
TIF-UNIMI-2023-13, CERN-TH-2023-157

Multi-variable integration with a variational quantum circuit

Juan M. Cruz-Martinez,1 Matteo Robbiati,1, 2 and Stefano Carrazza1, 2, 3

1CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland.∗

2TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano, Milan, Italy.
3Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE.

In this work we present a novel strategy to evaluate multi-variable integrals with quantum circuits.

The procedure first encodes the integration variables into a parametric circuit. The obtained circuit

is then derived with respect to the integration variables using the parameter shift rule technique. The

observable representing the derivative is then used as the predictor of the target integrand function

following a quantum machine learning approach. The integral is then estimated using the fundamental

theorem of integral calculus by evaluating the original circuit. Embedding data according to a reu-

ploading strategy, multi-dimensional variables can be easily encoded into the circuit’s gates and then

individually taken as targets while deriving the circuit. These techniques can be exploited to partially

integrate a function or to quickly compute parametric integrands within the training hyperspace.

I. INTRODUCTION

Many scientific and engineering problems require the

evaluation of numerical integrals of varying complexity of

the form:

I(α) =

∫ xb
xa

g(α; x) dnx , (1)

where the bold symbols correspond to vectors, xa and xb
define the integration domain and g(α; x) is an integrand

which depends on the integration variables (x) and some

parameters (α).

There are many numerical integration methods which

tackle this problem, and the choice usually depends on the

characteristics of the integrand functions and the integral

region. For instance, low-dimensional well-behaved inte-

grals can be successfully integrated with quadrature meth-

ods. However, achieving the same precision with more

complicated or higher-dimensional integrands will lead to a

significant increase in computational costs.

In those cases, Monte Carlo (MC) methods are often

favored due to their ability to handle a wider range of in-

tegrand functions without imposing stringent requirements

and a convergence rate that does not depend on the di-

mensionality of the integrand. An important feature of MC

methods is the possibility of binning partial results so that

differential distributions in any of the integration variables

can be obtained. However, in exchange for their flexibil-

ity, they suffer from slow convergence and require a large

number of function evaluations. To mitigate these issues,

various techniques have been proposed to speed up the

integration process, by reducing the number of integrand

evaluations while producing accurate results [1–5].

∗Electronic address: juan.cruz.martinez@cern.ch

In the context of particle physics, these advantages have

made the VEGAS [6, 7] MC algorithm into the gold stan-

dard for numerical integration. Over the past decade, there

have been numerous attempts to further improve the al-

gorithm without modifying the underlying strategy. Some

examples are the implementation of the algorithm in new

hardware devices [8, 9], which offer a raw speed-up over

traditional computing; the usage of multi-channel tech-

niques [10], which exploit prior knowledge of the behavior

of the different pieces of the integrand; or machine learn-

ing techniques to enhance the importance sampling algo-

rithm [11, 12].

However, all these methods suffer from the same draw-

back: obtaining a result requires the repeated numerical

evaluation of the integrand in the region of interest. In

addition, even if the integral smoothly depends on param-

eters which are not integrated over (like α in Eq. (1)), any

change in them requires a complete new run.

In Refs. [13, 14] a new approach has been proposed

which can be utilized to circumvent this issue. These meth-

ods are based on using artificial Neural Networks (aNN) to

build a surrogate model for the primitive of the integrand.

Such a surrogate can keep the dependence on both the in-

tegration variables and the function parameters within the

integration domain in which it has been trained. By subse-

quently training the derivative of the model to approximate

the integrand it is possible to recover its primitive. While

the computational cost does not disappear (it is translated

to the training process), it allows for the evaluation of the

integral (or the marginalization of the integrand over any

of the variables) for any choice of parameters within the

training range at almost zero additional cost.

In this paper we apply the same strategy in a Quantum

Machine Learning (QML) [15–19] context to estimate the

value of integrals of the form of Eq. (1).

The unique aspects of quantum circuits renders them an

exceptional tool for this methodology. In the classical ver-

1

ar
X

iv
:2

30
8.

05
65

7v
2

 [
qu

an
t-

ph
]

 1
6

Ju
l 2

02
4

mailto:juan.cruz.martinez@cern.ch

2

sion, we need to train the derivative of the aNN. By taking

the derivative, the architecture of the network can consid-

erably change, possibly leading to a costly hyperparameter

search in order to find the optimal model [14]. With a

quantum circuit instead, we can exploit their properties

in order to obtain the derivative using the Parameter Shift

Rule (PSR) [20–23], therefore using the same architecture

for the derivative and its primitive.

For doing this, we use Qibo [24–30], a full-stack and

open-source framework for quantum simulation, control

and calibration.

The rapid development of quantum technologies leads

us to believe that quantum circuits and QML tools can

be exploited to improve on the performance, despite the

constraints imposed by the current era of limited Near-

Intermediate Scale Quantum [31] (NISQ) devices. In par-

ticular, we note quite some interest on the field of High

Energy Physics where many new algorithms are being de-

veloped and tested leading to a very robust ecosystem of

quantum computing tools focusing on particle physics [32–

39]

This paper is structured as follows, we expose the

method in Sec. II, after a brief introduction to QML and

circuits derivative calculation respectively in Sec II A and

Sec. II C. In Sec. III we apply the method to two situations,

a toy-model represented by a d-dimensional trigonomet-

ric function and a real-life scenario motivated by particle

physics.

All results can be reproduced using the code at:

https://github.com/qiboteam/QiNNtegrate.

II. METHODOLOGY

In this section we introduce well known concepts of

quantum computation which are useful to better under-

stand the methodology. Then, we describe the integration

procedure more in detail.

A. Quantum Machine Learning in a nutshell

Classical Machine Learning (ML) is nowadays widely

used to tackle statistical problems, such as classification,

regression, density estimation, pattern recognition, etc.

The goal of the ML algorithms is to teach a model to

perform some specific task through an iterative optimiza-

tion process. Let us recall here some basic ML concepts

which equally apply to QML in order to establish the nota-

tion used through the paper. For simplicity, we treat here

the case of Supervised Machine Learning, but what follows

can be easily extended to other approaches.

We consider two variables: an input vector x and an

output vector y , which is related to x through some hidden

law

y = f (x), (2)

which we aim to estimate. These vectors can be com-

posed of any number of variables and the dimensionality

of the input and output data can in general be different.

A model Mθ, parametric in some parameters θ, is then

chosen to make predictions yest(x |θ) =Mθ(x) of the out-

put variables. Once a model is selected, a loss function J

is typically used to verify the predictive goodness of Mθ.

Finally, an optimizer is required, which is in charge of esti-

mating:

θbest = argminθ

{∑
i

J [yi ,est(xi |θ), yi ,meas]

}
. (3)

where ymeas is a measured realization of y .

In Quantum Computation (QC) we use two-level quan-

tum systems called qubits to store information. One of the

most popular quantum computing paradigms is the Gate

based Quantum Computing, where the qubits state is ma-

nipulated with the action of unitary operators we call gates,

defining a totally reversible computation. These unitaries

can be combined to build up multi-qubit gates. In prac-

tice, QC introduces new computational possibilities with

respect to the classical counterpart with tools such as su-

perposition and entanglement.

In the context of Quantum Machine Learning, a com-

mon approach is to use Variational Quantum Circuits

(VQC) [18, 40, 41] as a quantum version of the classical

parametric models. A VQC is a collection of gates which

depends on a set of parameters θ, which can be used to

regulate the manipulation of a quantum state. A circuit

can be applied to an initial quantum state |ψi ⟩ and, after
the execution, measurements can be performed on the final

state |ψf ⟩. We can collect information by executing the
circuit Nnshots times, and then calculating expected values

of the target observables Ô,

GÔ(θ) = ⟨ψi |C
†(θ)Ô C(θ)|ψi ⟩ . (4)

In the following, for simplicity, we omit the reference to the

observable, which is chosen to be a non-interacting Pauli

σ̂z taken independently over all qubits and then averaged

over the number of qubits.

The expectation values introduced in Eq. (4) can be used

as predictions yest = G(θ) in the QML process.

Several methods are known to embed data into a quan-

tum system [42–45]. In this work we follow the procedure

presented in [43] and known as data re-uploading, which

allows us to encode multi-dimensional variables into the

parametric gates of a circuit as part of their parameters.

Since we encode the data directly into the gates of the

VQC, we don’t need any additional state preparation and

from now on we consider |ψi ⟩ = |0⟩.

https://github.com/qiboteam/QiNNtegrate

3

Adopting this embedding strategy, the final predictions

will be obtained executing a circuit which is explicitly de-

pending on the data:

yest = G(x |θ) = ⟨0|C†(x |θ)Ô C(x |θ)|0⟩ . (5)

Finally, there are numerous possible choices for the loss

function and the optimizer, depending on the type of model

chosen and whether one is doing simulation or executing

on a real quantum hardware. For example, by doing simu-

lation of a VQC, a natural choice is to select a well known

gradient-based optimizer [46–51] or some meta-heuristic

algorithm like evolutionary strategies [52], simulated an-

nealing [53], etc. Instead, when deploying the algorithm in

actual quantum hardware it can be more effective to use

shot-frugal optimizers [54–56] or to calculate gradients us-

ing metrics better suited to the QC context [57].

B. Circuit’s ansatz

Building up our QML models, we encode the input data

into the parametric gates of the circuit following the strat-

egy suggested in [43], according to which an external vari-

able can be uploaded into the angle φ of rotational gates

of the form:

Rk(φ) = exp{−iφσ̂k}, (6)

where the hermitian generator of the rotation σ̂k is one of

the Pauli’s matrices.

In particular, we implement an architecture inspired by

the uploading layer described in [43] called fundamental

Fourier Gate, U , which is composed of five sequential ro-
tations around the z and the y axis. Our U implementation
is as follows:

U(x |θ) = Rz(θ1)Ry (θ2)Rz(θ3)Rz(θ4 x)Ry (θ5), (7)

where the data x is uploaded into the second gate in order

of application on the initial state. The power of this ap-

proach lies in the fact that by re-uploading the data x into

N consecutive channels in the form of Eq. (7), we approx-

imate a target continuous function as would an N-term

Fourier series [58].

This strategy is introduced for a single qubit system

in which a single variable is re-uploaded, but is easily ex-

tendible to a many-qubit case. Moreover, increasing the

number of qubits also increases the flexibility of the model,

allowing us to upload different variables into different wires

of the circuit. Several choices of architecture can be done,

and we present here two of the various models implemented

within the code accompanying this work.

The first one is shown in Fig. (1), we encode two di-

mensions in every qubit, such that the width of the circuit

. . .

. . .

|0〉 U(x1) U(x2)
Went

Ry

|0〉 U(x3) U(x4) Ry

FIG. 1: Diagram representation of the reuploading ansatz used to
fit a 4-dim function. The U(xi) quantum channel corresponds
to the fundamental Fourier Gate presented in [43], while the
entangling channelWent is built with a combination of CZ gates.
This encoding layer is repeated Nlayers times. Finally, an Ry gate
is added to each qubit. All parameters of the ansatz are included
in the training.

. . .|0〉 G1(Q) G2(log x) G3(x)

FIG. 2: Schematic representation of the qPDF ansatz used to fit
the u quark PDF. The presented gates have to be considered as
a single layer of the ansatz, which is then repeated Nlayers times.

is equal to half the number of dimensions (Ndim/2). Each

uploading of the couple of variables (xj , xj+1) into the as-

sociated qubit is in the form presented in Eq. (7).

Each family of gates {Uj ,Uj+1}, with Uj = U(xj), is then
followed by an entangling channel Went, which distributes
the information accumulated by each qubit to the entire

system. After the last layer, a final rotation Ry is added

to each wire of the circuit before performing the measure-

ments.

Secondly, we implement a two-dimensional extension of

the qPDF model from Ref. [59]. This second ansatz, is

shown in Fig. (2), where we define the following channels:
G1(Q) = Ry (α1Q+ β1),
G2(log x) = Rz(α2 log x + β2),
G3(x) = Ry (α3 x + β3),

(8)

with αi and βi variational parameters. The input variables

x and Q represent, respectively, a momentum fraction and

an energy, and will be more thoroughly described in the

sequel.

The qPDF model is introduced in Ref. [59] to fit a Par-

ton Distribution Function (PDF) using a VQC. PDFs are

quasi probability distributions describing the partonic (glu-

ons and quarks) content of the proton in hadron collisions.

For the purposes of this study, it is enough to describe

them as the probability of finding a given parton (for in-

stance, the u-quark) at an energy Q carrying a fraction of

the total momentum of the proton x . PDFs can only be

computed from first principles in specific limits and thus

the usual strategy is to obtain the distribution as a fit to

data. In Ref. [59] the NNPDF framework [60] is extended

from using a NN to use a VQC instead. Other approaches

include Gaussian Processes [61] or polynomial forms. For a

4

more detailed discussion on PDFs and the techniques used

in their determination, we refer the reader to Ref. [62].

In Eq. (8) the imbalance of 2 : 1 in uploading the x and

Q variables into the model follows the strategy of Ref. [63]

to capture the different behaviors of the PDF at low values

of x (logarithmic) and high values (linear).

This is one example of how a circuit designed to approx-

imate a family of problems (in this case PDFs) can also be

satisfactory exploited to integrate said family of functions

thanks to the parameter shift rule, which will be briefly

described in the next section.

C. Derivative of a quantum circuit

Our aim is then to use the derivative of G defined in

Eq. (4) with respect to x as predictor of the integrand

function presented in Eq. (1). For this we use the Param-

eter Shift Rule (PSR) as the method for calculating the

derivatives of G with respect to x . The first example of

PSR was presented in [17] and introduced a method for

calculating the derivative of an expectation value in the

form of Eq. (4) with respect to one of the rotation angles

affecting the quantum circuit C. We refer to a more gen-
eral PSR formula presented in [20] and further developed

later [21–23, 64].

According to [20], if a circuit depends on a parameter

µ (with µ a component of the vector θ) through a single

gate U whose hermitian generator has at most two eigen-

values, the derivative of G with respect to µ can be exactly

calculated as follows:

g(µ) ≡ ∂µG(θ) = r
(
G(µ+)− G(µ−)

)
, (9)

where ±r are the eigenvalues of the generator of U, µ± =
µ ± s and s = π/4r . In this work we limit ourselves to

rotational gates such as Eq. (6) for which r = 1
2 and s =

π
2 . The derivative of the circuit corresponds then to the

execution of the same circuit twice per gate to which the

input parameter has been uploaded to.

Since we never upload two input parameters to the same

gate, the multidimensional extension is a trivial sequential

application of the PSR per dimension and gate. If every

dimension is uploaded once to every layer (l), the total

number of expectation values necessary is (2l)Ndim . Note

that the number of input parameters does not need to

coincide with the dimensionality of the integral, making this

method particularly useful for parametric integrals which

are less prone to the so-called curse of dimensionality.

D. Solving integrals with quantum circuits

In the following section we describe the QML training

procedure and, once the optimization is done, how the

final model can be used to calculate the integral of the

target function.

Calculating the derivative of the circuit with the PSR,

we are able to use the same architecture to evaluate the

primitive of a function G and any of its derivatives g. To

be more explicit, if we recall the formula with which we

started the paper:

I(α) =

∫ xb
xa

g(α; x) dnx , (10)

the finite integral I(α) can also be calculated in the hyper-

cube defined by (xa, xb) by using its primitive G(x ;α):

I(α) =
∑

x1,··· ,xn=xa,xb

(−1)#aG(x1, · · · , xn;α), (11)

where the sum runs over all combinations of the integra-

tion limits a and b and #a counts the number of variables

evaluated in the lower limit a. In the 1-dimensional case

the equation above simplifies to:

I(α) = G(xb;α)− G(xa;α), (12)

with

G(x ;α) =

∫
g(α; x)dx. (13)

Our goal will be training the derivative of a VQC such

that it approximates the function g at any point xj within

the integration limits (xa, xb).

gj,est(α; xj |θ) =
∂G(α, x1, ..., xn|θ)

∂x1 ... ∂xn

∣∣∣∣
xj

. (14)

If we have a way of evaluating g(α; x) or have access

to measurements of its value we can generate a set of

Ntrain training data. Once the predictions {gj,est}Ntrainj=1 are

calculated for all the training data, we quantify the good-

ness of our model by evaluating a Mean-Squared Error loss

function:

Jmse =
1

Ntrain

Ntrain∑
j=1

[
gj,meas − gj,est(α; xj |θ)

]2
, (15)

where we indicate with the index (j) the j-th element in the

training dataset and its associated integrand value. The

training is thus performed by iteratively updating the pa-

rameters θ in order to minimize Eq. (15). Various op-

timizers have been tested, including Powell method [65],

L-BFGS [66], a Covariance Matrix Adaptation Evolution-

ary Strategy [52] (CMA-ES) and a Basin-Hopping algo-

rithm [67]. Even though benchmarking different optimiz-

ers performances goes beyond the scope of this paper, we

stress the importance of considering different optimization

approaches when training variational quantum algorithms

5

with and without shot-noise, namely, simulating the sam-

pling of the final state in the selected measurement basis.

In fact, some of the optimizers which lead to very good

results in the case of exact simulation (e.g. L-BFGS),

become unusable when activating the shot-noise. This

is expected, since such algorithms make use of numeri-

cal differentiation during the optimization process, and the

numerical gradients cannot be computed in a loss func-

tion landscape which suffers from the natural randomness

provoked by the shot-noise. To implement gradient-based

optimization strategies which are compatible with the shot-

noise computation, one should execute the calculation of

the gradients using techniques which are more robust to

the randomness of the system, such as parameter-shift

rules [20]. Although this can be a perfectly viable choice,

we decide to follow different strategies in this work, not

to worry about scalability problems like those introduced

in [68].

We adopt two different optimization approaches in the

two training scenarios, using L-BFGS when optimizing in

the exact simulation regime, and preferring heuristic algo-

rithms like CMA-ES and Basin-Hopping when activating

the shot-noise simulation.

Once the circuit’s parameters are optimized, we have

a fixed architecture which is a surrogate of G(x ;α) and

that can be used to evaluate integrals with respect to any

combination of the target variables. This aspect makes

the strategy particularly interesting when dealing with high-

dimensional functions.

As an example, we can marginalize the integrand previ-

ously defined over the variable xk

Iab(. . . , xk−1, xk+1, . . .) =

∫ xk,b

xk,a

g(x)dxk , (16)

by uploading the integration limits, xk,a and xk,b and re-

moving only that derivative from Eq. (14):

Iab(. . ., xk−1, xk+1, . . .) ≃
gest(xk,b|θbest)− gest(xk,a|θbest),

(17)

where we write gest explicitly depending only on xk for sim-

plicity. This can be extended for the partial integration of

any of the variables of which I depends on, until finally we

recover the full integration as shown in Eq. (11).

III. RESULTS

In order to showcase the possibilities of the methodology

presented in this paper we are going to use a VQC for two

different target functions. We will first show the flexibil-

ity of the method to obtain total or partial integrals and

differential distributions, and then we will apply to a prac-

tical case in which the approach can introduce a net-gain.

Both examples are implemented in the public code which

accompanies this paper (among other examples).

A. Toy Model

For our first example we utilize the ansatz of Ref. 1 to

approximate a d-dimensional trigonometric function:

g(x) = cos(α · x + α0), (18)

with x and α n-dim vectors. The integral of Eq. (18), while

trivial to perform analytically, will serve to demonstrate

how training one single circuit to obtain the primitive,

I(α; x) =

∫
g(α; x)dx , (19)

can provide us the flexibility to obtain other derived quan-

tities.

For instance, we might be interested on the differential

distributions dI(α;x)dxi
for a given i and for different values of

one of the parameters α. In general, this would require to

perform the numerical integration once per choice of i , per

bin in the distribution and choice of α. By having a sur-

rogate for I(α; x) we can obtain each distribution as seen

in Fig. 3, were we collect results obtained by training the

model with exact state vector simulation of the quantum

circuits.

In Fig. 3 we have plotted the differential distribution

dI(α; x1)

dx1
, (20)

for two different values of α0 within the training range

(0, 5). All other parameters have remained fixed in order

to minimize the computing cost in this toy-model example.

The training range for the integrated variables (x1, x2, x3)

has been (0, 3.5). In the plots we choose to integrate x2
and x3 from 0 to 3 for every value fo x1, but any choice

of integration limits within the integration range would be

possible.

A shortcoming of this approach is the lack of an uncer-

tainty associated to the numerical integration. In Ref. [14]

the suggestion is to use an ensemble of replicas of the net-

work trained to the same data in order to use the variance

as an error. We have followed the same strategy here by

training an ensemble of circuits randomizing the choice of

training points which leads to a spread of the results.

Other numerical methods provide some shortcuts to ob-

tain similar results. For instance MC integration methods

would allow us to bin quantities which depend on the in-

tegration variables (provided that we know beforehand the

distributions that we want to obtain). However, a change

in the parameter α0 will always lead to a new integration.

Instead, once we have a circuit that approximates Eq. (19),

6

0.0

0.1

0.2

0.3

0.4
dI

(
=

1.
25

,x
1)

dx
1

= 1.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

0.95
1.00
1.05

Ra
tio

Approximation
Target result

0.4

0.3

0.2

0.1

0.0

dI
(

=
4.

0,
x 1

)
dx

1

= 4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

0.95
1.00
1.05

Ra
tio

Approximation
Target result

FIG. 3: Differential distribution of the integral of Eq. (18) on x1 for different values of α0 with α = {1, 2, 12}. The ranges chosen for
x1 are also the ranges used for the integration of all other variables. These results are obtained through exact state vector simulation.
The training was performed with 100 points in x and 10 different values of α0 ∈ (0, 5), using the L-BFGS optimizer for 200-300
iterations. The error bands are computed retraining the circuit for different seeds.

any derived quantity in the training range is accessible with-

out any new runs.

It is important to remark that there is no free lunch,

we are paying the penalty in terms of evaluations of the

integrand (and the surrogate) during the training, but the

outcome is a flexible representation of the final quantity

which can then be reutilized. Similarly to Monte Carlo

methods, the accuracy of the calculation can be improved

by increasing computational cost with either a larger num-

ber of samples or longer training lengths. Note that in this

case we have a function that enables us to generate an

unlimited amount of data for arbitrary inputs and so the

limitation is only of computational cost.

B. The u-quark PDF

In the previous section we have chosen an ideal scenario

with a function for which we know the primitive and against

which we can exactly test. In what follows we consider an

actual use-case for the approach that we propose in this

paper: the integration of a function which is only known

numerically and for which we have a representation in the

form of a VQC.

For this we use the PDF fit and corresponding ansatz

presented in Ref. [59]. Note that in order to overcome

some of the computational challenges that arose when

swapping the NN for a VQC, in Ref. [59] the resulting PDF

is not normalized. Normalizing the PDF requires taking the

integral over x at the fixed fitting energy (Q0), which in

turn requires many evaluations of the PDF at every stage

of the fit.

Instead, with the techniques introduced in this paper we

use the ansatz described in Sec. II B to obtain a model

by which we can produce both the u-quark PDF and its

own integral, hence allowing for a prediction normalized by

construction without the need for an expensive numerical

integral.

In Fig. 4 we show the result of fitting the derivative

of the ansatz to the training data for a fixed value of Q,

obtaining a very good description across the entire range.

We train the model with the L-BFGS optimizer and

performing exact simulation using Qibo. As the train-

ing data we utilize directly the u-quark PDF from the

NNPDF4.0 [63] PDF grids. We limit the training to the x

range (1e-4, 0.7) which is comparable with the ranges of

data available in PDF determinations. In Fig. 4 we train

for several fixed values of Q chosen linearly between 1.65

and 40 GeV.

Once we are able to approximate the integrand with the

derivative of the ansatz, the associated integral,

Iu(Q) =

∫ 0.7
10−4

x u(x,Q) dx, (21)

is the ingredient necessary for the normalization of the u-

quark PDF.

Note that the Q-dependence of the PDF can be com-

puted analytically given the PDF at a fixed scale Q0, thus

in a fit only a value of Iu(Q0) is required. The ability to

train the VQC for a range of values of Q can be exploited

to evaluate Eq. (21) as a parametric integral for a range

of values of Q.

7

0.2

0.4

0.6

u(
x)

u-quark PDF fit

10 4 10 3 10 2 10 1 100

x

0.975

1.000

1.025

Ra
tio

Approximation
Target u-quark

Q = 1.67 GeV

0.0

0.5

1.0

1.5

2.0

2.5

u(
x)

u-quark PDF fit

10 4 10 3 10 2 10 1 100

x

0.975
1.000
1.025

Ra
tio

Approximation
Target u-quark

Q = 30 GeV

FIG. 4: Comparison between the fit of the derivative of the cir-
cuit (red line) and the target result read directly from the inter-
polation grids for the central NNPDF4.0 replica for the u-quark
for a fixed value of Q = 1.67 GeV (fitting scale of NNDPF4.0)
and Q = 30 GeV. While the ansatz in Sec. II B gives us a model
for the integral, the results training is performed onto the deriva-
tive. The training set uses approx. 100 points for each of the
5 fixed values of Q chosen between the initial Q = 1.67 GeV
and Q = 40 GeV. These results are obtained through exact state
vector simulation. In Fig. 5 we will use the same strategy, (train-
ing over a wider range of Q) to plot the integrand as a function
of the energy.

In order to show the generalizability potential of the

method we have also trained the circuit for a wide range

of values of Q, chosen such that no quark-threshold is

crossed (defined as the value of the energy for which the

number of active quarks in NNPDF4.0 changes) to reduce

instabilities.

In QML, in real-life scenarios, one needs to account for

the probabilistic shot-noise associated with the measure-

ment of the quantum states and the noise associated to the

0.210

0.220

0.230

I u
(Q

2)

Estimates of Iu(Q2)

0 2500 5000 7500 10000 12500 15000
Q2 (GeV2)

0.990
1.000
1.010

Ra
tio

Approximation
Target result

FIG. 5: Above, integral of x u(x,Q) calculated for Nq = 20
values of Q. These results are obtained by simulating circuits
with shot-noise. In particular, for each q we perform Nruns =
100 predictions and each prediction is obtained by executing the
circuit Nshots = 10

6 times. The orange line and its confidence
belt are calculated using mean and one standard deviation over
the Nruns prediction sets. Below, average relative percentage
error calculated using the Nruns predictions. The training has
been performed on approx. 100 different values of Q evenly
spaced on Q2 and took about 20 h in a 32-cores machine.

hardware. While the uncertainty associated to the training

shown in Fig. 3 can in principle be reduced by increasing

the training length, these uncertainties are intrinsic to the

methodology.

In Fig. 5 we show the calculation of the integral of

Eq. (21) for different values of Q within the training range.

The circuits are simulated with shot-noise since we per-

form Nshots = 10
6 to compute each expected value (circuit

is called Nshots times for each estimation of the primitive

G). We then repeat every measurement of the integra-

tion Nruns = 100 times. The error is computed by taking

the standard deviation σ of the measurement. The shaded

band in Fig. 5 correspond to the 1σ band.

This corresponds to an ideal real-life scenario since we

are not considering hardware noise. The shot-noise error

scales as 1√
Nruns
. This statistical noise leads in this case

to an uncertainty of about 1%. Due to the computational

cost we don’t include in this case the training uncertainty,

which would need to be included (possibly added in quadra-

ture). We also note a systematic shift with respect to the

true value of ∼ 5‰).

8

C. Normalized by construction

In this section we detail an application of our method to

an actual physics problem for which the improvement with

respect to classical approaches (e.g. numerical integration

using Monte Carlo methods) is immediate: the determi-

nation of PDFs using quantum computers [59]. We leave

the actual implementation to future work, but we outline

here the methodology and expected gains. Note that the

same strategy can be applied whenever the integral of the

function is part of the fitting process.

In Refs. [60, 63] the PDFs are parametrized at Q0 =

1.67 GeV such that

V (x) =
3V̂ (x)∫ xb
xa

dxV̂ (x)

, (22)

where V (x) (V̂) corresponds to the valence (unnormalized)

PDF in the so-called “evolution basis”. and which can be

written in terms of the quark and antiquark PDFs as,

V (x) =

u,d,s,c∑
q(x)− q̄(x). (23)

Note that at the parametrization energy only the lighter

quarks (u, d , s and c) PDFs are independent while the

heavier b and t quarks can be determined from the quarks

(and gluon) PDFs.

The integral in the denominator of Eq. (22) is computed

numerically over x between the extremes xa and xb and

is computed from scratch for every training step. Con-

sequently, obtaining one single value for V (x) requires a

costly numerical integral (more than 103 function calls)

for each step of the training process.

With the QiNNtegrate approach we can instead con-

struct a PDF which is already normalized:

V (x) =
V̂

IV̂
=

3

shifts∑
s

G(xs)

G(xb)− G(xa)
, (24)

where we have exchanged the computational burden of

computing the numerical integrand by a costlier evaluation

of the unnormalized distribution. The shifts in the sum

corresponds to all pairs of (x+, x−) needed to compute the

derivative as per Eq. (9).

For the ansatz used in this work we would need 16 circuit

executions per point in x involved in the fit to estimate the

derivative but have removed a number of executions in the

order of 103 from the training process. In the concrete case

of Ref. [63] this can result in a net reduction of function

calls of a factor of approximately 6. Furthermore, the fit

would in this case benefit from a simpler functional form.

In addition, novel proposals for non-demolition measure-

ments can be integrated in this algorithm to further reduce

0.0 0.2 0.4 0.6 0.8 1.0
x

0.1

0.0

0.1

0.2

0.3

0.4

0.5

1 2s
in

(2
x)

Fit of 12sin(2x) with PSR on hardware

Approximation
Target function

FIG. 6: Estimates of the integrand g(x) = 1
2
sin(2x) between

x = 0 and x = 1 obtained by executing the presented algorithm
on a real superconducting qubit. The target Ndata = 20 func-
tion values (black dashed line) are compared with the estimates
(orange line), obtained as the average of Nruns = 5 sets of pre-
dictions. The confidence interval is drawn using 2σ error over
the experiments. The results are computed without any kind of
error mitigation technique.

the number of shifts required to estimate the integrand

function. To give an example, in [69, 70] the authors in-

troduce an algorithm to reduce the number of expectation

values required to reconstruct the gradient formula origi-

nally introduced in [20]. This is done by exploiting ancillary

qubits and encoding the required shifts into a single circuit.

Together with the improvement of the qubit’s quality, we

believe such techniques can help in making our proposed

integration algorithm even more useful in practice.

D. Integrating on a real qubit

In this section we present some results obtained execut-

ing this algorithm on a real quantum hardware. In partic-

ular, we use a superconducting device composed of a sin-

gle qubit hosted at the Quantum Research Center (QRC)

of the Technology Innovation Institute (TII). The entire

process is realized using the Qibo [24–30] ecosystem; the

high level code is written with Qibo and then executed

on the qubit by Qibolab [29]. In case we make use of

Qibosoq [71], which is the server that integrates Qick [72]

in the Qibolab ecosystem for executing arbitrary circuits

and pulse sequences through RFsoC FPGA boards. All the

single qubit characterization and calibration routines are

performed using Qibocal [27, 30].

We tackle a simple example to reduce the number of

expected values of the form of Eq. (4) to be evaluated. In

9

fact, since the derivative of a circuit is used as predictor in

our model, 2 ∗ Nx expected values are needed to compute
each estimation, where Nx is the number of times x is

uploaded into the model. For example, in case of the one

dimensional u quark PDF presented in Sec. III B Nx =

2Nlayers. We present in Fig. 6 predictions of Ndata = 20

values of the integrand g(x) = 1
2 sin(2x), considering Ndata

values of x uniformly distributed in [0, 1]. We calculate

Nruns = 5 times the prediction for each x and use the

mean and 2σ to define the confidence intervals around the

estimates which are shown in Fig. 6. During the process,

each expectation value is obtained executing the circuit

Nshots = 5000 times. This simple example proves a simple

integrand function can be fitted on a NISQ device.

As second test, we calculate the integral value of the

target function:

Itarget =

∫ 1

0

1

2
sin (2x)dx (25)

Nint = 10 times obtaining as estimate: Îtarget = 0.326 ±
0.011, to be compared with the exact value Itarget = 0.354.

The error on the estimate is the standard deviation over the

Nint results. We believe having such a satisfactory result

even with noisy hardware can be motivated by the nature

of the problem we are tackling. In fact, the target integral

is here calculated following Eq. (12), and the difference

between estimations can help in removing systematic errors

that may occur when dealing with NISQ devices.

IV. CONCLUSION

In this paper we have extended the methods proposed

in Refs. [13, 14] to quantum computers and shown how

the properties of these new type of devices can introduce

a practical advantage compared to classical alternatives by

exploiting the properties of the parameter shift rule.

Furthermore, we have demonstrated a practical-case in

which one can obtain a net benefit by utilizing this ap-

proach, by skipping entirely the need for a numerical inte-

gration during a fitting procedure. A natural extension of

this work is an enhancement of the methodology proposed

in Ref. [59] in which the PDF fit could not be normalized

due to technical constraints.

We then reported interesting results obtained on a real

superconducting qubit, showing how a NISQ device can

already be used to fit integrand functions following our

algorithm. We have also made all code available in a pub-

lic python framework QiNNtegrate [73]. which can be

used to reproduce the results of this work and which can

be extended to other custom functions. QiNNtegrate is

based on Qibo and thus the generated circuits can be ei-

ther simulated in a classical computer or directly executed

on hardware.

Acknowledgments

We thank D. Maitre for the careful reading of the

manuscript and many very useful comments. This project

is supported by CERN’s Quantum Technology Initiative

(QTI). MR is supported by CERN doctoral program. SC

thanks the TH hospitality during the elaboration of this

manuscript.

[1] N. Metropolis and S. Ulam, Journal of the American Sta-

tistical Association 44, 335 (1949), ISSN 01621459, URL

http://www.jstor.org/stable/2280232.

[2] R. E. Caflisch, Acta Numerica 7, 1–49 (1998).

[3] H. Zhong and X. Feng, An efficient and fast sparse grid al-

gorithm for high-dimensional numerical integration (2022),

2210.14313.

[4] Z. Ghahramani and C. Rasmussen, in Ad-

vances in Neural Information Processing Systems,

edited by S. Becker, S. Thrun, and K. Ober-

mayer (MIT Press, 2002), vol. 15, URL https:

//proceedings.neurips.cc/paper˙files/paper/2002/

file/24917db15c4e37e421866448c9ab23d8-Paper.pdf.

[5] J. Schmidhuber, Neural Networks 61, 85 (2015),

ISSN 0893-6080, URL https://www.sciencedirect.

com/science/article/pii/S0893608014002135.

[6] G. P. Lepage, J. Comput. Phys. 27, 192 (1978).

[7] G. P. Lepage, J. Comput. Phys. 439, 110386 (2021),

2009.05112.

[8] S. Carrazza and J. M. Cruz-Martinez, Comput. Phys.

Commun. 254, 107376 (2020), 2002.12921.

[9] P. Gómez, H. H. Toftevaag, and G. Meoni, J. Open Source

Softw. 6, 3439 (2021).

[10] R. Kleiss and R. Pittau, Comput. Phys. Commun. 83, 141

(1994), hep-ph/9405257.

[11] T. Müller, B. Mcwilliams, F. Rousselle, M. Gross, and

J. Novák, ACM Trans. Graph. 38 (2019), ISSN 0730-

0301, URL https://doi.org/10.1145/3341156.

[12] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale, and

S. Schumann, SciPost Phys. 8, 069 (2020), 2001.05478.

[13] D. B. Lindell, J. N. P. Martel, and G. Wetzstein, CoRR

abs/2012.01714 (2020), 2012.01714, URL https://

arxiv.org/abs/2012.01714.

[14] D. Mâıtre and R. Santos-Mateos, Journal of High Energy

http://www.jstor.org/stable/2280232
https://proceedings.neurips.cc/paper_files/paper/2002/file/24917db15c4e37e421866448c9ab23d8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/24917db15c4e37e421866448c9ab23d8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/24917db15c4e37e421866448c9ab23d8-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://doi.org/10.1145/3341156
https://arxiv.org/abs/2012.01714
https://arxiv.org/abs/2012.01714

10

Physics 2023 (2023), URL https://doi.org/10.1007%

2Fjhep03%282023%29221.

[15] M. Schuld, I. Sinayskiy, and F. Petruccione, Contempo-

rary Physics 56, 172 (2014), URL https://doi.org/10.

1080%2F00107514.2014.964942.

[16] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,

N. Wiebe, and S. Lloyd, Nature 549, 195 (2017), URL

https://doi.org/10.1038%2Fnature23474.

[17] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Physical

Review A 98 (2018), URL https://doi.org/10.1103%

2Fphysreva.98.032309.

[18] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma,

and H.-S. Goan, Variational quantum circuits for deep re-

inforcement learning (2020), 1907.00397.

[19] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Fi-

galli, and S. Woerner, Nature Computational Sci-

ence 1, 403 (2021), URL https://doi.org/10.1038%

2Fs43588-021-00084-1.

[20] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Kil-

loran, Physical Review A 99 (2019), URL https://doi.

org/10.1103%2Fphysreva.99.032331.

[21] G. E. Crooks, Gradients of parameterized quantum gates

using the parameter-shift rule and gate decomposition

(2019), 1905.13311.

[22] A. Mari, T. R. Bromley, and N. Killoran, Physical Re-

view A 103 (2021), URL https://doi.org/10.1103%

2Fphysreva.103.012405.

[23] D. Wierichs, J. Izaac, C. Wang, and C. Y.-Y. Lin, Quan-

tum 6, 677 (2022), URL https://doi.org/10.22331%

2Fq-2022-03-30-677.

[24] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto,

A. Pérez-Salinas, D. Garćıa-Mart́ın, A. Garcia-Saez, J. I.

Latorre, and S. Carrazza, Quantum Science and Technol-

ogy 7, 015018 (2021), URL https://doi.org/10.1088%

2F2058-9565%2Fac39f5.

[25] S. Efthymiou, M. Lazzarin, A. Pasquale, and S. Car-

razza, Quantum 6, 814 (2022), URL https://doi.org/

10.22331%2Fq-2022-09-22-814.

[26] S. Carrazza, S. Efthymiou, M. Lazzarin, and A. Pasquale,

Journal of Physics: Conference Series 2438, 012148

(2023), URL https://doi.org/10.1088%2F1742-6596%

2F2438%2F1%2F012148.

[27] A. Pasquale, S. Efthymiou, S. Ramos-Calderer, J. Wilkens,

I. Roth, and S. Carrazza, Towards an open-source frame-

work to perform quantum calibration and characterization

(2023), 2303.10397.

[28] S. Efthymiou et al., qiboteam/qibo: Qibo 0.1.12 (2023),

URL https://doi.org/10.5281/zenodo.7736837.

[29] S. Efthymiou et al., qiboteam/qibolab: Qibolab

0.0.2 (2023), URL https://doi.org/10.5281/zenodo.

7748527.

[30] A. Pasquale et al., qiboteam/qibocal: Qibocal 0.0.1

(2023), URL https://doi.org/10.5281/zenodo.

7662185.

[31] J. Preskill, Quantum 2, 79 (2018), URL https://doi.

org/10.22331%2Fq-2018-08-06-79.

[32] A. Delgado, K. E. Hamilton, P. Date, J.-R. Vlimant,

D. Magano, Y. Omar, P. Bargassa, A. Francis, A. Gianelle,

L. Sestini, et al., Quantum computing for data analysis in

high energy physics (2022), 2203.08805.

[33] G. Gustafson, S. Prestel, M. Spannowsky, and S. Williams,

JHEP 11, 035 (2022), 2207.10694.

[34] G. Agliardi, M. Grossi, M. Pellen, and E. Prati, Phys. Lett.

B 832, 137228 (2022), 2201.01547.

[35] C. W. Bauer et al., PRX Quantum 4, 027001 (2023),

2204.03381.

[36] K. A. Woźniak, V. Belis, E. Puljak, P. Barkoutsos, G. Dis-

sertori, M. Grossi, M. Pierini, F. Reiter, I. Tavernelli,

and S. Vallecorsa, Quantum anomaly detection in the la-

tent space of proton collision events at the lhc (2023),

2301.10780.

[37] H. A. Chawdhry and M. Pellen (2023), 2303.04818.

[38] M. Robbiati, J. M. Cruz-Martinez, and S. Carrazza, De-

termining probability density functions with adiabatic quan-

tum computing (2023), 2303.11346.

[39] A. D’Elia et al., Appl. Sciences 14, 1478 (2024),

2402.04322.

[40] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Quan-

tum Science and Technology 4, 043001 (2019), URL

https://doi.org/10.1088%2F2058-9565%2Fab4eb5.

[41] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,

S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,

L. Cincio, et al., Variational quantum algorithms (2020),

cite arxiv:2012.09265Comment: Review Article. 29 pages,

6 figures, URL http://arxiv.org/abs/2012.09265.

[42] S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killo-

ran, Quantum embeddings for machine learning (2020),

2001.03622.

[43] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I.

Latorre, Quantum 4, 226 (2020), URL https://doi.org/

10.22331%2Fq-2020-02-06-226.

[44] M. Incudini, F. Martini, and A. D. Pierro, Structure learn-

ing of quantum embeddings (2022), 2209.11144.

[45] M. Schuld and F. Petruccione, Supervised Learning with

Quantum Computers, Quantum Science and Technology

(Springer, 2018).

[46] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature

323, 533 (1986).

[47] D. P. Kingma and J. Ba, Adam: A method for stochastic

optimization (2017), 1412.6980.

[48] J. Duchi, E. Hazan, and Y. Singer, Journal of Machine

Learning Research 12, 2121 (2011), URL http://jmlr.

org/papers/v12/duchi11a.html.

[49] J. Schmidhuber, Neural Networks 61, 85 (2015), URL

https://doi.org/10.1016%2Fj.neunet.2014.09.003.

[50] S. Ruder, An overview of gradient descent optimization

algorithms (2017), 1609.04747.

[51] M. Robbiati, S. Efthymiou, A. Pasquale, and S. Carrazza,

A quantum analytical adam descent through parameter

shift rule using qibo (2022), 2210.10787.

[52] N. Hansen, The cma evolution strategy: A tutorial (2023),

1604.00772.

[53] D. Henderson, S. Jacobson, and A. Johnson, The Theory

and Practice of Simulated Annealing (2006), pp. 287–319.

[54] J. M. Kübler, A. Arrasmith, L. Cincio, and P. J. Coles,

Quantum 4, 263 (2020), URL https://doi.org/10.

22331%2Fq-2020-05-11-263.

[55] A. Arrasmith, L. Cincio, R. D. Somma, and P. J. Coles,

https://doi.org/10.1007%2Fjhep03%282023%29221
https://doi.org/10.1007%2Fjhep03%282023%29221
https://doi.org/10.1080%2F00107514.2014.964942
https://doi.org/10.1080%2F00107514.2014.964942
https://doi.org/10.1038%2Fnature23474
https://doi.org/10.1103%2Fphysreva.98.032309
https://doi.org/10.1103%2Fphysreva.98.032309
https://doi.org/10.1038%2Fs43588-021-00084-1
https://doi.org/10.1038%2Fs43588-021-00084-1
https://doi.org/10.1103%2Fphysreva.99.032331
https://doi.org/10.1103%2Fphysreva.99.032331
https://doi.org/10.1103%2Fphysreva.103.012405
https://doi.org/10.1103%2Fphysreva.103.012405
https://doi.org/10.22331%2Fq-2022-03-30-677
https://doi.org/10.22331%2Fq-2022-03-30-677
https://doi.org/10.1088%2F2058-9565%2Fac39f5
https://doi.org/10.1088%2F2058-9565%2Fac39f5
https://doi.org/10.22331%2Fq-2022-09-22-814
https://doi.org/10.22331%2Fq-2022-09-22-814
https://doi.org/10.1088%2F1742-6596%2F2438%2F1%2F012148
https://doi.org/10.1088%2F1742-6596%2F2438%2F1%2F012148
https://doi.org/10.5281/zenodo.7736837
https://doi.org/10.5281/zenodo.7748527
https://doi.org/10.5281/zenodo.7748527
https://doi.org/10.5281/zenodo.7662185
https://doi.org/10.5281/zenodo.7662185
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.1088%2F2058-9565%2Fab4eb5
http://arxiv.org/abs/2012.09265
https://doi.org/10.22331%2Fq-2020-02-06-226
https://doi.org/10.22331%2Fq-2020-02-06-226
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1016%2Fj.neunet.2014.09.003
https://doi.org/10.22331%2Fq-2020-05-11-263
https://doi.org/10.22331%2Fq-2020-05-11-263

11

Operator sampling for shot-frugal optimization in varia-

tional algorithms (2020), 2004.06252.

[56] M. Menickelly, Y. Ha, and M. Otten, Quantum

7, 949 (2023), URL https://doi.org/10.22331%

2Fq-2023-03-16-949.

[57] J. Stokes, J. Izaac, N. Killoran, and G. Carleo, Quan-

tum 4, 269 (2020), URL https://doi.org/10.22331%

2Fq-2020-05-25-269.

[58] A. Pérez-Salinas, D. López-Núñez, A. Garćıa-Sáez,

P. Forn-D́ıaz, and J. I. Latorre, Physical Review A 104

(2021), ISSN 2469-9934, URL http://dx.doi.org/10.

1103/PhysRevA.104.012405.

[59] A. Pérez-Salinas, J. Cruz-Martinez, A. A. Alhajri, and

S. Carrazza, Physical Review D 103 (2021), URL https:

//doi.org/10.1103%2Fphysrevd.103.034027.

[60] R. D. Ball et al. (NNPDF), Eur. Phys. J. C 81, 958 (2021),

2109.02671.

[61] A. Candido, L. Del Debbio, T. Giani, and G. Petrillo

(2024), 2404.07573.

[62] S. Forte and G. Watt, Ann. Rev. Nucl. Part. Sci. 63, 291

(2013), 1301.6754.

[63] R. D. Ball et al. (NNPDF), Eur. Phys. J. C 82, 428 (2022),

2109.02653.

[64] L. Banchi and G. E. Crooks, Quantum 5, 386 (2021), URL

https://doi.org/10.22331%2Fq-2021-01-25-386.

[65] M. J. D. Powell, Comput. J. 7, 155 (1964).

[66] D. C. Liu and J. Nocedal, Math. Program. 45 (1989),

ISSN 0025-5610.

[67] D. J. Wales and J. P. K. Doye, The Journal of Physical

Chemistry A 101, 5111 (1997), URL https://doi.org/

10.1021%2Fjp970984n.

[68] A. Abbas, R. King, H.-Y. Huang, W. J. Huggins,

R. Movassagh, D. Gilboa, and J. R. McClean, On quantum

backpropagation, information reuse, and cheating mea-

surement collapse (2023), 2305.13362.

[69] P. Solinas, S. Caletti, and G. Minuto, Eur. Phys. J. D 77,

76 (2023), 2301.07128.

[70] G. Minuto, S. Caletti, and P. Solinas, A novel approach to

reduce derivative costs in variational quantum algorithms

(2024), 2404.02245.

[71] R. Carobene, A. Candido, J. Serrano, S. Carrazza,

and Edoardo-Pedicillo, qiboteam/qibosoq: Qibosoq

0.0.3 (2023), URL https://doi.org/10.5281/zenodo.

8126172.

[72] L. Stefanazzi, K. Treptow, N. Wilcer, C. Stoughton,

S. Montella, C. Bradford, G. Cancelo, S. Saxena, H. Ar-

naldi, S. Sussman, et al., The qick (quantum instrumen-

tation control kit): Readout and control for qubits and

detectors (2022), 2110.00557.

[73] J. M. C. Martinez, M. Robbiati, and S. Carrazza, QiN-

Ntegrate (2023), URL https://github.com/qiboteam/

QiNNtegrate.

https://doi.org/10.22331%2Fq-2023-03-16-949
https://doi.org/10.22331%2Fq-2023-03-16-949
https://doi.org/10.22331%2Fq-2020-05-25-269
https://doi.org/10.22331%2Fq-2020-05-25-269
http://dx.doi.org/10.1103/PhysRevA.104.012405
http://dx.doi.org/10.1103/PhysRevA.104.012405
https://doi.org/10.1103%2Fphysrevd.103.034027
https://doi.org/10.1103%2Fphysrevd.103.034027
https://doi.org/10.22331%2Fq-2021-01-25-386
https://doi.org/10.1021%2Fjp970984n
https://doi.org/10.1021%2Fjp970984n
https://doi.org/10.5281/zenodo.8126172
https://doi.org/10.5281/zenodo.8126172
https://github.com/qiboteam/QiNNtegrate
https://github.com/qiboteam/QiNNtegrate

	Introduction
	Methodology
	Quantum Machine Learning in a nutshell
	Circuit's ansatz
	Derivative of a quantum circuit
	Solving integrals with quantum circuits

	Results
	Toy Model
	The u-quark PDF
	Normalized by construction
	Integrating on a real qubit

	Conclusion
	Acknowledgments
	References

