full-stack and open-source framework for quantum simulation,
control and calibration.

The rapid development of quantum technologies leads us to believe that quantum circuits and QML
tools can be exploited to improve on the performance, despite the constraints imposed by the current era of
limited near-intermediate scale quantum [31] (NISQ) devices. In particular, we note quite some interest on
the field of high energy physics where many new algorithms are being developed and tested leading to a very
robust ecosystem of quantum computing tools focusing on particle physics [32–39]

This paper is structured as follows, we expose the method in section 2, after a brief introduction to QML
and circuits derivative calculation respectively in Section 2.1 and 2.3. In section 3 we apply the method to
two situations, a toy-model represented by a d-dimensional trigonometric function and a real-life scenario
motivated by particle physics.

All results can be reproduced using the code at: https://github.com/qiboteam/QiNNtegrate.

2. Methodology

In this section we introduce well known concepts of quantum computation (QC) which are useful to better
understand the methodology. Then, we describe the integration procedure more in detail.

2.1. QML in a nutshell
Classical ML is nowadays widely used to tackle statistical problems, such as classification, regression, density
estimation, pattern recognition, etc. The goal of the ML algorithms is to teach a model to perform some
specific task through an iterative optimization process. Let us recall here some basic ML concepts which
equally apply to QML in order to establish the notation used through the paper. For simplicity, we treat here
the case of Supervised ML, but what follows can be easily extended to other approaches.

We consider two variables: an input vector x and an output vector y, which is related to x through some
hidden law

y= f(x) , (2)

which we aim to estimate. These vectors can be composed of any number of variables and the dimensionality
of the input and output data can in general be different. A modelMθ , parametric in some parameters θ, is
then chosen to make predictions yest(x|θ) =Mθ(x) of the output variables. Once a model is selected, a loss
function J is typically used to verify the predictive goodness ofMθ . Finally, an optimizer is required, which
is in charge of estimating:

θbest = argminθ

{∑
i

J
[
yi,est (xi|θ) ,yi,meas

]}
. (3)

where ymeas is a measured realization of y.
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In QC we use two-level quantum systems called qubits to store information. One of the most popular
quantum computing paradigms is the Gate based Quantum Computing, where the qubits state is manipulated
with the action of unitary operators we call gates, defining a totally reversible computation. These unitaries
can be combined to build up multi-qubit gates. In practice, QC introduces new computational possibilities
with respect to the classical counterpart with tools such as superposition and entanglement.

In the context of QML, a common approach is to use variational quantum circuits (VQC) [18, 40, 41] as
a quantum version of the classical parametric models. A VQC is a collection of gates which depends on a set
of parameters θ, which can be used to regulate the manipulation of a quantum state. A circuit can be applied
to an initial quantum state |ψi⟩ and, after the execution, measurements can be performed on the final state
|ψf⟩. We can collect information by executing the circuit Nnshots times, and then calculating expected values

of the target observables Ô,

GÔ (θ) = ⟨ψi|C† (θ) ÔC (θ) |ψi⟩. (4)

In the following, for simplicity, we omit the reference to the observable, which is chosen to be a
non-interacting Pauli σ̂z taken independently over all qubits and then averaged over the number of qubits.

The expectation values introduced in equation (4) can be used as predictions yest = G(θ) in the QML
process.

Several methods are known to embed data into a quantum system [42–45]. In this work we follow the
procedure presented in [43] and known as data re-uploading, which allows us to encode multi-dimensional
variables into the parametric gates of a circuit as part of their parameters. Since we encode the data directly
into the gates of the VQC, we do not need any additional state preparation and from now on we consider
|ψi⟩= |0⟩.

Adopting this embedding strategy, the final predictions will be obtained executing a circuit which is
explicitly depending on the data:

yest = G(x|θ) = ⟨0|C† (x|θ) ÔC (x|θ) |0⟩. (5)

Finally, there are numerous possible choices for the loss function and the optimizer, depending on the
type of model chosen and whether one is doing simulation or executing on a real quantum hardware. For
example, by doing simulation of a VQC, a natural choice is to select a well known gradient-based
optimizer [5, 46–50] or some meta-heuristic algorithm like evolutionary strategies [51], simulated
annealing [52], etc. Instead, when deploying the algorithm in actual quantum hardware it can be more
effective to use shot-frugal optimizers [53–55] or to calculate gradients using metrics better suited to the QC
context [56].

2.2. Circuit’s ansatz
Building up our QML models, we encode the input data into the parametric gates of the circuit following the
strategy suggested in [43], according to which an external variable can be uploaded into the angle ϕ of
rotational gates of the form:

Rk (ϕ) = exp−iϕσ̂k, (6)

where the hermitian generator of the rotation σ̂k is one of the Pauli’s matrices.
In particular, we implement an architecture inspired by the uploading layer described in [43] called

fundamental Fourier Gate, U , which is composed of five sequential rotations around the z and the y axis. Our
U implementation is as follows:

U (x|θ) = Rz (θ1)Ry (θ2)Rz (θ3)Rz (θ4 x)Ry (θ5) , (7)

where the data x is uploaded into the second gate in order of application on the initial state. The power of
this approach lies in the fact that by re-uploading the data x into N consecutive channels in the form of
equation (7), we approximate a target continuous function as would an N-term Fourier series [57].

This strategy is introduced for a single qubit system in which a single variable is re-uploaded, but is easily
extendible to a many-qubit case. Moreover, increasing the number of qubits also increases the flexibility of
the model, allowing us to upload different variables into different wires of the circuit. Several choices of
architecture can be done, and we present here two of the various models implemented within the code
accompanying this work.

The first one is shown in figure (1), we encode two dimensions in every qubit, such that the width of the
circuit is equal to half the number of dimensions (Ndim/2). Each uploading of the couple of variables
(xj,xj+1) into the associated qubit is in the form presented in equation (7).

3
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Figure 1. Diagram representation of the reuploading ansatz used to fit a 4-dim function. The U(xi) quantum channel
corresponds to the fundamental Fourier Gate presented in [43], while the entangling channelWent is built with a combination of
CZ gates. This encoding layer is repeated Nlayers times. Finally, an Ry gate is added to each qubit. All parameters of the ansatz are
included in the training.

Figure 2. Schematic representation of the qPDF ansatz used to fit the u quark PDF. The presented gates have to be considered as a
single layer of the ansatz, which is then repeated Nlayers times.

Each family of gates {Uj,Uj+1}, with Uj = U(xj), is then followed by an entangling channelWent, which
distributes the information accumulated by each qubit to the entire system. After the last layer, a final
rotation Ry is added to each wire of the circuit before performing the measurements.

Secondly, we implement a two-dimensional extension of the qPDF model from reference [58]. This
second ansatz, is shown in figure (2), where we define the following channels:

G1 (Q) = Ry (α1Q+β1) ,

G2 (logx) = Rz (α2 logx+β2) ,

G3 (x) = Ry (α3 x+β3) ,

(8)

with αi and βi variational parameters. The input variables x and Q represent, respectively, a momentum
fraction and an energy, and will be more thoroughly described in the sequel.

The qPDF model is introduced in reference [58] to fit a parton distribution function (PDF) using a VQC.
PDFs are quasi probability distributions describing the partonic (gluons and quarks) content of the proton
in hadron collisions. For the purposes of this study, it is enough to describe them as the probability of finding
a given parton (for instance, the u-quark) at an energy Q carrying a fraction of the total momentum of the
proton x. PDFs can only be computed from first principles in specific limits and thus the usual strategy is to
obtain the distribution as a fit to data. In reference [58] the NNPDF framework [59] is extended from using a
NN to use a VQC instead. Other approaches include Gaussian Processes [60] or polynomial forms. For a
more detailed discussion on PDFs and the techniques used in their determination, we refer the reader to
reference [61].

In equation (8) the imbalance of 2:1 in uploading the x and Q variables into the model follows the
strategy of reference [62] to capture the different behaviors of the PDF at low values of x (logarithmic) and
high values (linear).

This is one example of how a circuit designed to approximate a family of problems (in this case PDFs)
can also be satisfactory exploited to integrate said family of functions thanks to the parameter shift rule,
which will be briefly described in the next section.

2.3. Derivative of a quantum circuit
Our aim is then to use the derivative of G defined in equation (4) with respect to x as predictor of the
integrand function presented in equation (1). For this we use the PSR as the method for calculating the
derivatives of G with respect to x. The first example of PSR was presented in [17] and introduced a method
for calculating the derivative of an expectation value in the form of equation (4) with respect to one of the
rotation angles affecting the quantum circuit C. We refer to a more general PSR formula presented in [20]
and further developed later [21–23, 63]. According to [20], if a circuit depends on a parameter µ (with µ a
component of the vector θ) through a single gate U whose hermitian generator has at most two eigenvalues,
the derivative of G with respect to µ can be exactly calculated as follows:

g(µ)≡ ∂µG(θ) = r
(
G
(
µ+

)
−G

(
µ−)) , (9)

where±r are the eigenvalues of the generator of U, µ± = µ± s and s= π/4r. In this work we limit ourselves
to rotational gates such as equation (6) for which r= 1

2 and s= π
2 . The derivative of the circuit corresponds

then to the execution of the same circuit twice per gate to which the input parameter has been uploaded to.
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Since we never upload two input parameters to the same gate, the multidimensional extension is a trivial
sequential application of the PSR per dimension and gate. If every dimension is uploaded once to every layer
(l), the total number of expectation values necessary is (2l)Ndim . Note that the number of input parameters
does not need to coincide with the dimensionality of the integral, making this method particularly useful for
parametric integrals which are less prone to the so-called curse of dimensionality.

2.4. Solving integrals with quantum circuits
In the following section we describe the QML training procedure and, once the optimization is done, how
the final model can be used to calculate the integral of the target function.

Calculating the derivative of the circuit with the PSR, we are able to use the same architecture to evaluate
the primitive of a function G and any of its derivatives g. To be more explicit, if we recall the formula with
which we started the paper:

I(α) =

ˆ xb

xa

g(α;x) dnx, (10)

the finite integral I(α) can also be calculated in the hypercube defined by (xa,xb) by using its primitive
G(x;α):

I(α) =
∑

x1,··· ,xn=xa,xb

(−1)#aG(x1, · · · ,xn;α) , (11)

where the sum runs over all combinations of the integration limits a and b and#a counts the number of
variables evaluated in the lower limit a. In the one-dimensional case the equation above simplifies to:

I(α) = G(xb;α)−G(xa;α) , (12)

with

G(x;α) =

ˆ
g(α;x)dx. (13)

Our goal will be training the derivative of a VQC such that it approximates the function g at any point xj
within the integration limits (xa,xb).

gj,est
(
α;xj|θ

)
=
∂G(α,x1, . . .,xn|θ)

∂x1 . . .∂xn

∣∣∣∣
xj

. (14)

If we have a way of evaluating g(α;x) or have access to measurements of its value we can generate a set of
Ntrain training data. Once the predictions {gj,est}Ntrain

j=1 are calculated for all the training data, we quantify the
goodness of our model by evaluating a Mean-Squared Error loss function:

Jmse =
1

Ntrain

Ntrain∑
j=1

[
gj,meas − gj,est

(
α;xj|θ

)]2
, (15)

where we indicate with the index (j) the jth element in the training dataset and its associated integrand value.
The training is thus performed by iteratively updating the parameters θ in order to minimize equation (15).
Various optimizers have been tested, including Powell method [64], L-BFGS [65], a covariance matrix
adaptation evolutionary strategy [51] (CMA-ES) and a Basin-Hopping algorithm [66]. Even though
benchmarking different optimizers performances goes beyond the scope of this paper, we stress the
importance of considering different optimization approaches when training variational quantum algorithms
with and without shot-noise, namely, simulating the sampling of the final state in the selected measurement
basis. In fact, some of the optimizers which lead to very good results in the case of exact simulation (e.g.
L-BFGS), become unusable when activating the shot-noise. This is expected, since such algorithms make use
of numerical differentiation during the optimization process, and the numerical gradients cannot be
computed in a loss function landscape which suffers from the natural randomness provoked by the
shot-noise. To implement gradient-based optimization strategies which are compatible with the shot-noise
computation, one should execute the calculation of the gradients using techniques which are more robust to
the randomness of the system, such as parameter-shift rules [20]. Although this can be a perfectly viable
choice, we decide to follow different strategies in this work, not to worry about scalability problems like those
introduced in [67].
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Figure 3. Differential distribution of the integral of equation (18) on x1 for different values of α0 withα= {1,2, 1
2
}. The ranges

chosen for x1 are also the ranges used for the integration of all other variables. These results are obtained through exact state
vector simulation. The training was performed with 100 points in x and 10 different values of α0 ∈ (0,5), using the L-BFGS
optimizer for 200–300 iterations. The error bands are computed retraining the circuit for different seeds.

We adopt two different optimization approaches in the two training scenarios, using L-BFGS when
optimizing in the exact simulation regime, and preferring heuristic algorithms like CMA-ES and
Basin-Hopping when activating the shot-noise simulation.

Once the circuit’s parameters are optimized, we have a fixed architecture which is a surrogate of G(x;α)
and that can be used to evaluate integrals with respect to any combination of the target variables. This aspect
makes the strategy particularly interesting when dealing with high-dimensional functions.

As an example, we can marginalize the integrand previously defined over the variable xk

Iab (. . . ,xk−1,xk+1, . . .) =

ˆ xk,b

xk,a

g(x)dxk, (16)

by uploading the integration limits, xk,a and xk,b and removing only that derivative from equation (14):

Iab (. . . ,xk−1,xk+1, . . .)≃ gest (xk,b|θbest)− gest (xk,a|θbest) , (17)

where we write gest explicitly depending only on xk for simplicity. This can be extended for the partial
integration of any of the variables of which I depends on, until finally we recover the full integration as
shown in equation (11).

3. Results

In order to showcase the possibilities of the methodology presented in this paper we are going to use a VQC
for two different target functions. We will first show the flexibility of the method to obtain total or partial
integrals and differential distributions, and then we will apply to a practical case in which the approach can
introduce a net-gain. Both examples are implemented in the public code which accompanies this paper
(among other examples).

3.1. Toy model
For our first example we utilize the ansatz of reference 1 to approximate a d-dimensional trigonometric
function:

g(x) = cos(α · x+α0) , (18)

with x and α n-dim vectors. The integral of equation (18), while trivial to perform analytically, will serve to
demonstrate how training one single circuit to obtain the primitive,

I(α;x) =

ˆ
g(α;x)dx, (19)

can provide us the flexibility to obtain other derived quantities.

6



Quantum Sci. Technol. 9 (2024) 035053 J M Cruz-Martinez et al

For instance, we might be interested on the differential distributions dI(α;x)
dxi

for a given i and for different
values of one of the parameters α. In general, this would require to perform the numerical integration once
per choice of i, per bin in the distribution and choice of α. By having a surrogate for I(α;x) we can obtain
each distribution as seen in figure 3, were we collect results obtained by training the model with exact state
vector simulation of the quantum circuits.

In figure 3 we have plotted the differential distribution

dI(α;x1)

dx1
, (20)

for two different values of α0 within the training range (0, 5). All other parameters have remained fixed in
order to minimize the computing cost in this toy-model example. The training range for the integrated
variables (x1,x2,x3) has been (0, 3.5). In the plots we choose to integrate x2 and x3 from 0 to 3 for every value
fo x1, but any choice of integration limits within the integration range would be possible.

A shortcoming of this approach is the lack of an uncertainty associated to the numerical integration. In
reference [14] the suggestion is to use an ensemble of replicas of the network trained to the same data in
order to use the variance as an error. We have followed the same strategy here by training an ensemble of
circuits randomizing the choice of training points which leads to a spread of the results.

Other numerical methods provide some shortcuts to obtain similar results. For instance MC integration
methods would allow us to bin quantities which depend on the integration variables (provided that we know
beforehand the distributions that we want to obtain). However, a change in the parameter α0 will always lead
to a new integration. Instead, once we have a circuit that approximates equation (19), any derived quantity in
the training range is accessible without any new runs.

It is important to remark that there is no free lunch, we are paying the penalty in terms of evaluations of
the integrand (and the surrogate) during the training, but the outcome is a flexible representation of the final
quantity which can then be reutilized. Similarly to MC methods, the accuracy of the calculation can be
improved by increasing computational cost with either a larger number of samples or longer training lengths.
Note that in this case we have a function that enables us to generate an unlimited amount of data for
arbitrary inputs and so the limitation is only of computational cost.

3.2. The u-quark PDF
In the previous section we have chosen an ideal scenario with a function for which we know the primitive
and against which we can exactly test. In what follows we consider an actual use-case for the approach that
we propose in this paper: the integration of a function which is only known numerically and for which we
have a representation in the form of a VQC.

For this we use the PDF fit and corresponding ansatz presented in reference [58]. Note that in order to
overcome some of the computational challenges that arose when swapping the NN for a VQC, in
reference [58] the resulting PDF is not normalized. Normalizing the PDF requires taking the integral over x
at the fixed fitting energy (Q0), which in turn requires many evaluations of the PDF at every stage of the fit.
Instead, with the techniques introduced in this paper we use the ansatz described in section 2.2 to obtain a
model by which we can produce both the u-quark PDF and its own integral, hence allowing for a prediction
normalized by construction without the need for an expensive numerical integral.

In figure 4 we show the result of fitting the derivative of the ansatz to the training data for a fixed value of
Q, obtaining a very good description across the entire range.

We train the model with the L-BFGS optimizer and performing exact simulation using Qibo. As the
training data we utilize directly the u-quark PDF from the NNPDF4.0 [62] PDF grids. We limit the training
to the x range (1× 10−4,0.7) which is comparable with the ranges of data available in PDF determinations.
In figure 4 we train for several fixed values of Q chosen linearly between 1.65 and 40GeV. Once we are able to
approximate the integrand with the derivative of the ansatz, the associated integral,

Iu (Q) =

ˆ 0.7

10−4

xu(x,Q) dx, (21)

is the ingredient necessary for the normalization of the u-quark PDF.
Note that the Q-dependence of the PDF can be computed analytically given the PDF at a fixed scale Q0,

thus in a fit only a value of Iu(Q0) is required. The ability to train the VQC for a range of values of Q can be
exploited to evaluate equation (21) as a parametric integral for a range of values of Q.

7
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Figure 4. Comparison between the fit of the derivative of the circuit (red line) and the target result read directly from the
interpolation grids for the central NNPDF4.0 replica for the u-quark for a fixed value of Q= 1.67GeV (fitting scale of
NNDPF4.0) and Q= 30GeV. While the ansatz in section 2.2 gives us a model for the integral, the results training is performed
onto the derivative. The training set uses approx. 100 points for each of the 5 fixed values of Q chosen between the initial Q= 1.67
GeV and Q= 40GeV. These results are obtained through exact state vector simulation. In figure 5 we will use the same strategy,
(training over a wider range of Q) to plot the integrand as a function of the energy.

In order to show the generalizability potential of the method we have also trained the circuit for a wide
range of values of Q, chosen such that no quark-threshold is crossed (defined as the value of the energy for
which the number of active quarks in NNPDF4.0 changes) to reduce instabilities.

In QML, in real-life scenarios, one needs to account for the probabilistic shot-noise associated with the
measurement of the quantum states and the noise associated to the hardware. While the uncertainty
associated to the training shown in figure 3 can in principle be reduced by increasing the training length,
these uncertainties are intrinsic to the methodology.

In figure 5 we show the calculation of the integral of equation (21) for different values of Q within the
training range. The circuits are simulated with shot-noise since we perform Nshots = 106 to compute each
expected value (circuit is called Nshots times for each estimation of the primitive G). We then repeat every
measurement of the integration Nruns = 100 times. The error is computed by taking the standard deviation σ
of the measurement. The shaded band in figure 5 correspond to the 1σ band.

This corresponds to an ideal real-life scenario since we are not considering hardware noise. The
shot-noise error scales as 1√

Nruns
. This statistical noise leads in this case to an uncertainty of about 1%. Due to

the computational cost we do not include in this case the training uncertainty, which would need to be
included (possibly added in quadrature). We also note a systematic shift with respect to the true value of∼ 5

3.3. Normalized by construction
In this section we detail an application of our method to an actual physics problem for which the
improvement with respect to classical approaches (e.g. numerical integration using MC methods) is
immediate: the determination of PDFs using quantum computers [58]. We leave the actual implementation
to future work, but we outline here the methodology and expected gains. Note that the same strategy can be

8
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Figure 5. Above, integral of xu(x,Q) calculated for Nq = 20 values of Q. These results are obtained by simulating circuits with
shot-noise. In particular, for each q we perform Nruns = 100 predictions and each prediction is obtained by executing the circuit
Nshots = 106 times. The orange line and its confidence belt are calculated using mean and one standard deviation over the Nruns

prediction sets. Below, average relative percentage error calculated using the Nruns predictions. The training has been performed
on approx. 100 different values of Q evenly spaced on Q2 and took about 20 h in a 32-cores machine.

applied whenever the integral of the function is part of the fitting process. In references [59, 62] the PDFs are
parametrized at Q0 = 1.67GeV such that

V(x) =
3V̂(x)ˆ xb

xa

dxV̂(x)
, (22)

where V(x) (V̂) corresponds to the valence (unnormalized) PDF in the so-called ‘evolution basis’. and which
can be written in terms of the quark and antiquark PDFs as,

V(x) =
u,d,s,c∑

q(x)− q̄(x) . (23)

Note that at the parametrization energy only the lighter quarks (u, d, s and c) PDFs are independent while
the heavier b and t quarks can be determined from the quarks (and gluon) PDFs.

The integral in the denominator of equation (22) is computed numerically over x between the extremes
xa and xb and is computed from scratch for every training step. Consequently, obtaining one single value for
V(x) requires a costly numerical integral (more than 103 function calls) for each step of the training process.

With the QiNNtegrate approach we can instead construct a PDF which is already normalized:

V(x) =
V̂

IV̂
=

3
shifts∑
s

G(xs)

G(xb)−G(xa)
, (24)

where we have exchanged the computational burden of computing the numerical integrand by a costlier
evaluation of the unnormalized distribution. The shifts in the sum corresponds to all pairs of (x+,x−)
needed to compute the derivative as per equation (9).

For the ansatz used in this work we would need 16 circuit executions per point in x involved in the fit to
estimate the derivative but have removed a number of executions in the order of 103 from the training
process. In the concrete case of reference [62] this can result in a net reduction of function calls of a factor of
approximately 6. Furthermore, the fit would in this case benefit from a simpler functional form.

In addition, novel proposals for non-demolition measurements can be integrated in this algorithm to
further reduce the number of shifts required to estimate the integrand function. To give an example, in [68,
69] the authors introduce an algorithm to reduce the number of expectation values required to reconstruct
the gradient formula originally introduced in [20]. This is done by exploiting ancillary qubits and encoding
the required shifts into a single circuit.

Together with the improvement of the qubit’s quality, we believe such techniques can help in making our
proposed integration algorithm even more useful in practice.
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Figure 6. Estimates of the integrand g(x) = 1
2
sin(2x) between x= 0 and x= 1 obtained by executing the presented algorithm on

a real superconducting qubit. The target Ndata = 20 function values (black dashed line) are compared with the estimates (orange
line), obtained as the average of Nruns = 5 sets of predictions. The confidence interval is drawn using 2σ error over the
experiments. The results are computed without any kind of error mitigation technique.

3.4. Integrating on a real qubit
In this section we present some results obtained executing this algorithm on a real quantum hardware. In
particular, we use a superconducting device composed of a single qubit hosted at the Quantum Research
Center (QRC) of the Technology Innovation Institute (TII). The entire process is realized using the
Qibo [24–30] ecosystem; the high level code is written with Qibo and then executed on the qubit by
Qibolab [29]. In case we make use of Qibosoq [70], which is the server that integrates Qick [71] in the
Qibolab ecosystem for executing arbitrary circuits and pulse sequences through RFsoC FPGA boards. All
the single qubit characterization and calibration routines are performed using Qibocal [27, 30].

We tackle a simple example to reduce the number of expected values of the form of equation (4) to be
evaluated. In fact, since the derivative of a circuit is used as predictor in our model, 2 ∗Nx expected values are
needed to compute each estimation, where Nx is the number of times x is uploaded into the model. For
example, in case of the one dimensional u quark PDF presented in section 3.2 Nx = 2Nlayers. We present in
figure 6 predictions of Ndata = 20 values of the integrand g(x) = 1

2 sin(2x), considering Ndata values of x
uniformly distributed in [0,1]. We calculate Nruns = 5 times the prediction for each x and use the mean and
2σ to define the confidence intervals around the estimates which are shown in figure 6. During the process,
each expectation value is obtained executing the circuit Nshots = 5000 times. This simple example proves a
simple integrand function can be fitted on a NISQ device.

As second test, we calculate the integral value of the target function:

Itarget =

ˆ 1

0

1

2
sin(2x)dx. (25)

Nint = 10 times obtaining as estimate: Îtarget = 0.326± 0.011, to be compared with the exact value
Itarget = 0.354. The error on the estimate is the standard deviation over the Nint results. We believe having
such a satisfactory result even with noisy hardware can be motivated by the nature of the problem we are
tackling. In fact, the target integral is here calculated following equation (12), and the difference between
estimations can help in removing systematic errors that may occur when dealing with NISQ devices.

4. Conclusion

In this paper we have extended the methods proposed in references [13, 14] to quantum computers and
shown how the properties of these new type of devices can introduce a practical advantage compared to
classical alternatives by exploiting the properties of the parameter shift rule.

Furthermore, we have demonstrated a practical-case in which one can obtain a net benefit by utilizing
this approach, by skipping entirely the need for a numerical integration during a fitting procedure. A natural
extension of this work is an enhancement of the methodology proposed in reference [58] in which the PDF
fit could not be normalized due to technical constraints.

We then reported interesting results obtained on a real superconducting qubit, showing how a NISQ
device can already be used to fit integrand functions following our algorithm. We have also made all code
available in a public python framework QiNNtegrate [72]. which can be used to reproduce the results of
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this work and which can be extended to other custom functions. QiNNtegrate is based on Qibo and thus
the generated circuits can be either simulated in a classical computer or directly executed on hardware.
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