
Vol.:(0123456789)1 3

Computing and Software for Big Science (2023) 7:10
https://doi.org/10.1007/s41781-023-00104-x

RESEARCH

Potential of the Julia Programming Language for High Energy Physics
Computing

Jonas Eschle1 · Tamás Gál2 · Mosè Giordano3 · Philippe Gras4 · Benedikt Hegner5 · Lukas Heinrich6 ·
Uwe Hernandez Acosta7,8 · Stefan Kluth6 · Jerry Ling9 · Pere Mato5 · Mikhail Mikhasenko10,11 ·
Alexander Moreno Briceño12 · Jim Pivarski13 · Konstantinos Samaras‑Tsakiris5 · Oliver Schulz6 ·
Graeme Andrew Stewart5 · Jan Strube14,15 · Vassil Vassilev13

Received: 6 June 2023 / Accepted: 11 August 2023
© The Author(s) 2023

Abstract
Research in high energy physics (HEP) requires huge amounts of computing and storage, putting strong constraints on the
code speed and resource usage. To meet these requirements, a compiled high-performance language is typically used; while
for physicists, who focus on the application when developing the code, better research productivity pleads for a high-level
programming language. A popular approach consists of combining Python, used for the high-level interface, and C++, used
for the computing intensive part of the code. A more convenient and efficient approach would be to use a language that pro-
vides both high-level programming and high-performance. The Julia programming language, developed at MIT especially
to allow the use of a single language in research activities, has followed this path. In this paper the applicability of using the
Julia language for HEP research is explored, covering the different aspects that are important for HEP code development:
runtime performance, handling of large projects, interface with legacy code, distributed computing, training, and ease of
programming. The study shows that the HEP community would benefit from a large scale adoption of this programming
language. The HEP-specific foundation libraries that would need to be consolidated are identified.

Keywords Julia · HEP · Python · High energy and nuclear physics · Programming language · HPC

Introduction

High throughput computing plays a major role in high
energy physics (HEP) research. The field requires the
development of sophisticated computing codes, which are
continuously evolving in the course of the research work.

Computing grids, connecting computer centers all around
the world, are required to process the experiments’ data [1].
Computer algebra systems and high performance comput-
ers are used to build new models and to calculate particle
production cross sections.

 * Philippe Gras
 philippe.gras@cern.ch

1 University of Zurich, Zürich, Switzerland
2 Erlangen Centre for Astroparticle Physics, Friedrich-Alexand

er-Universität, Erlangen-Nürnberg, Germany
3 University College London, London, UK
4 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
5 CERN, European Organization for Nuclear Research,

Geneva, Switzerland
6 Max-Planck-Institut für Physik, Munich, Germany
7 Center for Advanced Systems Understanding, Görlitz,

Germany

8 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
9 Laboratory for Particle Physics and Cosmology, Harvard

University, Cambridge, MA, USA
10 ORIGINS Excellence Cluster, Garching, Germany
11 Ludwig-Maximilians-Universität, Munich, Germany
12 Universidad Antonio Nariño, Ibagué, Colombia
13 Princeton University, Princeton, NJ, USA
14 Pacific Northwest National Laboratory, Richland, WA, USA
15 University of Oregon, Eugene, OR, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-023-00104-x&domain=pdf
https://orcid.org/0000-0002-7312-3699
https://orcid.org/0000-0001-7821-8673
https://orcid.org/0000-0002-7218-2873
https://orcid.org/0000-0002-3932-5967
https://orcid.org/0000-0002-4048-7584
https://orcid.org/0000-0002-6182-1481
https://orcid.org/0000-0001-8484-2261
https://orcid.org/0000-0002-3359-0380
https://orcid.org/0000-0002-3009-8948
https://orcid.org/0000-0002-6969-2063
https://orcid.org/0000-0001-8415-2543
https://orcid.org/0000-0002-6649-343X
https://orcid.org/0000-0003-1216-9738
https://orcid.org/0000-0002-4200-5905
https://orcid.org/0000-0003-0182-7088
https://orcid.org/0000-0001-7470-9301

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 2 of 24

Fig. 1 shows the expected needs for the ATLAS and CMS
experiments [2, 3] at the Large Hadron Collider (LHC) [4]
and its successor, the high-luminosity LHC (HL-LHC) [5],
together with the estimated planned resources. A data pro-
cessing improvement from R&D is required for HL-LHC to
fit within the planned resources, which total 20 ⋅ 109 HS061
units of CPU resource.

The need to reconcile high performance with fast develop-
ment has led to the development of a C++ interpreter [8] that
provides the convenience of a read-eval-print-loop (REPL)
interactive experience, also known as programming shell, that
supports just-in-time compilation, and allows the use of the
same programming language for compiled and interpreted
code. The same analysis framework ROOT [9, 10] can then
be used with compiled code and interactively. In addition
to the REPL, ROOT supports Jupyter notebooks, which are
another convenient method for interactive use. The shortcom-
ing of this approach is that the use complex programming lan-
guage is not optimal for easy and fast coding. For this reason,
another approach that consists of using two languages, one
optimal for fast development, typically Python, and one opti-
mal for high performance, typically C++, is often adopted.

Using two languages is not ideal: it expands the required
area of expertise; it forces the reimplementation, in the high-
performance language, of pieces of code originally written
with the fast-development language when they do not meet
the required performance; and it reduces the reusability of
code.

In 2009, J. Bezanson, A. Edelman, S. Karpinski, and V. B.
Shah imagined a new programming language to address this
“two language problem” by providing high performance and
ease of programming [11–13] simultaneously. It has been
a successful approach. The new language, Julia, which has
evolved year upon year, is now used by many users. Julia
is a dynamic language, similar to Python, yet with a per-
formance similar to C/C++. As of October 11, 2022, 8387
packages were registered in the Julia general registry [14],
which are accessible to Julia’s integrated package manager.
Fig. 2 shows the rapid growth in the number of packages.

As demonstrated by M. Stanitzki and J. Strube [15], the
Julia language is a good alternative to the combination of
C++ and Python for HEP data analysis and it fulfils its

2020 2022 2024 2026 2028 2030 2032 2034 2036
Year

0

10

20

30

40

50

ye
ar

s]
⋅

An
nu

al
 C

PU
 C

on
su

m
pt

io
n

 [M
H

S0
6

=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2022 Computing Model - CPU

Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

ATLASPreliminary

(a)

(b)

Fig. 1 Estimated CPU required by the CMS (top) and ATLAS (bot-
tom) experiments for LHC and HL-LHC [6, 7]

Fig. 2 Number of packages registered in the Julia general repository
that can be installed by the integrated package manager (top) and of
Julia language code GitHub stars (bottom) as function of time. The
trend of the star counts is compared with Numba and Jax

1 https:// www. spec. org/ cpu20 06/.

https://www.spec.org/cpu2006/

Computing and Software for Big Science (2023) 7:10

1 3

Page 3 of 24 10

promise to be an easy, high performance language. This
report extends that study. It explores the possible benefits
of the adoption of Julia as the main programming language
for HEP, in place of C++-Python, in a similar way as hap-
pened with the switch from Fortran to C++ in the late 90’s.

The Programming Language Community

More important than a list of technical features, however, are
the culture and interests of a programming language’s com-
munity, because the language and its implementation will
evolve to satisfy those interests. For instance, the Haskell
community is focused on language theory, and is unlikely
to put much effort into optimization for high performance
computing, and the Go community is so focused on language
simplicity that they have resisted try-catch logic [16]. The
Julia community’s interests are well aligned with HEP, and
many Julia users are in the sciences. We see this in some
design choices inherited from existing technical languages
(Fortran, R, MATLAB, Wolfram), like 1-based indexing,
column-major arrays, and built-in N-dimensional arrays, and
also in the effort placed on interoperability with other lan-
guages: ccall, PyCall.jl, RCall.jl, MathLink.
jl, and JavaCall.jl. Julia is supported by NumFO-
CUS (like many Python data science projects), and many of
its most prominent applications are in numerical comput-
ing: NASA spacecraft modeling [17]; climate science [18];
and the Celeste project [19], which achieved 1.54 Petaflops
on the Cori II supercomputer [20], a first for a dynamic
language.

Key Features of Julia

To locate Julia in the space of programming languages, its
primary features are characterized below.

• A single implementation, rather than an abstract language
specification with multiple slightly incompatible imple-
mentations. The Julia computing platform is primarily
implemented in Julia (most parts), C, and C++ (LLVM),
and it has a built-in REPL.

• Every function, including those entered interactively, is
compiled just-in-time (JIT) using LLVM as the back end.
Julia has no virtual machine, and the JIT is eager (always
compiles before execution), unlike the tracing/hot spot
JIT seen in LuaJIT [21] or metatracing [22] like PyPy
[23].

• Partly thanks to dynamic typing, and also being a JIT lan-
guage, Julia fully supports: type reflection, source code
as a built-in data type, which enables Lisp-like (hygienic)
macros2.

• Fast N-dimensional arrays that store elements in-place.
• Multiple dispatch (MD): a function-call invokes the most

specific method that matches the type of all arguments.
While many languages support (opt-in) multiple dispatch
(C#, Common Lisp), Julia is the first language that uses
MD as the central paradigm3 while focusing on perfor-
mance. MD allows for a surprising amount of code reuse
and composition among packages that do not know about
about each other (often a problem with OOP languages),
this is further discussed in the “Polymorphism in C++,
Python, and Julia” section.

• Apart from the lack of classes, Julia has a fairly standard
mix of imperative and functional programming styles.
Immutability is encouraged by default, but mutable
structs and arrays are allowed and are frequently used.

• Built-in parallel processing support. Any piece of a pro-
gram can be marked for execution in parallel. Threads
are scheduled globally—allowing a multithreaded func-
tion to call other multithreaded function—on available
resources without oversubscribing, saving the developer
from the burden of taking care of the number of threads.
Computing distributed on several computers is sup-
ported. Julia code can run natively on GPUs.

• Objects are not reference counted, but are garbage col-
lected. The garbage collector is standard mark-and-
sweep, generational (like Java), but non-compacting, so
pointers to objects are valid as long as the objects remain
in scope.

The manner in which polymorphism is supported is the most
noticeable difference with CBOO programming languages,
like C++ and Python, and it merits a dedicated discussion.

Polymorphism in C++, Python, and Julia

Polymorphism is the “ability to provide a single interface to
entities of different types” [24, 25]: a polymorphic function
will accept arguments of different types. Here we compare
Julia with C++ and Python due to their prevalence in HEP.

We can distinguish two classes of polymorphism [26, 27]:
ad-hoc polymorphism where a different implementation is
provided for each set of types, and universal polymorphism,
where a single generic implementation is provided for all
the sets.

Function overloading is an example of ad-hoc polymor-
phism, while C++ templates are an example of universal
polymorphism. Ad-hoc polymorphism can be combined
with universal polymorphism using template specialization:

2 https:// en. wikip edia. org/ wiki/ Hygie nic_ macro.

3 Not only Julia lacks OOP by design, it also has highest number of
methods and degree of specialization among languages that support
MD [11].

https://en.wikipedia.org/wiki/Hygienic_macro

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 4 of 24

several implementations are provided, while each implemen-
tation can be generic, either partially or totally. A particular
universal polymorphism is based on subtypes: the function
scope is extended to all subtypes of its argument.

Polymorphism can be static, i.e., resolved at compile
time, or dynamic, i.e., resolved at runtime. It can apply to
a single entity e.g., one of the arguments of a function, or
multiple entities e.g., all the arguments of a function. In a
function call, the mechanism that selects the implementation
to execute according the passed argument types is called
dispatch.

In the following of this subsection, we will compare poly-
morphism provided by Julia, C++ and Python. Code exam-
ples illustrating our statements can be found in Appendix A.

Polymorphism is provided in C++ by two paradigms:
one based on class inheritance, function overloading, and
function overriding; the other based on templates. The first
provides ad-hoc and subtype polymorphisms over func-
tions, while the second provides universal and ad-hoc poly-
morphisms over both functions and types. By exploiting
the concepts feature introduced by C++ 20, subtyping
polymorphism support can be added to the templates. The
functionalities of the two paradigms overlap.

In C++, class non-static member functions take a special
argument, the class instance reference (x) or pointer (ptr),
through a dedicated syntax, x.f() and ptr->f(). Both
static and dynamic polymorphism are supported over this
argument, while only static polymorphism is provided for
the other arguments. Object copy with implicit type conver-
sion can make difficult to follow the polymorphism flow of
an object.

Static ad-hoc polymorphism is supported over the argu-
ments of global functions and static member functions. C++
class templates provide static universal polymorphism. One
notable usage is the containers of the standard template
library.

The class inheritance is twofold, it provides inheritance of
the interface through the subtype polymorphism previously
described and inheritance of the data fields, a type is an
aggregation of its fields and all the fields of its supertypes.
The bounding of the two inheritances can result in break-
ing encapsulation [28] and it is often advocated to prefer
composition to inheritance for the fields, as dictated by the
“second principle of object-oriented design” of Ref. [29].

Python provides single dynamic dispatch for the class
instance argument of member functions. It does not provide
polymorphism for other arguments. Multiple dispatch emu-
lation can be implemented in the function using conditions
on the argument types or using a decorator [30].

Julia provides ad-hoc and universal polymorphism,
including subtype polymorphism [31], within a consistent

multiple-dispatch paradigm. Extending the dynamic dispatch
of C++ to all arguments of a functions makes it extremely
powerful, especially in terms of code re-usability. The Julia
multiple dispatch exploits JIT compilation and the classi-
fication into static and dynamic dispatches is less relevant
here: a specialized function is compiled only before its use,
although the behavior is always consistent with dynamic dis-
patch; inlining and other compile-time optimizations can be
performed despite the dynamic behavior. Nevetheless, this
optimisation is subject to the ability of the compiler to infer
the type of the passed arguments and requires some attention
from the developer. In particular, when code performance
is important, the developer must make sure that the return
type of a function can be inferred from the types of the its
arguments. Julia ad-hoc and universal polymorphism uses a
simple syntax similar to function overloading, but with argu-
ment types specified only when required, either to extend a
function or to enforce the types of arguments.

The implementation of a two-argument function to be
called by default, in absence of a more specialized imple-
mentation fitting better with the types of the passed argu-
ments, will be defined as . Its spe-
cialization for a first argument of type A or of a subtype of
A will be defined by suffixing the first argument with . It
can be further specialized for a first argument of type A or a
subtype of A and second argument of type B or of a subtype
B, by annotating both arguments respectively with and

, which will read as, .
Universal polymorphism for type definition is supported

by parametric types. In the following example the type
Point has two fields of the same type, that must be a sub-
type of the Number type.

Contrary to C++, in Julia, subtyping does not involve
field inheritance. Data aggregation must be done using com-
position, enforcing the “second principle of object-oriented
design”. Subtypes are used to define a type hierarchy for the
subtype polymorphism. The hierarchy tree is defined with
abstract types that do not contain data, only the leaves of the
tree can be a concrete type.

Because variable assignment and function argument pass-
ing do not trigger an object copy, Julia is not affected by
the difficulty encountered in C++ mentioned before. This
is demonstrated with the “King of Savannah” example dis-
cussed in the Appendix A.

Computing and Software for Big Science (2023) 7:10

1 3

Page 5 of 24 10

HEP Computing Requirements

Because the program codes used in HEP research are very
large, with high interdependence, a code typically uses
many open source libraries developed by other authors;
thus the effort to change programming language is conse-
quential. The adoption of a new language can happen only
if it brings a substantial advantage over the already used
paradigm.

The key advantage of Julia that can make the language
switch worthwhile is the simplification that will arise from
using a single language in place of a combination of two,
C++ and Python.

HEP computing is wide and includes many use cases:
automation for the controls of the experiment, data acquisi-
tion, phenomenology and physics event generation, simula-
tion of the physical experiment, reconstruction of physics
events4 from recorded data, analysis of the reconstructed
events, and more.

We will review in this section the properties required for
event analysis, event reconstruction, event simulation and
event generation. We will start with general features, com-
mon to all the use cases.

General Features

An Easy Language

The easy language is one-side of the high-level and high-
performance coin property that would motivate the adop-
tion of Julia as a programming language. It is easy at
least in two ways: easy, imperative syntax, and free of
strong typing when writing code. The surface syntax of
Julia largely resembles Python, MATLAB (control flow,
literal array), while also getting inspiration, such as the
do-block, from Lua and Ruby. It has all the high-levelness
one would expect from a language: higher-order functions
(functions can be returned and passed as variables), native
N-dimensional arrays, nested irregular arrays (arrays of
different-size arrays), and a syntax for broadcasting over
arrays.

As a syntax comparison example, a for-loop will look like
the following in Python, Julia, and C++.

We will note in this example that Julia is free of type
declaration, just like Python. In this example, we use the
C++ type declaration feature to achieve the same goal.
It is worthy of mention that, as in C++, Julia code interpre-
tation is not sensitive to changes in indentation: appending
two spaces at the beginning of the last line, will change the
behavior of the Python code only.

Julia supports list comprehension, like Python, as illus-
trated in this example that creates a vector with the series
1, 1∕2,… , 1∕10:

NumPy [32] function vectorization is provided natively in
Julia for all functions and operators, including those defined
by the user, through the broadcast operator: a dot prefix is
used to specify that the function must be applied to each
element of a vector or of an array. The syntax is illustrated
below.

4 In HEP experiments, we observe collisions of subatomic parti-
cles or atoms. The result of a collision that produces new particles is
called an event. Detectors, that can be complex apparatus as large as
46m × 25m producing tens of millions of MBytes of data per sec-
ond, are used to capture the event.

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 6 of 24

The following example illustrates the native support of
linear algebra and multi-dimensional arrays and highlight
the concise syntax it provides. It solves the simple equation,

Because broadcasting has its own syntax, Julia is able to
use mathematical operators “correctly” when they are not
broadcast, instead of relying special names e.g., matrix mul-
tiplication (np.matmul) and exponentiation (np.ling.
expm).

Two additional language design choices are worth
noting for their contribution to make the language easy
to use without sacrificing performance. The first is the
evaluation of the function default parameter values, done
at each call, instead of once for all in Python. Thanks to
this choice, a function that appends the ele-
ment x to vector v and returns the latter will always return
a one-element when called as f(x) in Julia, while it will
return a vector growing in size at each new call in Python.
The second is the copy performed by the updating opera-
tors (+=, *=,..) instead of the in-place operation done by
Python. In the Julia code, ,
the operator += will not modify the content of the
vector A , it is syntactically strictly equivalent to
B = B + [1, 1]), while it will in the Python code

.
We judge these two Julia behaviors more natural and more
likely to match to what a non-expert would expect when
writing or reading the code.

As we illustrated with few examples, the Julia language
is as easy as Python and sometimes easier thanks to a native
support of features provided by external packages in Python
that allows for a more concise and natural syntax.

Performance

The other major advantage to Julia is high performance.
Julia provides performance similar to C++, and in some
cases even surpassing C++, as can be seen in Fig 3. The

(

1 1

1 − 1

)

x =

(

2

0

)

.

shown comparison is obtained by repeating the micro-
benchmark5 for Julia version 1.9.0rc1 and Python 3.9.2. C
and Julia implementations use OpenBLAS for the matrix
operations, while Python uses NumPy (version 1.24.2)
and OpenBLAS. This benchmark compares the run time
of some short algorithms implemented in a similar way
in the different languages. The results are divided by the
time the C/C++ implementation takes. The GNU compiler
gcc version 10.2.1 has been used. The test is performed
on a laptop equipped with a 11th Gen Intel(R) Core(TM)
i5-1135G7@2.40GHz CPU and 16 GB of random access
memory (RAM) running the Linux operating system com-
pile for x86 64-bit architecture. The 64-bit flavor OpenB-
LAS library version 0.3.21 is used. This setup is used for all
performance tests described in this paper, if not specified
otherwise. The score goes from 0.73 to 1.67 (smaller is bet-
ter) for Julia and 1.12 to 107 for Python. C is doing the best
with respect to the two other languages for the recursive
Fibonacci algorithm, implemented in Julia as below.

This benchmark tests the performance for recursive calls.
While expert developers typically avoid it for performance
reasons, a recursive expression is the easiest and most natu-
ral way to implement a recursive algorithm. The mathemati-
cal series u

n+1 = f (u
n
) maps directly to a recursive comput-

ing function call. We compute the 20th Fibonacci series
elements, which results in 21,891 nested calls, a good exam-
ple of recursive calls. The C/C++ implementation is doing
better because of a tail recursion optimization performed

Fig. 3 Comparison of C/C++, Python and Julia language perfor-
mance for a set of short algorithms. OpenBLAS, together with
NumPy in the Python case are used for matrix operation. The score is
defined as the time to run the algorithm divided by the time to run the
C version of the same algorithm

5 https:// julia lang. org/ bench marks/.

https://julialang.org/benchmarks/

Computing and Software for Big Science (2023) 7:10

1 3

Page 7 of 24 10

by the compiler, that removes one of the two nested calls,
disabling this optimization leads to performance a little
worse than with Julia. The gain from this optimization is far
from the one obtained by using a for-loop implementation
instead of the recursion. Such implementation runs ≈1000
times faster. The tail recursion optimization does not work
for the recursive quicksort, leading to similar performance
from C/C++ and Julia (7% difference in favor of C/C++).

We can use LHC open data to test performance on HEP-
oriented code. We make this test with a di-muon analysis on
CMS data of LHC Run-1, from 2011 and 2012. The analysis
consists of measuring the spectrum of the mass of the system
made of a muon and an antimuon, produced in proton-proton
collisions at the center-of-mass energy

√

s = 7 TeV. It uses
data in which the muons and antimuons are already recon-
structed and identified. It does not correct for instrumental
efficiencies, contrary to the published physics results.

Different implementations have been compared: the for-
loop based Julia implementation from Ref. [33], the equiva-
lent for-loop based implementations in Python and C++,
the ROOT data frame (RDataFrame) implementation from
Ref. [34], its equivalent in C++ in two flavors, and a data
frame based implementation done in Julia using the Data-
Frames.jl package [35]. In the data frame implementa-
tion, the table rows are first filtered to obtain a data frame
with the di-muon events of interest, then a column with the
dimuon mass is added to the data frame, and finally a histo-
gram is filled. RDataFrames use lazy operations, and only
the histogram is materialized, limiting the memory footprint.
In the first flavor of the C++ implementation, the formula
to compute the mass is provided as a character string and
the code for this computation is compiled JIT. In the second
flavor a user-defined C++ function is provided to compute
this mass.

The input data are read from a file stored in the ROOT
format with compression turned off. The UnROOT.jl
package [36] (version 0.9.2) is used to read the file with
the Julia code. This package is written in pure Julia. The
native ROOT library (version 6.26/10) serves to read the
files from C++ and Python. The GNU gcc compiler (ver-
sion Debian-10.2.1-6) is used with a level-three optimization
(option -O3). When JIT compilation is involved (the cases
of Julia and JIT RDataFrame) the event analysis function
is first run on a ten-event data file to trigger compilations
before performing the timing on 1 billion events. For the
Julia implementations, subsequent compilations occur dur-
ing the timing loop; they represent only 1.1% of the time. In
the case of JIT RDataframe an overhead (time independent
of number of processed events) of 5.0 ± 0.2 ms (C + + ver-
sion) or 11.2 ± 2 ms (Python version) is present in spite of the
warm-up. The overhead is subtracted from the measurement.
The obtained numbers are provided in Table 1. We observe
that slight changes of source code can change the runtime of

the C++ for-loop and native RDataFrame implementations
beyond the statistical uncertainties. This effect is estimated
by varying the code outside if the timed loop (addition of
a print-out statement, change of code statement order) and
included in the quoted uncertainties. For the other imple-
mentations, no significant change is observed and the quoted
uncertainty include the statistical component only (at 68%
confidence level).

In this example, the for-loop Julia implementation runs
the fastest, the C++ for-loop implementation is slightly
behind (11% slower). The Julia implementation using data
frames takes 21% less time to run than with C++ RData-
Frame. The Python for-loop implementation is 1000 times
slower than with Julia. Delegating the loop to an underlying
compiled library (in our case the ROOT library) is not suf-
ficient to achieve good performance with Python: the RData-
Frame python implementation is 2.2 (resp. 2.8) times slower
than the Julia data frame (resp. for-loop) implementation.
The C++ RDataFrame implementations are slower than the
Julia and C++ for-loop implementations by a factor from
1.4 to 2.1 depending on the implementations we compare.
The dimuon spectrum obtained with the Julia code is shown
in Fig. 4.

The data frame benchmark includes the insertion of a
column in the data frame with the dimuon mass. In the Julia
case, the insertion is not needed for the analysis itself, but
keeping it is interesting for benchmark purpose. The data
frame returned by UnROOT does not allow direct insertion
and the selected rows are copied to a DataFrames.jl data
frame supporting such an insertion. That leaves room for
improvements; we estimate that improved tools that would
allow such insertion with no copy would reduce the runtime
by 16%.

For Python, the pure python library Uproot [37] can be
used instead of the native ROOT library to read the data. This
library loads all the data of a file into the memory, similar to
the Julia data frame implementation. The data can be pro-
vided as a set of Awkward Arrays [38], NumPy arrays, or as
a Pandas data frame [39]. All these data structures support

Table 1 Comparison of the runtime of the di-muon spectrum analysis
for implementations performed in different programming languages.
The time corresponds to a run over 1 million events

Implementation Time to process 106 events

Julia for-loop 0.147 ± 0.0014 s
Julia Dataframe 0.1839 ± 0.0019 s
Python for-loop 153.7 ± 5.7 s
Python RDataFrame 0.4083 ± 0.0083 s
C++ for-loop 0.1627 ± 0.0019 s
C++ RDataFrame 0.2338 ± 0.00031 s
C++ RDataFrame JIT 0.3051 ± 0.0023 s

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 8 of 24

vectorized operations permitting a delegation of the event
loop to underlying compiled libraries improving the running
time. The results are shown in Table 2. The measurement
is done with Uproot version 4.3.4 (with awkward pack-
age version 1.10.3). The implementation using Awkward
Arrays operating on a vector of all events runs faster than the
Python RDataFrame implementation and is only 1.6 times
slower than with the Julia for-loop. We note that the Python’s
performance is highly dependent on the algorithm imple-
mentation: the time ratio with respect to the Julia for-loop
goes up to 63 for a vectorized implementation using Pandas
data frames and to 1200 with the event loop.

Running on a 61.5 million event file shows that the for-
loop and RDataFrame implementations scale well with
larger input files with no penalty on the event throughput as
we could have expected. The other implementations would
require modifications in the code in order to process events
in chunks and reduce the memory usage. The awkward array
implementation requires 14.5 GiB, at the limit of 15 GiB
available on the machine used for the measurement, while
the Pandas and Julia data frame versions exceed this limit.

We see in this example that Julia is performing similar or
better than C++ frameworks. For an event loop, Python is
slower by three-orders-of-magnitude than Julia. Vectoriza-
tion of event processing serves as a mitigation of Python’s

slowness by delegating the event loop to underlying com-
piled libraries and sacrifice flexibility, without achieving the
performance of C++ and Julia6.

Interoperability with Legacy Code

HEP computing is based on a heritage of program code
written over decades. Interfacing to libraries developed in
C++ and Fortran is unavoidable, apart from the last-step of
analysis domain (and even here it would still be an attractive
feature). Julia can natively call C and Fortran functions with
no overhead compared to calling them from their native lan-
guage. Examples of such calls are given in Listings 1 and 2.
For convenience, a wrapper function written in Julia can be
used to handle errors, as in the example in Listing 3.

Bindings to Python are supported thanks to the PyCall
package. The interface is very convenient and transparent in
both directions, Python from Julia and Julia from Python, as
we can see in the examples provided in Listings 4 and 5. In a
Jupyter notebook, in addition to calling a Julia function from
a notebook running a Python kernel using these interfaces
and vice-versa, it is possible to write Julia code in cells of
a notebook using a Python Kernel, and mix cells written in
Julia and in Python languages, as illustrated in Fig. 5.

Table 2 Runtime of the dimuon spectrum analysis for three Python
implementations using the Uproot library to read the data

Implementation Time to process 106 events

Vectorized with Awkward Arrays 0.2343 ± 0.0027 s

Vectorized with Panda dataframes 9.225 ± 0.081 s

For loop 177.2 ± 1.8 s

Fig. 4 Dimuon spectrum obtained from the CMS open data of Run
2012 with the Julia implementation of the analysis

Fig. 5 Example of a Jupyter notebook mixing cells with Julia and
Python code

6 Recently, it became possible to use Numba + Awkward Array to
enable fast loops, sacrificing some Python features due to the more
strict compiling model

Computing and Software for Big Science (2023) 7:10

1 3

Page 9 of 24 10

The CxxWrap package [41] can be used to add
Julia bindings to C++ libraries. Once bound, the
library is accessed transparently from Julia as if it was
a native Julia package. The
and C++ like method calls
translate into the Julia-like call .
The package philosophy is similar to Boost.Python
[42] and Pybind11 [43]: the bindings are produced with
few lines of C++ code, one line per class and one line per
method, which must be compiled as a shared library. The
package provides all the flexibility to expose a different
Julia interface to the C++ one, for instance to adapt it to the
Julia context and style of programming. CxxWrap inter-
nally uses the built-in Julia-C interface, used for the inter-
face between shared libraries and Julia. The C++ standard

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 10 of 24

template library and are mapped to
Julia with zero copy.

The WrapIt project [44] has demonstrated that binding
code can be generated automatically from a library’s header
files, which would make the process of adding Julia bind-
ings to C++ libraries very easy. Automation of this Julia
binding has been tested on the ROOT libraries, and we have
been able to produce, draw, and fit histograms and graphs
(class). The fit has been tested with both functions
defined in ROOT and functions defined in Julia, demonstrat-
ing a perfect integration.

Unlike direct calls into C or Fortran libraries via the
function, calls between C++ and Julia have to go through
the intermediate layer created by the wrapper code. We per-
form several measurements to estimate the overhead from
the C++-Julia interface. The measurement is performed on
a call to the ROOT method, that adds a value to
a histogram: we time a loop of 1 million calls and average
the result to get the time per call. First, we create a shared
library, that exports C functions, we call from Julia with the

 method. The pointer to the histogram object is passed
to the C function as a type. When compared with a
direct call to the method within the same C++ code,
the call from Julia shows an overhead of 0.23 ns. This over-
head is unexpectedly smaller than when calling the wrapper
function of the shared library from a program written in C:
observed overhead of 0.74 ns in this case. In the end, the call
from Julia takes only 4% more time than a direct call from
C++. It is 38 times faster than a call from Python. Meas-
urement is also done for a binding based on CxxWrap. All
results are shown in Table 3.

We could imagine the Julia engine performing just-in-
time compilation of C++ using the LLVM infrastructure it
uses for the Julia code. The Cxx package [45] is providing

this feature for Julia releases from 1.1.x to 1.3.x. With
this package we can access to a C++ library without the
need of a C++ wrapper. Nevertheless, a Julia wrapper
is needed to provide the same transparency—calls to the
C++ functions similar as calls to a Julia functions. Using
this package the call to the function in our example
is found to be as fast as when using the C interface, as
shown in Table 3. We used Julia version 1.3.1 to perform
this measurement. The Cxx approach is a good alternative
to CxxWrap.

In Ref. [15], CxxWrap was used to interface to the
LCIO C++ library [46] to read ILC [47] simulated events
and to Fastjet [48, 49] to cluster hadronic jets. The loss
of event throughput compared to a code uniformly written
in C++ was 37%.

Support of Standard HEP Data Formats

Different file formats are used to store HEP data and sup-
porting them is crucial to a streamlined physics analysis
experience.

The file formats currently used to store physics events
are mainly HepMC, LHE [50], LCIO, and ROOT. The
pachages LHE.jl [51] and LCIO.jl [52] provide sup-
ports for LHE and LCIO. Two packages are available to
read ROOT files: UpROOT.jl [53] and UnROOT.jl [36].

The UpROOT.jl package uses the Uproot pure-
Python library to provide read and write support. When
using this package, a loop on events typically suffers of the
same performance penalty as with Python. This has moti-
vated the development of UnROOT.jl, a package written
in pure Julia that provides a fast processing of events, as
demonstrated in the performance measurements done in
the previous section, which used this package. It leaves
the flexibility to use an explicit event loop, with a small
memory footprint, or works on vector of event quantities
(“columnar analysis”). An event loop will look like the fol-
lowing code snippet, where is a vector (transverse
momenta of the muons contained in the event).

Table 3 Mean time to call the method of a ROOT histogram
from C++, Julia and Python

The time corresponding to a single call is averaged on 106
 calls. Three cases are considered for Julia: use of the

plain Julia C interface (“C API”), use of CxxWrap, and use of Cxx.
For reference the time to call the same function from C/C++, within
the same code (“C++ ”) and through the shared library developed the
Julia C interface, is also measured

Mean time [ns]

C++ 5.74 ± 0.01
C API from C 6.48 ± 0.04
C API from Julia 5.97 ± 0.03
Julia - CxxWrap 8.21 ± 0.04
Julia - Cxx 5.97 ± (< 0.01)

Python 226 ± 5

Computing and Software for Big Science (2023) 7:10

1 3

Page 11 of 24 10

UnROOT.jl uses thread-local storage to maximize
performance and maintain thread-safety. An event loop can
be parallelized in several threads with little effort using the
standard Julia macro:

The performance measurement presented in the "Perfor-
mance" section are done in single-thread mode. There are
limitations. First, this package does not support data write.
Both UpRoot.jl and UnROOT.jl can access only to
objects of a limited set of types, either stored as such in the
file or in a . The supported types covers already a large
set of use cases, but not schemes where data is stored as
object of serialized C++ classes. Using the genuine ROOT
library via a Julia binding based on CxxWrap can be an
alternative approach when required. We have successfully
read and write histograms (objects) and graphs (
objects) using this approach.

We expect the implementation of the support of
to be easier than that it is expected to replace, thanks
to its design. Data are stored in column of fundamental types
(float, int,...) [54], similar to Apache Arrow [55], which
should ease support from programming languages other than
C++ like Julia.

In the neutrino physics community, the industry-standard
HDF5 and Parquet have been used at scale, and these files
can be readily read and write from Julia via their respective
packages.

Parallel Computing

Apart from having memory shared multi-threading, Julia
also ships with out-of-core distributed computing capabil-
ity as a standard library (Distributed). In fact, it is as
easy to command an array of heterogeneous nodes in real-
time via packages such as ClusterManagers.jl [56],
which can mimic Dask’s experience [57] with a fraction
of the code. For more advanced features, such as building
out-of-core computation graphs, Dagger.jl [58] provides
facilities.

While these libaries allow distribution of execution
within the Julia code, parallelization can be also done, as
with C++ and Python, by running parallel jobs of the
same executable using commands of a batch processing
system, like HTCondor [59, 60], typically used in computer
cluster facilities.

Platform Supports and License

Julia is supported on all major platforms, a list of which can
be found on the Julia website7. Three different support tiers
are provided. The platforms with full-fledged support (clas-
sified as tier 1) are, as of Oct, 2022:

• macOS x86-64
• Windows x86-64 and CUDA
• Linux x86-64 and CUDA
• Linux i686

Worth noting that many platforms well on their way into tier
1, such as macOS with ARMv8 (M-series chips).

Julia is distributed under the MIT license along with vast
majority of the ecosystem, which guarantees free use, modi-
fication, and re-distribution for any use case.

Reproducibility

Julia includes a package manager and a general registry
used by the whole community in an organized manner. In
particular, each package contains a Project.toml file,
that records the dependency and compatibility with other
packages in an uniform way.

Furthermore, any binary dependencies are also captured
by the package system: they are distributed as “Artifact”—
packages with names ending _jll—but still behave as
normal packages when it comes to dependency and com-
patibility resolution. This eliminates a few problems, includ-
ing running out of pip space just because you depend on
a large library (e.g., CUDA). More details are giving in the
"Packaging" section.

On the end-user side, one can easily capture the an envi-
ronment by working with the Manifest.toml file. While
Project.toml records compatibility and dependencies, Julia
would try to use the latest compatible packages when instantiat-
ing the environment. Manifest.toml, on the other hand,
captures the exact versions of every package used (recursively)
such that exact reproducibility can be guaranteed.

Numerical Optimization

The statistical inference procedures relevant to HEP use
numerical optimization heavily, from Maximal Likelihood
Estimation (MLE) to scans over Parameters of Interest (POI)
and obtaining the test statistics. Traditionally this is done
by minuit2 [61, 62] in ROOT, which uses the finite dif-
ference method to provide gradient information for some of
its optimization.

7 https:// julia lang. org/ downl oads/# suppo rted_ platf orms.

https://julialang.org/downloads/#supported_platforms

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 12 of 24

Julia has a solid ecosystem in numerical optimization
(NLopt.jl [63], Optim.jl [64], and meta algorithm
package such as Optimization.jl [65] that brings
local and global optimization together). Julia’s performance
has lead to most libraries being written in pure Julia, which
means that optimization tasks can often use better algo-
rithms such as Broyden-Fletcher-Goldfarb-Shanno (BFGS)
[66–69] that rely on gradient provided by automatic differ-
entiation. Support for automatic differentiation is further
described in the “Automatic differentiation” section.

Construction of a complex probability distribution func-
tion is a common problem in HEP. Description of continu-
ous spectra often requires a multicomponent probability
density function (PDF) e.g., a sum of a signal component
and a background component. In addition, the convolution
with the model PDF with the experimental resolution is an
essential for the HEP applications. The RooFit framework
is the standard tool for building complex high-dimensional
parametric functions out of lower dimensional building
blocks. As great convenience, the framework provides a
homogeneous treatment of the PDF variables and param-
eters that can be fixed, restricted to a range, or constrained
by a penalty to the likelihood functions. The framework
is written in C++ and available in Python. A pure-python
package zfit [70, 71] give an alternative solution to Python
users that can better integrate with the scientific Python
ecosystem.

Julia ecosystem offers a large variety of standard density
functions in the Distributions.jl package [72, 73].
The package largely exploits the properties of the standard
density functions, such as moments and quantiles, which are
computed using analytic expressions for the unbound PDFs.
Moreover, flexible construction functionality is greatly miss-
ing. The mixture models of the Distributions.jl are
the holder for the multicomponent PDF, however, they can-
not be used for fitting of the component fractions, the prior
probabilities. Extension of the convolution functionality
beyond a small set of low-level functions is required. The
management of the distribution parameters is a key missing
functionality in Julia modelling ecosystem.

Specific Needs for Analysis of Reconstructed Events

Tools to Produce Histograms and Publication‑Quality Plot

The statistics community in Julia has support for N-dimen-
sional histograms with arbitrary binning in StatsBase.
jl [74], an extension to this basic histogram is implemented
in FHist.jl [75], which added support for bin error and

under/overflow and for filling the histograms in an event
loop, as typically done in HEP analyses.

Many libraries of high quality are available for plotting
from Julia. In the interests of standardization, the Plots.
jl [76] package provides a front-end interface to many
plotting packages, allowing easy switching from one to
another. It supports the concept of recipes used by pack-
ages processing data to specify how to visualize them,
without depending on the Plots package: the dependency
is limited to the RecipeBase.jl [77] package which
has less than 350 lines of code. The package supports,
currently, 7 backends. It supports themes, which are sets
of default attributes and provide a similar feature to the
ROOT class. The back end selected by default in
Plots is GR [78], a rich visualization package providing
both 2D and 3D plotting and supporting LaTeX for text.
The GR package, or its GRUtils.jl [79] extension, can
be used directly when a shorter warm-up time is needed
before obtaining the first plot of a running session (see the
“Just-in-time compilation latency” section for a discussion
on the warm-up time).

We should also mention the Makie.jl ecosystem
[80], a rich plotting package targeting publication-quality
plots, which is increasingly popular. This package supports
the recipe and theme features, but is not itself supported by
Plots.jl. For instance, the FHist.jl HEP-oriented
histograming package mentioned before provides a recipe
to plot the histograms. Makie.jl suffers from a longer
time to obtain the first plot, even larger than with the
Plots.jl package with its default backend OpenGL.

Use of LaTeX to generate high-quality plots has been
popularized in HEP community with the plotting system
of the Rivet Monte-Carlo event generator validation toolkit
[81]. The PFGPlots [82] and PFGPlotsX [83] packages
offer LaTeX-based plotting. They are both supported by
the Plots.jl package. The Gaston.jl [84] package
provides plotting using the popular Gnuplot.jl utility
[85].

People used to the Python set of func-
tions [86] can use the PyPlot.jl package that provides
a Julia API to this package. Those who prefer plotly
to matplot, can use the PlotlyJS.jl, a Julia inter-
face to plotly. The high-level grammar of interactive
graphics Vega-Lite [87] is also supported, thanks to
the VegaLite.jl [88] package that supports exports
to bitmap and vector image files, including the PDF for-
mat, which is convenient to include in papers written with
LaTeX. Plotting can also be done on a text terminal, using
the UnicodePlots.jl [89] package, supported by the
Plot front end.

Computing and Software for Big Science (2023) 7:10

1 3

Page 13 of 24 10

The visualization tool ecosystem for Julia is rich, with
the added benefit of staying in the same environment as the
analysis and enabling an interactive workflow.

Notebook Support

A computational notebook is an interface for literate pro-
gramming that allows embedding calculations within text.
Notebooks have been made popular by Mathematica [90],
which has supported notebooks starting from its first ver-
sion, 1.0, released in 1988. In HEP, notebooks are widely
used by theoreticians for symbolic calculation e.g., with
Mathematica, and by experimentalists, for data analysis, and
plotting using Python or C++ as programming language.

The notebook system used with Python, Jupyter, fully
supports Julia. The “ju” of Jupyter stands for Julia, while
“py” stands for Python and “er” for the R language. The
ROOT analysis framework brings C++ support to Jupyter.

The notebook support for Julia is richer than for Python
and C++. In addition to Jupyter, Pluto.jl [91] provides
a new-generation notebook system for Julia. This system
keeps track of the dependency of all calculations spread
in the document and updates automatically any dependent
results when a one of them is edited. Beyond being conveni-
ent, this automatic update provides reproducibility.
Pluto.jl is also a very easy solution for interactive

notebooks, where buttons, drop-down menus and slides can
be included. This is useful for students. It can also be used
to build a tool for experiments running shifters to analyze
the data quality in quasi-realtime.

With Pluto.jl, notebooks are normal executable Julia
files. Notebook functionality is offered through special com-
ments. This helps with version control.

Specific Needs for Physics Event Reconstruction,
Simulation and Data Acquisition Trigger Software

Physics event reconstruction, simulation and trigger soft-
ware are typically large codes developed by the experiment
and project collaborations. The software stack of the LHC
experiments is particularly large and complicated, due to
the complexity of their detectors. The software is developed
collaboratively by many developers, with different levels of
software skills. Tools for both collaborative development
and quality assurance are essential for all experiment soft-
ware. Software distribution and release management are also
important. The complexity of the C++ language, used in
most of these frameworks, can limit the integration of con-
tributions developed by students. This is more and more true
given the growing use of high-level language (e.g., Python)
as the teaching language for computing in universities, espe-
cially among natural science departments.

The Julia language and its ecosystem have been built
using an open-source and community approach. Tools have
been put in place and are widely adopted for efficient col-
laborative development. Julia comes with a standard and
convenient package management system providing repro-
ducibility, see the “Packaging” section Julia has built-in unit
testing, coverage measurement, and officially maintained
continuous integration recipes and documentation generator.
These are used in almost all of the Julia packages registered
publicly, thanks to the streamlined experience and low bar-
rier to entry.

The simulation software of the experiments depends on
external libraries to simulate the underlying physics, such
as Monte Carlo event generators, and on some others, like
Geant4 [92], to simulate the transport of the produced par-
ticles and their interaction with the detector. Interoperability
with libraries written in C, C++, or Fortran, as discussed in
the “Interoperability with legacy code” section, it is essential
not to have to re-write all the external libraries in Julia.

Simulation and reconstruction is compute intensive and
therefore good performance is essential: performance has a
direct impact on the computing infrastructure cost. We have
seen in the previous section that Julia meets the C/C++ per-
formance and sometimes surpasses it. Code parallelization
and efficient use of single instruction multiple data (SIMD)
vectorization features of CPUs is essential at the LHC and
for HL-LHC to efficiently use current hardware resources,
with a high density of computing cores, including accel-
erators (e.g., GPU) that can count tens of thousands core
[6]. The Julia language provides a very good support for
multi-threading: a loop can be parallelized by a single macro
(), an operation can be made atomic by prefixing it
with , a more general lock mechanism is provided,
asynchronous tasks, with distribution of tasks to different
threads, is natively supported. Julia supports distributed
computing, using its own communication mechanism but
also using MPI [93, 94]. It is possible to use Julia’s compiler
to vectorize loops by using the macro or the more
advanced from the LoopVectorization.jl
package [95].

Due to its effective metaprogramming capabilities, Julia
has great support for running code on heterogeneous archi-
tectures, Julia code can be compiled for Nvidia (CUDA),
AMD (ROC) and Intel (oneAPI) GPUs via compiler written
in Julia8, without dependency on, for example, C++ CUDA
or HIP library. Packages like GPUArrays.jl and Ker-
nelAbstractions.jl allow the use of exactly the same
core algorithm written in Julia to be executed across differ-
ent vendor platforms with minimal boilerplate code, which
is a currently a unique feature among languages.

8 https:// github. com/ Julia GPU/ GPUCo mpiler. jl.

https://github.com/JuliaGPU/GPUCompiler.jl

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 14 of 24

On the more user-facing front, libraries such as Tul-
lio.jl [96] combine metaprogramming and kernel pro-
gramming ability to allow users to express tensor operation
with Einstein notations regardless of whether the array lives
on RAM or GPU VRAM. This is very relevant for data pres-
ervation and for unifying effort to write algorithms once and
run them everywhere.

The ability to run native Julia code on both CPUs and
GPUs, combined with the support for automatic differentiation
in Julia, makes Julia an excellent platform for machine learning
(ML) research. This is especially true for advanced scientific
machine learning that goes beyond combining conventional
matrix-crunching ML-primitives/layers and uses physical/
semantic models or mixes them with generic ML constructs.

Specific Needs for Event Generation
and for Phenomenology

Symbolic Calculations in Julia

Julia is a fast, solid and reliable programming language with
a well developed Computer Algebra System (CAS) such as
Symbolics.jl [97], a language for symbolic calculations
such as Symata.jl [98], and an interface to Mathemat-
ica such as MathLink.jl [99], that could be widely
used in HEP, considering the advantages Julia has.
Symbolics.jl [100] is a CAS written in pure Julia,

which is developed by the SciML community [101] who
also maintain the state-of-the-art differential equations
ecosystem [102]. The package has scalable performance
and integrates with the rest of Julia ecosystem thanks to its
non-OOP design and multiple dispatch [97]. Some of the
main features of Symbolics.jl include pattern match-
ing, simplification, substitution, logical and boolean expres-
sions, symbolic equation solving, support for non-standard
algebras with non-commutative symbols, automatic conver-
sion of Julia code to symbolic code and generation of high
performance and parallel functions from symbolic expres-
sions [103], which make it even more interesting for possible
applications in HEP. At the heart of Symbolics.jl, we
find ModelingToolkit.jl, a symbolic equation-based
modeling system [104], and SymbolicUtils.jl, a rule-
based rewrite system [105].
Symata.jl [98] is a language for symbolic computa-

tions in which some features, such as evaluation, pattern
matching and flow control, are written in Julia, and symbolic
calculations are developed by wrapping Sympy, a python
library for symbolic mathematics.
MathLink.jl [99] is a Julia language interface for the

Wolfram Symbolic Transfer Protocol (WSTP) (this requires
the installation of Mathematica or the free Wolfram Engine

to run properly). The interface is a W"" string macro used
to define Mathematica symbols. MathLinkExtras.jl
[106] adds extra functionalities such as W2Mstr, which
allows the conversion of Julia MathLink expressions into
Mathematica expressions, and which converts
Julia MathLink.jl expressions into LaTeX format. And,
finally, one can evaluate the expression in Mathematica
using .

Event Generators

To be prepared for future needs for event generation [107],
it is conceivable to rewrite parts of the existing event gen-
erators in Julia and making use of modern parallelisation
technologies. One of the most demanding tasks in event
generation is the evaluation of matrix elements and cross
sections, where Julia provides several useful tools.

The package Dagger.jl is a framework for out-of-core
and parallel computing written in pure Julia. It is similar
to the python library Dask and provides a scheduler for
parallelized execution of computing tasks represented as a
directed acyclic graphs (DAGs). Such DAGs could be used
to represent the evaluation of matrix elements in terms of
elementary building blocks, similar to HELAS-like functions
in Madgraph4GPU (see e.g., [108]). Furthermore, Dag-
ger.jl supports the selection of different processors as
well, making it possible to be use for distributed computing
on GPU as well (see e.g., DaggerGPU.jl [109]).

Table 4 Summary of features needed for HEP applications and their
availability in the Julia ecosystem

Requirement Fulfilled by Julia

Easy to learn for HEP physicists ✓

Performance ✓

Interoperability with legacy code ✓

Support for HEP standard formats Partial
Support for architectures and open license ✓

Cross-platform reproducibility ✓

Tools to perform optimization/minimization ✓

Histogramming ✓

Plotting with publication quality ✓

Notebook support ✓

Tooling for large project (unit tests, continuous
integration, software distribution)

✓

SIMD and multi-threading ✓

Distributed parallel computing ✓

Native GPU support ✓

Machine learning libraries ✓

Computer Algebra System ✓

Computing and Software for Big Science (2023) 7:10

1 3

Page 15 of 24 10

Feature Summary

The Table 4 summarizes the programming language and
ecosystem features we have identified as required for HEP.
It is surprising how Julia language manages to fulfill almost
all of these features. We should note that the interoperability
is less transparent for C++ than with the other languages as
it requires to write a code wrapper. Many HEP file format are
already supported, including for ROOT files, without cover-
ing the full versatility offered by this format.

The Bonuses

In addition to solving the two-language problem and the
mandatory features listed in the previous section, the Julia
ecosystem will provide other advantages over the C++ and
Python languages currently used.

Packaging

Julia comes with a built-in package manager, Pkg.jl. It
builds on the experience of package managers in other eco-
systems, and it can be used to install packages and manage
“environments”, similar to the concept of virtual environ-
ments in Python. A Julia environment is defined by two files:

• Project.toml: this file records version and UUID
of the current project, it also contains the list of direct
dependencies of this project, as well as the compatibility
bounds with these packages and Julia itself. Moreover,
all Julia packages follow semantic versioning (semVer
[110]): version numbers are composed of three parts,
major, minor and patch numbers, and breaking changes
can only be introduced in versions which change the
left-most non-zero component (e.g., going from 0.0.2
to 0.1.0, or from 2.7.3 to 3.0.0 are considered breaking
changes).

• Manifest.toml: this file is automatically generated
by the package manager when instantiating an environ-
ment, if not already present, and it captures all packages
in the environment with their versions, including all indi-
rect dependencies. When used together with Project.
toml, Manifest.toml file describes an exact envi-
ronment that can be recreated on any other platforms,
which is particularly important for reproducibility of
applications (e.g., analysis pipelines).

Julia packages are organized in directories (usually also Git
repositories) in which there is a Project.toml file to

define its environment. Packages can be installed either via
path (local path on a machine, or URL to a remote Git repos-
itory), or by name if they are present in a package registry.
Pkg.jl is able to deal with multiple registries at the same
time, which can be both public and private, in case there is
a need to provide packages relevant only to a single group
or collaboration.

Because there is only one package manager and only
one way to record package dependency, the Julia package
registry simply records the dependency and compatibility
metadata separately from package’s source code. It allows
a local resolver to correctly resolve compatibility in a short
amount of time.

Users can interact with the package manager either by
using its programmatic API (useful for scripting) or an inter-
active REPL mode, which can be entered by typing the clos-
ing square bracket] in Julia’s REPL. The package manager
can also be used to run the tests for packages with a sin-
gle command (Pkg.test using the API, or the command
test in the REPL). Since Pkg.jl is a standard library and
has many capabilities, all users are familiar with it and do not
need to resort to third-party, mutually incompatible tools.

Multiple Dispatch and Fast Development

We group multiple dispatch and fast development (i.e., hot
reloading) into the same section because of their direct
impact on design of the packages and the quality of life of
developers.

A side-by-side comparison between OOP and multiple dis-
patch has been shown in the "Polymorphism in C++, Python,
and Julia" section. Here, we highlight that multiple dispatch is
also a known solution to the expression problem [111, 112].
Essentially, in class-based OOP, one of the following is much
less natural than the other:

• add new methods to existing data type (class/struct).
• add new data type (class/struct) for existing algorithm

(method).

In OOP, the second one is easy, think inheritance; but the
first requires access to source code. In Julia, the first one is
trivial since methods do not bind to data type (class/struct)
to begin with. But the second one can also be easily done by
sub-typing the upstream abstract type.

Making it easy for developers to reuse existing pack-
ages is crucial in HEP also because libraries are sometimes
under-maintained. If we can cleanly extend and reuse these
libraries without making private forks, overall efficiency
would be boosted.

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 16 of 24

As a dynamic language, hot reloading should not come as
a surprise. It is, in fact, crucial for Julia, due to the inevitable
latency introduced by the JIT compiler. The go-to package
for this is Revise.jl [113] which automatically detects
file modifications and re-compiles the relevant functions on
the fly. It can also reload the source code of any Julia Base
module, saving a lot of time if (re)compiling Julia.

Automatic Differentiation

The multiple dispatch system and the native speed of Julia
eliminated the need for many specialized libraries to imple-
ment the same interface (e.g NumPy-interface in JAX [114],
TensorFlow [115], PyTorch [116]). Instead, package
maintainers only have to focus on providing rules for the
built-in functions as they are fast already and downstream
packages are mostly pure-Julia too, see ChainRules.jl
[117]. A dedicated organization, JuliaDiff [118] collects all
the packages and efforts regarding what each autodiff engine
is good at.

Foundation HEP‑Specific Libraries to be
Developed or Consolidated

Integration in the ROOT Framework

Because of the ubiquity of ROOT in HEP, a Julia interface
to this framework, similar to the existing Python one and
that will allow people familiar to it to find their way easily,
is essential for the development of Julia in the HEP com-
munity. In addition, this will provide access to a large set
of software used in HEP (storage support, statistics tools,
unfolding, etc.) before their counterpart are implemented
in Julia.

HEP‑Specific Data Storage Format

It will be important to consolidate the support for the ROOT
data format. The ROOT data format is very versatile and
allows the storage of instances of arbitrary C++ classes (this
is true of the current TTree and the new RNTuple format).
Current Julia packages for ROOT I/O do not cover this whole
versatility and do not allow for reading and writing files with
objects of sophisticated types.

Physics Object Types and Histogram

Packages to manipulate Lorentz vectors and to build histo-
grams are already available [75, 119]. Leveraging multiple
dispatch, these packages are relatively easy to implement,

and compose well with rest of the Julia ecosystem (e.g.,
collection of 4-vectors can be stored and sorted efficiently
without any special care). Defining a standard interface to
Lorentz vectors and histogram data structures, with a similar
approach as the Table interface [120] could be beneficial.

HEP Specific Statistical Tools

Over years, HEP community has developed its statistical
standard to assert a level of confidence of the experimental
results, for measurements, limits and observation of new
phenomena. The Julia ecosystem contains several high-
quality packages for Bayesian statistics and inference. Two
examples are BAT.jl (Bayesian Analysis Toolkit in Julia)
BAT.jl [121] and Turing.jl [122], which already have
been used in several physics analyses. Both packages are
being actively developed with good communication of the
authors across the development teams. Common interfaces
[123–125] have been established to increase interoperability.

More development is required for the frequentist CLs
approach used at LHC [126–129] and based on profiled like-
lihood fits. The method is derived from the hybrid method of
the same name developed at LEP [130, 131] and used later
at Tevatron [132, 133]. The C++ tools typically used by
LHC experiments are the RooFit (originally developed for
the BaBar experiment [134, 135]) and RooStats libraries
included in the ROOT framework. For multinodal distribu-
tions these libraries are used through the HistFactory
[136] or HiggsCombine [127, 137, 138] tools. The pyhf
package [139] provides a pure-Python implementation of
HistFactory that offers different computational back-
ends to perform the likelihood maximization and is gaining
popularity. The HistFactory, HiggsCombine, and
pyhf are standalone tools, for which inputs are provided in
text files (XML or JSON). Thanks to the transparent Julia-
Python interface, pyhf can also be used in a Julia session
or code. For a perfect integration and to exploit the language
performance, a Julia implementation is desirable. An effort
to implement pyhf in Julia has already started [140] and
would need to be consolidated.

Histogram unfolding [141] is another statistical tool
widely used in HEP experiments. It is used to correct from
the effect of the finite resolution of the particle detectors
in differential cross section measurement. The TUnfold
[142] and RooUnfold [143] are the most commonly used
packages. The RooFitUnfold [144] package provides
an extension of RooUnfold. New techniques to perform
unbinned high-dimensional data unfolding has been recently
developed [145]. Like for CLs, unfolding comes at the last
step of a HEP data analysis, and a Julia implementation
would be useful.

Computing and Software for Big Science (2023) 7:10

1 3

Page 17 of 24 10

Limits of the Julia Programming Language

Language Popularity

Despite its smaller user base than C++ and Python, we have
found that it is extremely easy to find information on the
web, either from Stack Overflow or from dedicated chan-
nels, on Discourse, Slack, and Zulip. The community is very
collaborative. An annual conference JuliaCon9 is boosting
this collaboration. In particular, it encourages exchanges
between different fields, both from Academia and Industry.
The popularity of Julia is growing and it has been adopted by
large academic projects, like the Climate Modeling Alliance
(CliMA); and companies like ASML, the largest supplier of
photolithography systems; Pharmacology actors like Pfizer,
Moderna, and AztraZeneca [146–148]; finance actors like
Aviva, one of the largest insurers, and the Federal Reserve
Bank of New York [149–151].

Just‑In‑Time Compilation Latency

While applications written in Julia run faster than with an
interpreted language, the first execution requires additional
time to perform the just-in-time (JIT) compilation. In order
to limit this overhead, the intermediate results of the com-
pilation, called precompiled code, is cached on disk. The
precompilation of a package code is typically performed
in parallel at installation time, and the cached content
includes, but is not limited to: lowered code, type inference
result, etc.; but at the time of writing, Julia does not yet
cache compiled machine code10. The latency is often called
"time-to-first-plot".

The JIT compilation latency has been improved from
version-to-version, in particular with versions 1.5, 1.6, 1.8,
and 1.9 by reducing the number of required recompilations.
The various sources of latency have been studied extensively
[152, 153] and the reduction of the time-to-first-plot is a
high priority for the compiler team. Besides improvements
coming from the compiler, following the general guidelines
of Julia code style for performance [40], which ensure that
the compiler can easily infer variable types, should reduce
such latency [152]. At the same time, tools have been devel-
oped to both help “hunt” down unnecessary recompilation
(SnoopCompile.jl [154]), as well as help precom-
pile known common user routinges at installation time
(PrecompileTools.jl [155]).

The latency can also be drastically reduced by prepar-
ing a custom system image: the system image contains
cached machine code for a set of precompiled packages
and past executions. It comes with the drawback that ver-
sions of the packages shipped in the system image take
precedence over the ones installed via the package man-
ager [156], which can be confusing and be a source of
bugs. Updating these packages requires rebuilding the
custom system image.

The time to produce a first plot, consisting of a 2-D plot
of 100 points, was measured to be 2.09 ± 0.01 s with Julia
1.9.0-rc1 and the Plots.jl [76] package. The Makie.
jl package took 7.57 ± 0.02 s using the Cairo backend.
Time is similar with the GL backend. Subsequent plots take
less than a millisecond. Building a custom system image
brings down the latency to below 50 ms for both packages.
While for Plots.jl, the latency using the standard sys-
tem image is acceptable, building a custom system image
would make use of Makie.jl for an interactive session or
for a short batch script much more convenient. To measure
the improvement brought by the efforts of Julia develop-
ers, the measurement is repeated with the older long-term-
support release 1.6.7. With this older release the result is
29.0 ± 0.1 s for Makie.jl, showing an improvement larger
than a factor of 4.

The start-up time could be a concern for large HEP
experiment simulation and reconstruction software. As an
example of software size, the CMS experiment software,
CMSSW [157], totals more than 2 million of lines of C++
code. The assessment was done with release 12.3.5 and the
number of lines of code was defined as the number of semi-
colons contained in the code. In lieu of a similar sized HEP
software package written in Julia, we have measured the
start-up time on the relatively large package Ordinary-
DiffEq, using its version 6.49.4. The package consists of
about 125,000 lines of Julia code, excluding comments, and
390,000 when including the external packages. The lines
of code have been counted with the Tokei software [158]
version 12.1.2. and the extra time to run the Example 1 of
the manual [159] the first time, compared to subsequent
executions, was 5.91 ± 0.01 s . It goes down to 826 ± 2ms
when using a custom system image. We should also note
that the precompilation happening on package installation
for the package and its dependencies (120 packages) took
256 s only.

For a large experiment software framework, attention will
need to be paid to limit code invalidation by respecting the
guidelines to ease type inference. This will also help the
compiler to optimize the code. While minimizing start-up
time may require some effort for large HEP project, we do
not expect it to be a show stopper. At worst, it will require to 9 https:// julia con. org/.

10 Progress is being made, see https:// github. com/ Julia Lang/ julia/
pull/ 44527.

https://juliacon.org/
https://github.com/JuliaLang/julia/pull/44527
https://github.com/JuliaLang/julia/pull/44527

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 18 of 24

use custom images, with a conciliation on the package man-
agement. In addition, development to improve the start-up
time is on-going and we should expect significant progress
in the near future [160].

Application Programming Interface Specification

Julia lacks a single standard to define the application pro-
gramming interface (API) of a package. The one with the
best support is the use of the export directive to list the
symbols exposed to the user. The directive is recognized by
the language’s introspection functions. The names function
lists, by default, the exported symbols, with an option to list
all symbols. The methodswith function, used to retrieve
functions with an argument of a given type will list only
functions from the export list.

Nevertheless, the export directive has the side-effect
that all the public symbols end up in the user’s namespace,
if the package is imported with the using statement. To
quote the Julia manual [40], “it is common to export names
which form part of the API. [...] Also, some modules don’t
export names at all. This is usually done if they use common
words, such as derivative, in their API, which could easily
clash with the export lists of other modules.”.

The Julia language itself uses the user manual to define
the API, as explained in the “Frequently asked questions”
of this document [40]. With such an approach, we lose the
benefit of the introspection functions, themselves agnostic
to the API information.

A built-in unexport directive, that would allow list-
ing public symbols that the using statement must keep in
the module namespace and which would be recognized by
the introspection functions and also by the documentation
generator [161], would be very beneficial.

Training and Language Transition Support

Julia has been successfully introduced into existing teams,
gradually replacing their C++ with Julia packages over time,
for example in the LEGEND and BAT groups at the Max-
Planck-Institute for Physics. Julia is also the official second-
ary language (after Python) of the whole LEGEND [162]
collaboration.

Observed experience is that students with a basic program-
ming background (e.g., in Python or C++) do learn the lan-
guage very quickly and become productive after just a few days.
After exposure to the language for a few weeks, students are

typically able to make contributions to larger software packages
as well. No problems have been found using Julia for short-term
thesis work (e.g., three-month bachelor theses) and even two-
week internship, with students and interns who were new to the
language. The reaction of these students has been uniformly
positive.

Master and PhD theses that used Julia as the primary
language have resulted in very positive experience for
both students and supervisors. Students who use Julia in
longer-term projects not only become very proficient in
the language, but also gain a lower-level understanding of
computing, data structures and performance implications
of modern hardware in general, compared to students who
work in Python. This is because Julia makes it very easy
the move between higher-level and lower-level program-
ming, in contrast to the Python-plus-C++ two-language
approach.

More code reuse and transfer has been observed across
student generations in Julia, compared to C++. This is due
to the combination of an excellent package management
with the use of multiple dispatch as a foundation. The first
simplifies the maintenance of systems consisting of smaller
and more modular packages, while the second solves the
expression problem.

Conclusions

The Julia programming language has been presented and
compared with C++ and Python. To study the potential
of Julia for HEP, a list of requirements for offline and
software-based-trigger HEP applications, covering both
the language and its ecosystem, has been established.
The compatibility of Julia with these requirements has
been studied. Julia and its ecosystem are impressively
fulfilling all these requirements. Moreover, Julia brings
other features—integrated packaging system with repro-
ducibility support, multiple dispatch and automatic dif-
ferentiation—from which HEP applications would
benefit.

The capacity to provide, at the same time, ease of pro-
gramming and performance makes Julia the ideal pro-
gramming language for HEP data analysis and is more
generally an important asset for all the considered HEP
applications. The dynamic multiple dispatch paradigm of
Julia has proven to ease code reuse. This property will
greatly benefit HEP community applications that involve

Computing and Software for Big Science (2023) 7:10

1 3

Page 19 of 24 10

code developed by many people from many different
groups.

Using a single and easy programming language will
facilitate training. Experience has shown students
with either a C++ or Python background learn the
language very quickly, being productive after a few
days. Using Julia as mainstream language in a col-
laboration allows students on short-term projects to
use the common programming language, while in case
of C++, using a simpler language as Python is often
needed. This eases the reuse of the code developed in
such context.

We have measured the performance provided by the
language in the context of HEP data analysis. The meas-
urements show excellent runtime performance, compet-
itive with C++: 11% faster for the simple LHC event
analysis example used as benchmark. When compared
to Python, in addition to being faster, it is much less
sensitive to implementation choices. The Python imple-
mentation was shown to be three orders of magnitude
slower than Julia when the event loop is performed in
Python. Vectorization techniques can be used to move
the event loop by using underlying compiled libraries
and this reduces the gap in performance.

One difference with C++ and Python is that Julia is
younger and has a smaller community. The Julia community
is very collaborative and, despite its lower popularity, infor-
mation for developing with this language is easy to find on
the Internet. Julia’s rapid growth in academia and industry
gives us confidence on the long term continuity of the Julia
language, which is essential for HEP projects, because of
their large time span.

In view of this study, the HEP community will defini-
tively benefit from a large scale adoption of the Julia pro-
gramming language for its software development. Con-
solidation of HEP-specific foundation libraries will be
essential to ease this adoption.

Appendix A

Polymorphism in C++ and Julia Illustrated in Code

Differences of polymorphism support in C++, Julia, and
Python are discussed in the “Polymorphism in C++,
Python, and Julia” section. This appendix provides code
examples illustrating the discussion.

Static ad-hoc function polymorphism can be implemented in
C++ using two different paradigms, function overriding and
templates. We will illustrate this with an example. Let us consider
two classes, and a derived class , and a global function

. Using the function overriding paradigm, the ad-hoc poly-
morphism on the function argument can be implemented as,

The same ad-hoc polymorphism can be implemented in
the template paradigm as follows.

Both implementations can be tested with the following
code, which will result in the same output.

While in C++, an ad-hoc function polymorphism can
be implemented using two different paradigms, the multi-
ple dispatch feature of the Julia language provides a single
and consistent way to implement polymorphism. The Julia
implementation looks like the following.

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 20 of 24

In C++, the dispatch on argument type can be static
or dynamic for the class instance argument () and is
always static for the other arguments. This situation can be
intricate as in the example below, where the selection of a
static or dynamic dispatch over the argument depends
on the type of the other argument.

The C++ language includes an implicit type conversion
when copying an object. This feature can lead to confusion,
as illustrated in the code below.

This pitfall does not exist in Julia. There is a single way
to pass arguments, “call by sharing” [163], which does not
copy the arguments.

Computing and Software for Big Science (2023) 7:10

1 3

Page 21 of 24 10

The lion is grateful to Julia for honoring his title.

Acknowledgements The authors would like to thank Enrico Guiraud
(Princeton University and CERN) for the review of the C++ code used
in the dimuon analysis benchmark and fruitful discussions.

Endorsement Johannes Blaschke (NERSC, Lawrence Berkeley
National Laboratory); Ankur Dhar (SLAC National Accelerator
Laboratory); Matthew Feickert (University of Wisconsin–Madison,
Madison; Sam Foreman (Fakultät Physik, Technische Universität
Dortmund); Cornelius Grunwald (Massachusetts Institute of Technol-
ogy); Alexander Held (University of Wisconsin–Madison, Madison),
Philip Ilten (University of Cincinnati), Adam L. Lyon (Fermi National
Accelerator Laboratory), Mark Neubauer (University of Illinois
Urbana-Champaign); Ianna Osborne (Princeton University), Johannes
Schumann (Erlangen Centre for Astroparticle Physics, Friedrich-
Alexander-Universit¨at Erlangen-N¨urnberg); Daniel Spitzbart (Boston
University, Boston); James Simone (Fermi National Accelerator Lab-
oratory), Rongkun Wang (Harvard University, Cambridge); Michael
Wilkinson (University of Cincinnati); and Efe Yazgan (National Tai-
wan University) from the High Energy Physics and Astrophysics com-
munities endorse this work. The authors thank them for their support.

Author Contributions All the authors contributed to the investigations
of the features of the Julia programming language and its adequacy
with the HEP application requirements. Manuscript writing has been
shared between the authors and coordinated by P. Gras. Performance
measurements were performed by J. Ling and P. Gras. All the authors
have reviewed the manuscript.

Funding Open access funding provided by CERN (European Organiza-
tion for Nuclear Research)

Declarations

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Bird I et al (2014) Update of the computing models of the
WLCG and the LHC experiments. Technical Report CERN-
LHCC-2014-014, CERN. https:// cds. cern. ch/ record/ 16954 01

 2. Collaboration A (2022) ATLAS Software and Computing HL-
LHC Roadmap. Technical Report CERN-LHCC-2022-005,
LHCC-G-182, CERN, Geneva. http:// cds. cern. ch/ record/ 28029
18

 3. Software CO (2022) Computing. CMS phase-2 com-
puting model: Update document. Technical Report

CERN-CMS-NOTE-2022-008, CERN, Geneva. http:// cds. cern.
ch/ record/ 28152 92

 4. Evans L, Bryant P (2008) LHC machine. JINST 3:S08001.
https:// doi. org/ 10. 1088/ 1748- 0221/3/ 08/ S08001

 5. Apollinari G et al (2017) High-luminosity large hadron col-
lider (HL-LHC): technical design report V. 0.1. Technical
Report CERN-2017-007-M, CERN. https:// doi. org/ 10. 23731/
CYRM- 2017- 004

 6. Albrecht J et al (2019) A roadmap for HEP software and comput-
ing R &D for the 2020s. Comput Softw Big Sci 3:7. https:// doi.
org/ 10. 1007/ s41781- 018- 0018-8

 7. Sexton-Kennedy E (2018) HEP software development in the
next decade; the views of the HSF community. J Phys Conf Ser
1085:022006. https:// doi. org/ 10. 1088/ 1742- 6596/ 1085/2/ 022006

 8. Vassilev V, Canal P, Naumann A, Moneta L, Russo P (2012)
Cling–the new interactive interpreter for ROOT 6. J Phys Conf
Ser 396:052071. https:// doi. org/ 10. 1088/ 1742- 6596/ 396/5/
052071

 9. Brun R, Rademakers F (1997) ROOT: an object oriented data
analysis framework. Nucl Instrum Meth A. 389:81–86. https://
doi. org/ 10. 1016/ S0168- 9002(97) 00048-X

 10. Antcheva I et al (2009) ROOT–A C++ framework for petabyte
data storage, statistical analysis and visualization. 40 YEARS
OF CPC: a celebratory issue focused on quality software for
high performance, grid and novel computing architectures.
Comp Phys Commun 180:2499–2512. https:// doi. org/ 10.
1016/j. cpc. 2009. 08. 005

 11. Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: a
fresh approach to numerical computing. SIAM Rev 59:65–98.
https:// doi. org/ 10. 1137/ 14100 0671

 12. Bezanson J et al (2018) Julia: dynamism and performance rec-
onciled by design. Proc ACM Program Lang. https:// doi. org/
10. 1145/ 32764 90

 13. Bezanson J, Karpinski S, Shah VB, Edelman A (2012) Why we
created Julia. https:// julia lang. org/ blog/ 2012/ 02/ why- we- creat
ed- julia/

 14. Julia Computing (2022) Newsletter january 2022–julia growth
statistics. https:// julia compu ting. com/ blog/ 2022/ 01/ newsl etter-
janua ry/

 15. Stanitzki M, Strube J (2021) Performance of Julia for high
energy physics analyses. Comput Softw Big Sci 5:10. https://
doi. org/ 10. 1007/ s41781- 021- 00053-3

 16. Go 2 error handling feedback. https:// github. com/ golang/ go/
wiki/ Go2Er rorHa ndlin gFeed back. Accessed 12 Oct 2021

 17. Rackauckas C (2021) ModelingToolkit, modelica, and modia:
the composable modeling future in Julia. Winnower. https://
doi. org/ 10. 15200/ winn. 162133. 39054

 18. Julia Computing NVIDIA Julia computing brings support for
NVIDIA GPU computing on Arm powered servers. https://
julia compu ting. com/ blog/ 2019/ 12/ nvidia- ngc- arm. Accessed
12 Oct 2021

 19. Regier J et al (2019) Cataloging the visible universe through
Bayesian inference in Julia at Petascale. J Parallel Distrib Com-
put 127:89–104. https:// doi. org/ 10. 1016/j. jpdc. 2018. 12. 008

 20. Claster A, Julia Joins Petaflop Club. https:// julia compu ting.
com/ media/ 2017/ 09/ julia- joins- petafl op- club. (accessed Octo-
ber 12, 2021)

 21. The LuaJIT project website. https:// luajit. org. Accessed 7 Apr
2022

 22. Bolz CF, Tratt L (2015) The impact of meta-tracing on VM
design and implementation. Sci Comp Program 98:408–421.
https:// doi. org/ 10. 1016/j. scico. 2013. 02. 001

 23. Pypy project website. https:// www. pypy. org/. Accessed 7 Apr
2022

 24. Stroustrup B (2018) A Tour of C++ C++ in-depth series. Pear-
son Education

http://creativecommons.org/licenses/by/4.0/
https://cds.cern.ch/record/1695401
http://cds.cern.ch/record/2802918
http://cds.cern.ch/record/2802918
http://cds.cern.ch/record/2815292
http://cds.cern.ch/record/2815292
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1088/1742-6596/1085/2/022006
https://doi.org/10.1088/1742-6596/396/5/052071
https://doi.org/10.1088/1742-6596/396/5/052071
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/j.cpc.2009.08.005
https://doi.org/10.1016/j.cpc.2009.08.005
https://doi.org/10.1137/141000671
https://doi.org/10.1145/3276490
https://doi.org/10.1145/3276490
https://julialang.org/blog/2012/02/why-we-created-julia/
https://julialang.org/blog/2012/02/why-we-created-julia/
https://juliacomputing.com/blog/2022/01/newsletter-january/
https://juliacomputing.com/blog/2022/01/newsletter-january/
https://doi.org/10.1007/s41781-021-00053-3
https://doi.org/10.1007/s41781-021-00053-3
https://github.com/golang/go/wiki/Go2ErrorHandlingFeedback
https://github.com/golang/go/wiki/Go2ErrorHandlingFeedback
https://doi.org/10.15200/winn.162133.39054
https://doi.org/10.15200/winn.162133.39054
https://juliacomputing.com/blog/2019/12/nvidia-ngc-arm
https://juliacomputing.com/blog/2019/12/nvidia-ngc-arm
https://doi.org/10.1016/j.jpdc.2018.12.008
https://juliacomputing.com/media/2017/09/julia-joins-petaflop-club
https://juliacomputing.com/media/2017/09/julia-joins-petaflop-club
https://luajit.org
https://doi.org/10.1016/j.scico.2013.02.001
https://www.pypy.org/

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 22 of 24

 25. Stroustrup B (1994) The design and evolution of C++. Pearson
Education

 26. Cardelli L, Wegner P (1985) On understanding types, data
abstraction, and polymorphism. ACM Comput Surv 17:471–
523. https:// doi. org/ 10. 1145/ 6041. 6042

 27. Strachey C (2000) Fundamental concepts in programming lan-
guages. High Order Symb Comput 13:11–49. https:// doi. org/
10. 1023/A: 10100 00313 106

 28. Snyder A (1986) Encapsulation and inheritance in object-
oriented programming languages. SIGPLAN Not 21:38–45.
https:// doi. org/ 10. 1145/ 960112. 28702

 29. Gamma E, Helm R, Johnson RE, Vlissides J (1995) Design
Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley Professional Computing Series, Reading:
Addison-Wesley. https:// www. safar ibook sonli ne. com/ libra ry/
view/ design- patte rns- eleme nts/ 02016 33612/

 30. Python multid-dispatch module (2022) https:// multi ple- dispa tch.
readt hedocs. io. Accessed 25 Mar 2022

 31. Zappa Nardelli F et al (2018) Julia subtyping: a rational recon-
struction. Proc ACM Program Lang. https:// doi. org/ 10. 1145/
32764 83

 32. Harris CR et al (2020) Array programming with Numpy. Nature
585:357–362. https:// doi. org/ 10. 1038/ s41586- 020- 2649-2

 33. Gras P (2012). Analysis of the di-muon spectrum using data from
the CMS detector taken in 2012. https:// doi. org/ 10. 7483/ OPEND
ATA. KS4A. BD5W

 34. Wunsch S (2019). Analysis of the di-muon spectrum using data
from the CMS detector taken in 2012. https:// doi. org/ 10. 7483/
OPEND ATA. CMS. AAR1. 4NZQ

 35. Dataframes.jl package documentation (2022) https:// dataf rames.
julia data. org. Accessed 1 Aug 2022

 36. Gál T, Ling JJ, Amin N (2022) UnROOT: an I/O library for the
CERN ROOT file format written in Julia. J Open Source Softw
7, 4452. https:// doi. org/ 10. 21105/ joss. 04452

 37. Pivarski J et al (2017) Uproot. https:// doi. org/ 10. 5281/ zenodo.
43406 32

 38. Pivarski J et al (2018) Awkward array Zenodo. https:// doi. org/
10. 5281/ zenodo. 70797 05

 39. Reback J et al (2022) pandas-dev/pandas: Pandas 1.4.4. Zenodo.
https:// doi. org/ 10. 5281/ zenodo. 70379 53

 40. The Julia language manual (2021) https:// docs. julia lang. org/ en/
v1/. Accessed 29 Sep 2021

 41. Janssens B CxxWrap code repository. https:// github. com/ Julia
Inter op/ CxxWr ap. jl. Accessed 17 Mar 2022

 42. Abrahams D, Grosse-Kunstleve RW (2003) Building hybrid sys-
tems with Boost.Python. https:// www. boost. org/ doc/ libs/1_ 80_0/
libs/ python/ doc/ html/ artic le. html. Accessed 1 Aug 2022

 43. Pybind11 code repository. https:// github. com/ pybind/ pybin d11.
Accessed 1 Aug 2022

 44. Gras P Automatic generation of c++–julia bindings. https://
github. com/ grasph/ wrapit. Accessed 17 Mar 2022

 45. Fischer K et al Cxx.jl code repository. https:// github. com/ Julia
Inter op/ Cxx. jl. Accessed 17 Mar 2022

 46. The linear collider I/O framework code repository (2022) https://
github. com/ iLCSo ft/ LCIO. Accessed 1 Aug 2022

 47. Behnke T et al (2013) The international linear collider technical
design report–volume 1: executive summary. Technical Report,
The International Linear Collider. http:// arxiv. org/ abs/ 1306. 6327

 48. Cacciari M, Salam GP, Soyez G (2012) Fastjet user man-
ual. Eur Phys J C 72:1896. https:// doi. org/ 10. 1140/ epjc/
s10052- 012- 1896-2

 49. Dispelling the n3 myth for the kt jet-finde. Phys Lett B 641:57–61.
https:// doi. org/ 10. 1016/j. physl etb. 2006. 08. 037

 50. Alwall J et al (2007) A standard format for les Houches event
files. Comp Phys Commun 176:300–304

 51. LHEF.jl (2021) https:// github. com/ Julia HEP/ LHEF. jl. Accessed
29 Sep 2021

 52. Strube J, Saba E, TagBot J (2021) jstrube/lcio.jl: v1.9.2. Zenodo.
https:// doi. org/ 10. 5281/ zenodo. 45604 84

 53. UpROOT.jl library code repository (2021) https:// github. com/
Julia HEP/ UpROOT. jl. Accessed 29 Sep 2021

 54. Blomer J, Canal P, Naumann A, Piparo D (2020) Evolution of
the ROOT Tree I/O. EPJ Web Conf 245:02030. https:// doi. org/
10. 1051/ epjco nf/ 20202 45020 30

 55. Foundation, T. A. S. Apache arrow. https:// arrow. apache. org/.
Accessed 1 Aug 2022

 56. ClusterManagers package code repository. https:// github. com/
Julia Paral lel/ Clust erMan agers. jl. Accessed 29 Sep 2021

 57. Dask library web site (2021) https:// docs. dask. org. Accessed 29
Sep 2021

 58. Dagger.jl package code repository. https:// github. com/ Julia Paral
lel/ Dagger. jl. Accessed 29 Sep 2021

 59. Litzkow M, Livny M, Mutka M (1988) Condor—a hunter of idle
workstations, IEEE, pp 104–111. https:// doi. org/ 10. 1109/ DCS.
1988. 12507

 60. HTCondor software website (2021). https:// htcon dor. org/.
Accessed 29 Sep 2021

 61. James F, Roos M (1975) Minuit: a system for function mini-
mization and analysis of the parameter errors and correlations.
Comput Phys Commun 10:343–367. https:// doi. org/ 10. 1016/
0010- 4655(75) 90039-9

 62. James F, Roos M Minuit2 user guide. https:// root. cern/ doc/ mas-
ter/ md_ math_ minui t2_ doc_ Minui t2. html. Accessed 1 Aug 2022

 63. The NLopt module for julia, code repository (2021) https://
github. com/ Julia Opt/ NLopt. jl. Accessed 29 Sep 2021

 64. Optim.jl package code repository (2021) https:// github. com/ Julia
NLSol vers/ Optim. jl. Accessed 29 Sep 2021

 65. Optimization.jl package code repository (2021) https:// github.
com/ SciML/ Optim izati on. jl. Accessed 29 Sep 2021

 66. Broyden CG (1970) The convergence of a class of double-rank
minimization algorithms 1. General considerations. IMA J Appl
Maths 6:76–90. https:// doi. org/ 10. 1093/ imamat/ 6.1. 76

 67. Fletcher R (1970) A new approach to variable metric algorithms.
Comput J 13:317–322. https:// doi. org/ 10. 1093/ comjnl/ 13.3. 317

 68. Goldfarb D (1970) A family of variable-metric methods derived
by variational means. Maths Comput. https:// doi. org/ 10. 2307/
20048 73

 69. Shanno DF (1970) Conditioning of quasi-newton methods for
function minimization. Maths Comput. https:// doi. org/ 10. 2307/
20048 40

 70. Eschle J, Puig Navarro A, Silva Coutinho R, Serra N (2019)
ZFIT: scalable pythonic fitting. SoftwareX. https:// doi. org/ 10.
1016/j. softx. 2020. 100508

 71. Eschle J, Puig AN, Silva Coutinho R, Serra N (2020) ZFIT: scal-
able pythonic fitting. EPJ Web Conf 245:06025. https:// doi. org/
10. 1051/ epjco nf/ 20202 45060 25

 72. Besançon M et al (2011) Distributions.jl: Definition and mod-
eling of probability distributions in the Juliastats ecosystem. J
Stat Softw 98:1–30

 73. Lin D et al (2019) JuliaStats/Distributions.jl: a Julia package
for probability distributions and associated functions. Zenodo.
https:// doi. org/ 10. 5281/ zenodo. 26474 58

 74. StatsBase.jl package code repository (2021) https:// github. com/
Julia Stats/ Stats Base. jl. Accessed 29 Sep 2021

 75. Ling J, Amin N, Jacobsen R, Gal, T (2022) A pure julia 1D/2D
histogram package that focus on speed and thread-safe. https://
doi. org/ 10. 5281/ zenodo. 71911 11

 76. Breloff T Plots–powerful convenience for vizualisation in Julia.
https:// docs. julia plots. org/ v1. 30/. Accessed 15 Jun 2022

https://doi.org/10.1145/6041.6042
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1145/960112.28702
https://www.safaribooksonline.com/library/view/design-patterns-elements/0201633612/
https://www.safaribooksonline.com/library/view/design-patterns-elements/0201633612/
https://multiple-dispatch.readthedocs.io
https://multiple-dispatch.readthedocs.io
https://doi.org/10.1145/3276483
https://doi.org/10.1145/3276483
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.7483/OPENDATA.KS4A.BD5W
https://doi.org/10.7483/OPENDATA.KS4A.BD5W
https://doi.org/10.7483/OPENDATA.CMS.AAR1.4NZQ
https://doi.org/10.7483/OPENDATA.CMS.AAR1.4NZQ
https://dataframes.juliadata.org
https://dataframes.juliadata.org
https://doi.org/10.21105/joss.04452
https://doi.org/10.5281/zenodo.4340632
https://doi.org/10.5281/zenodo.4340632
https://doi.org/10.5281/zenodo.7079705
https://doi.org/10.5281/zenodo.7079705
https://doi.org/10.5281/zenodo.7037953
https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/
https://github.com/JuliaInterop/CxxWrap.jl
https://github.com/JuliaInterop/CxxWrap.jl
https://www.boost.org/doc/libs/1_80_0/libs/python/doc/html/article.html
https://www.boost.org/doc/libs/1_80_0/libs/python/doc/html/article.html
https://github.com/pybind/pybind11
https://github.com/grasph/wrapit
https://github.com/grasph/wrapit
https://github.com/JuliaInterop/Cxx.jl
https://github.com/JuliaInterop/Cxx.jl
https://github.com/iLCSoft/LCIO
https://github.com/iLCSoft/LCIO
http://arxiv.org/abs/1306.6327
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1016/j.physletb.2006.08.037
https://github.com/JuliaHEP/LHEF.jl
https://doi.org/10.5281/zenodo.4560484
https://github.com/JuliaHEP/UpROOT.jl
https://github.com/JuliaHEP/UpROOT.jl
https://doi.org/10.1051/epjconf/202024502030
https://doi.org/10.1051/epjconf/202024502030
https://arrow.apache.org/
https://github.com/JuliaParallel/ClusterManagers.jl
https://github.com/JuliaParallel/ClusterManagers.jl
https://docs.dask.org
https://github.com/JuliaParallel/Dagger.jl
https://github.com/JuliaParallel/Dagger.jl
https://doi.org/10.1109/DCS.1988.12507
https://doi.org/10.1109/DCS.1988.12507
https://htcondor.org/
https://doi.org/10.1016/0010-4655(75)90039-9
https://doi.org/10.1016/0010-4655(75)90039-9
https://root.cern/doc/master/md_math_minuit2_doc_Minuit2.html
https://root.cern/doc/master/md_math_minuit2_doc_Minuit2.html
https://github.com/JuliaOpt/NLopt.jl
https://github.com/JuliaOpt/NLopt.jl
https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/SciML/Optimization.jl
https://github.com/SciML/Optimization.jl
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.2307/2004873
https://doi.org/10.2307/2004873
https://doi.org/10.2307/2004840
https://doi.org/10.2307/2004840
https://doi.org/10.1016/j.softx.2020.100508
https://doi.org/10.1016/j.softx.2020.100508
https://doi.org/10.1051/epjconf/202024506025
https://doi.org/10.1051/epjconf/202024506025
https://doi.org/10.5281/zenodo.2647458
https://github.com/JuliaStats/StatsBase.jl
https://github.com/JuliaStats/StatsBase.jl
https://doi.org/10.5281/zenodo.7191111
https://doi.org/10.5281/zenodo.7191111
https://docs.juliaplots.org/v1.30/

Computing and Software for Big Science (2023) 7:10

1 3

Page 23 of 24 10

 77. RecipeBase.jl (2022) https:// github. com/ Julia Plots/ Recip esBase.
jl. Accessed 15 Jun 2022

 78. Heinen J et al (1985–2022) GR framework. https:// gr- frame work.
org/. Accessed 15 Jun 2022

 79. Rosario HD, Heinen J (2019–2022) GRUtils. https:// helio sdrm.
github. io/ GRUti ls.j. Accessed 15 Jun 2022

 80. Danisch S, Krumbiegel J (2021) Makie.jl: flexible high-perfor-
mance data visualization for Julia. J Open Source Softw 6:3349.
https:// doi. org/ 10. 21105/ joss. 03349

 81. Bierlich C et al (2020) Robust independent validation of experi-
ment and theory: rivet version 3. SciPost Phys 8:026. https:// doi.
org/ 10. 21468/ SciPo stPhys. 8.2. 026

 82. PFGPlots code repository (2022) https:// github. com/ Julia TeX/
PGFPl ots. jl. Accessed 15 Jun 2022

 83. PFGPlotsX code repository (2022) https:// github. com/ Krist
offerC/ PGFPl otsX. jl. Accessed 15 Jun 2022

 84. Gaston code repository (2022) https:// github. com/ mbaz/ Gaston.
jl. Accessed 15 Jun 2022

 85. Gnuplot (2022) http:// www. gnupl ot. info/. Accessed 15 Jun
2022

 86. Matplotlib (2022). https:// matpl otlib. org/. Accessed 15 Jun 2022
 87. Vega-Lite (2022) https:// vega. github. io/ vega- lite/. Accessed 15

Jun 2022
 88. VegaLite.jl code repository (2022) https:// github. com/ query

verse/ VegaL ite. jl. Accessed 15 Jun 2022
 89. UnicodePlots code repository (2022) https:// github. com/ Julia

Plots/ Unico dePlo ts. jl. Accessed 15 Jun 2022
 90. Inc. W R (2022) Mathematica, Version 13.1. https:// www. wolfr

am. com/ mathe matica. Champaign
 91. van der Plas F et al (2022) fonsp/pluto.jl: v0.19.11. Zenodo.

https:// doi. org/ 10. 5281/ zenodo. 69167 13
 92. Agostinelli S et al (2003) Geant4-a simulation toolkit. NIM-A

506:250–303
 93. Byrne S, Wilcox LC, Churavy V (2021) Mpi.jl: Julia bindings for

the message passing interface. Proc JuliaCon Conf 1:68. https://
doi. org/ 10. 21105/ jcon. 00068

 94. Poulson J et al Elemental.jl code repository (2017-2022). https://
github. com/ Julia Paral lel/ Eleme ntal. jl. Accessed 17 Mar 2022

 95. Elrod C et al Loopvectorization code repository. https:// github.
com/ Julia SIMD/ LoopV ector izati on. jl. Accessed 17 Mar 2022

 96. Abbott M et al (2022) mcabbott/tullio.jl: v0.3.5. Zenodo. https://
doi. org/ 10. 5281/ zenodo. 71061 92

 97. Gowda S et al (2022) High-performance symbolic-numerics via
multiple dispatch. ACM Commun Comput Algebra 55:92–96.
https:// doi. org/ 10. 1145/ 35115 28. 35115 35

 98. Symata.jl (2022) https:// github. com/ jlape yre/ Symata. jl. Accessed
17 Mar 2022

 99. MathLink.jl (2022) https:// github. com/ Julia Inter op/ MathL ink. jl.
Accessed 15 Mar 2022

 100. Gowda S et al (2021) High-performance symbolic-numerics via
multiple dispatch. ACM Commun Comput Algebra 55:92–96.
https:// doi. org/ 10. 1145/ 35115 28. 35115 35

 101. (2022) https:// sciml. ai/. Accessed 1 Aug 2022
 102. Rackauckas C, Nie Q (2017) Differentialequations.jl–a perfor-

mant and feature-rich ecosystem for solving differential equations
in Julia. J Open Res Softw 5:15. https:// doi. org/ 10. 5334/ jors. 151

 103. JuliaSymbolics roadmap: a modern computer algebra system for
a modern language (2022) https:// julia symbo lics. org/ roadm ap/.
Accessed 16 Mar 2022

 104. Ma Y et al (2021) Modelingtoolkit: a composable graph trans-
formation system for equation-based modeling. http:// arxiv. org/
abs/ 2103. 05244

 105. SymbolicUtils.jl (2022) https:// github. com/ Julia Symbo lics/
Symbo licUt ils. jl. Accessed 15 Mar 2022

 106. MathLinkExtras.jl (2022) https:// github. com/ freml ing/ MathL
inkEx tras. jl. Accessed 17 Mar 2022

 107. Amoroso S et al (2021) Challenges in monte Carlo event genera-
tor software for high-luminosity LHC. Comput Softw Big Sci.
5:12. https:// doi. org/ 10. 1007/ s41781- 021- 00055-1

 108. Valassi A, Roiser S, Mattelaer O, Hageboeck S (2021) Design
and engineering of a simplified workflow execution for the
MG5aMC event generator on GPUs and vector CPUs. EPJ Web
Conf. 251:03045. https:// doi. org/ 10. 1051/ epjco nf/ 20212 51030 45

 109. DaggerGPU package code repository (2021) https:// github. com/
Julia GPU/ Dagge rGPU. jl. Accessed 29 Sep 2021

 110. Preston-Werner T (2013) Semantic versioning 2.0.0. http:// sem-
ver. org

 111. Expression problem (2022) https:// en. wikip edia. org/ wiki/ Expre
ssion_ probl em. Champaign

 112. Reynolds JC (1978) User-Defined types and procedural data
structures as complementary approaches to data abstraction,
New York: Springer, pp 309–317 . https:// doi. org/ 10. 1007/ 978-
1- 4612- 6315-9_ 22

 113. Revise package code repository (2021) https:// github. com/ timho
ly/ Revise. jl. Accessed 29 Sep 2021

 114. JAX library code repository (2021) https:// github. com/ google/
jax. Accessed 29 Sep 2021

 115. TensorFlow web site (2021) https:// www. tenso rflow. org.
Accessed 29 Sep 2021

 116. PyTorch web site (2021) https:// pytor ch. org/. Accessed 29 Sep
2021

 117. White FC et al (2022) Juliadiff/chainrules.jl: v1.44.7. Zenodo.
https:// doi. org/ 10. 5281/ zenodo. 71824 61

 118. Juliadiff organisation website. https:// julia diff. org/. Accessed 7
Apr 2022

 119. Lorentzvectorhep. https:// github. com/ Julia HEP/ Loren tzVec tor-
HEP. jl. Accessed 17 Mar 2022

 120. Table.jl. https:// tables. julia data. org/ stable/. Accessed 17 Mar
2022

 121. Schulz O et al (2021) Bat.jl: a Julia-based tool for Bayes-
ian inference. SN Comp Sci 2:210. https:// doi. org/ 10. 1007/
s42979- 021- 00626-4

 122. Ge H, Xu K, Ghahramani Z (2018) Turing: a language for flexible
probabilistic inference, 1682–1690 MLR Press. In: proceedings
of the Conference on Artificial Intelligence and Statistics, AIST-
ATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary
Islands, Spain. http:// proce edings. mlr. press/ v84/ ge18b. html

 123. Gabler P, Schulz O, Widmann D et al Densityinterface.jl code
repository (2021-2022). https:// github. com/ Julia Math/ Densi tyInt
erface. jl. Accessed 23 Nov 2022

 124. Plavin A, Scherrer C, Schulz O, Widmann D et al Inversefunc-
tions.jl code repository (2021-2022). https:// github. com/ Julia
Math/ Inver seFun ctions. jl. Accessed 23 Nov 2022

 125. Schulz O, Widmann D et al Changesofvariables.jl code reposi-
tory (2021-2022). https:// github. com/ Julia Math/ Chang esOfV
ariab les. jl. Accessed 23 Nov 2022

 126. Collaboration TA, Collaboration TC, Group TLHC (2011) Pro-
cedure for the LHC higgs boson search combination in summer
2011. Technical Report CMS-NOTE-2011-005, ATL-PHYS-
PUB-2011-011, ATL-PHYS-PUB-2011-11, CERN, Geneva.
https:// cds. cern. ch/ record/ 13798 37

 127. Chatrchyan S et al (2012) Combined results of searches for the
standard model Higgs boson in pp collisions at √s = 7TeV. Phys
Lett B 710:26–48. https:// doi. org/ 10. 1016/j. physl etb. 2012. 02. 064

 128. Collaboration TA (2012) Observation of an excess of events
in the search for the standard model Higgs boson with the
ATLAS detector at the LHC. https:// cds. cern. ch/ record/ 14604
39. ATLAS-CONF-2012-093

https://github.com/JuliaPlots/RecipesBase.jl
https://github.com/JuliaPlots/RecipesBase.jl
https://gr-framework.org/
https://gr-framework.org/
https://heliosdrm.github.io/GRUtils.j
https://heliosdrm.github.io/GRUtils.j
https://doi.org/10.21105/joss.03349
https://doi.org/10.21468/SciPostPhys.8.2.026
https://doi.org/10.21468/SciPostPhys.8.2.026
https://github.com/JuliaTeX/PGFPlots.jl
https://github.com/JuliaTeX/PGFPlots.jl
https://github.com/KristofferC/PGFPlotsX.jl
https://github.com/KristofferC/PGFPlotsX.jl
https://github.com/mbaz/Gaston.jl
https://github.com/mbaz/Gaston.jl
http://www.gnuplot.info/
https://matplotlib.org/
https://vega.github.io/vega-lite/
https://github.com/queryverse/VegaLite.jl
https://github.com/queryverse/VegaLite.jl
https://github.com/JuliaPlots/UnicodePlots.jl
https://github.com/JuliaPlots/UnicodePlots.jl
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://doi.org/10.5281/zenodo.6916713
https://doi.org/10.21105/jcon.00068
https://doi.org/10.21105/jcon.00068
https://github.com/JuliaParallel/Elemental.jl
https://github.com/JuliaParallel/Elemental.jl
https://github.com/JuliaSIMD/LoopVectorization.jl
https://github.com/JuliaSIMD/LoopVectorization.jl
https://doi.org/10.5281/zenodo.7106192
https://doi.org/10.5281/zenodo.7106192
https://doi.org/10.1145/3511528.3511535
https://github.com/jlapeyre/Symata.jl
https://github.com/JuliaInterop/MathLink.jl
https://doi.org/10.1145/3511528.3511535
https://sciml.ai/
https://doi.org/10.5334/jors.151
https://juliasymbolics.org/roadmap/
http://arxiv.org/abs/2103.05244
http://arxiv.org/abs/2103.05244
https://github.com/JuliaSymbolics/SymbolicUtils.jl
https://github.com/JuliaSymbolics/SymbolicUtils.jl
https://github.com/fremling/MathLinkExtras.jl
https://github.com/fremling/MathLinkExtras.jl
https://doi.org/10.1007/s41781-021-00055-1
https://doi.org/10.1051/epjconf/202125103045
https://github.com/JuliaGPU/DaggerGPU.jl
https://github.com/JuliaGPU/DaggerGPU.jl
http://semver.org
http://semver.org
https://en.wikipedia.org/wiki/Expression_problem
https://en.wikipedia.org/wiki/Expression_problem
https://doi.org/10.1007/978-1-4612-6315-9_22
https://doi.org/10.1007/978-1-4612-6315-9_22
https://github.com/timholy/Revise.jl
https://github.com/timholy/Revise.jl
https://github.com/google/jax
https://github.com/google/jax
https://www.tensorflow.org
https://pytorch.org/
https://doi.org/10.5281/zenodo.7182461
https://juliadiff.org/
https://github.com/JuliaHEP/LorentzVectorHEP.jl
https://github.com/JuliaHEP/LorentzVectorHEP.jl
https://tables.juliadata.org/stable/
https://doi.org/10.1007/s42979-021-00626-4
https://doi.org/10.1007/s42979-021-00626-4
http://proceedings.mlr.press/v84/ge18b.html
https://github.com/JuliaMath/DensityInterface.jl
https://github.com/JuliaMath/DensityInterface.jl
https://github.com/JuliaMath/InverseFunctions.jl
https://github.com/JuliaMath/InverseFunctions.jl
https://github.com/JuliaMath/ChangesOfVariables.jl
https://github.com/JuliaMath/ChangesOfVariables.jl
https://cds.cern.ch/record/1379837
https://doi.org/10.1016/j.physletb.2012.02.064
https://cds.cern.ch/record/1460439
https://cds.cern.ch/record/1460439

 Computing and Software for Big Science (2023) 7:10

1 3

 10 Page 24 of 24

 129. Cowan G, Cranmer K, Gross E, Vitells O (2011) Asymptotic
formulae for likelihood-based tests of new physics. Eur Phys J.
https:// doi. org/ 10. 1140/ epjc/ s10052- 011- 1554-0. [Erratum: Eur.
Phys. J. C 73, 2501 (2013)]

 130. Junk T (1999) Confidence level computation for combining
searches with small statistics. Nucl Instrum Meth A 434:435–
443. https:// doi. org/ 10. 1016/ S0168- 9002(99) 00498-2

 131. Read AL (2002) Presentation of search results: the CL(s) tech-
nique. J Phys G 28:2693–2704. https:// doi. org/ 10. 1088/ 0954-
3899/ 28/ 10/ 313

 132. Fisher W (2006) Systematics and limit calculations. FERMILAB-
TM-2386-E, D0-NOTE-5309. https:// doi. org/ 10. 2172/ 923070

 133. Junk T (2006) Sensitivity, exclusion and discovery with small
signals, large backgrounds, and large systematic uncertain-
ties. https:// inspi rehep. net/ liter ature/ 13615 06. CDF-8128,
CDF-Note-8128

 134. Verkerke W, Kirkby D (2006) The RooFit toolkit for data mod-
eling. World Sci. https:// doi. org/ 10. 1142/ 97818 60948 985_ 0039

 135. Boutigny D et al (1995) BaBar technical design report. SLAC-
R-457 http:// www. slac. stanf ord. edu/ cgi- wrap/ getdoc/ slac-r- 457.
pdf

 136. Cranmer K, Lewis G, Moneta L, Shibata A, Verkerke W (2012)
HistFactory: A tool for creating statistical models for use with
RooFit and RooStats. CERN-OPEN-2012-016. https:// cds. cern.
ch/ record/ 14568 44

 137. ATLAS, CMS, LHC Higgs Combination Group (2011) Pro-
cedure for the LHC Higgs boson search combination in Sum-
mer 2011. CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11.
https:// cds. cern. ch/ record/ 13798 37

 138. HiggsCombine code repository. https:// github. com/ cms- analy sis/
Higgs Analy sis- Combi nedLi mit. Accessed 1 Aug 2022

 139. Heinrich L, Feickert M, Stark G, Cranmer K (2021) PYHF: pure-
Python implementation of HistFactory statistical models. J Open
Source Softw 6:2823. https:// doi. org/ 10. 21105/ joss. 02823

 140. Ling J (2022) LiteHF.jl: Julia implementation of HistFactory-
style likelihood ratio methods and test statistics. Zenodo. https://
doi. org/ 10. 5281/ zenodo. 74355 41

 141. Blobel V (2013) Unfolding, Ch. 6, 187–225 John Wiley and
Sons, Ltd, https:// doi. org/ 10. 1002/ 97835 27653 416. ch6

 142. Schmitt S (2012) TUnfold: an algorithm for correcting migration
effects in high energy physics. JINST 7:T10003. https:// doi. org/
10. 1088/ 1748- 0221/7/ 10/ T10003

 143. Adye T (2011) in Proceeedings of the PHYSTAT 2011 work-
shop on statistical issues related to discovery claims in search
experiments and unfolding Prosper H, Lyons L. (eds) Unfolding
algorithms and tests using RooUnfold 313–318 (CERN, Geneva,
2011). https:// doi. org/ 10. 5170/ CERN- 2011- 006. 313. arXiv:
1105. 1160

 144. Brenner L et al (2020) Comparison of unfolding methods using
RooFitUnfold. Int J Mod Phys A 35:2050145. https:// doi. org/ 10.
1142/ S0217 751X2 05014 56

 145. Andreassen A, Komiske PT, Metodiev EM, Nachman B, Thaler J
(2020) OmniFold: a method to simultaneously unfold all observ-
ables. Phys Rev Lett 124:182001. https:// doi. org/ 10. 1103/ PhysR
evLett. 124. 182001

 146. Pharmaceutical development, pfizer uses julia to accelerate
simulations of new therapies for metabolic diseases up to 175x.
https:// julia compu ting. com/ case- studi es/ pfizer/. Accessed 1 Aug
2022

 147. (Moderna), H A Modeling and simulation to guide dose selection
for mRNA therapeutics and vaccines. Presented at the JuliaCon
2022 conference. https:// live. julia con. org/ talk/ 9N9HZ3.

 148. Predicting toxicity. https:// julia compu ting. com/ case- studi es/
astra- zeneca/. Accessed 1 Aug 2022

 149. https:// julia compu ting. com/ indus tries/ banki ng- and- finan ce/.
Accessed 1 Aug 2022

 150. Solvency II compliance, one of Europe’s largest insurers is using
Julia for solvency II compliance. https:// julia compu ting. com/
case- studi es/ aviva/. Accessed 1 Aug 2022

 151. Macroeconomic modeling, the Federal reserve bank of New York
publishes its trademark dynamic stochastic general equilibrium
models in Julia. https:// julia compu ting. com/ case- studi es/ ny- fed/.
Accessed 1 Aug 2022

 152. Holy T, Bezanson J, Nash J Analyzing sources of compiler
latency in Julia: method invalidations. https:// julia lang. org/ blog/
2020/ 08/ inval idati ons/. Accessed 7 Apr 2022

 153. Holy T Tutorial on precompilation. https:// julia lang. org/ blog/
2021/ 01/ preco mpile_ tutor ial/. Accessed 14 Oct 2022

 154. SnoopCompile package code repository (2021) https:// github.
com/ timho ly/ Snoop Compi le. jl. Accessed 29 Sep 2021

 155. PrecompileTools package code repository (2023) https:// github.
com/ Julia Lang/ Preco mpile Tools. jl. Accessed 5 Jun 2023

 156. Packagecompiler manual: Sysimages. https:// julia lang. github. io/
Packa geCom piler. jl/ v2.0/ sysim ages. html. Accessed 15 Jun 2022

 157. Collaboration C. CMS offline software repository. https:// github.
com/ cms- sw/ cmssw. Accessed 1 Aug 2022

 158. Tokei computer program code repository (2021) https:// github.
com/ XAMPP Rocky/ tokei. Accessed 29 Sep 2021

 159. Differentialequations.jl: Scientific machine learning (SciML)
enabled simulation and estimation. https:// diffeq. sciml. ai/ v7.3.
0/. Accessed 15 Jun 2022

 160. Holy T, Churavy V (2022) Improvements in package precompila-
tion. Talk given at JuliaCon 2022. https:// live. julia con. org/ talk/
DUQQLN.

 161. Documenter.jl, a documentation generator for Julia. https:// julia
docs. github. io/ Docum enter. jl/ v0. 27/. Accessed 15 Jun 2022

 162. Abgrall N et al (2021) The Large enriched germanium experi-
ment for neutrinoless ββ decay: LEGEND-1000 preconceptual
design report. http:// arxiv. org/ abs/ 2107. 11462

 163. Evaluation strategy. https:// en. wikip edia. org/ wiki/ Evalu ation_
strat eg. Accessed 1 Aug 2022

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1140/epjc/s10052-011-1554-0
https://doi.org/10.1016/S0168-9002(99)00498-2
https://doi.org/10.1088/0954-3899/28/10/313
https://doi.org/10.1088/0954-3899/28/10/313
https://doi.org/10.2172/923070
https://inspirehep.net/literature/1361506
https://doi.org/10.1142/9781860948985_0039
http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-457.pdf
http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-457.pdf
https://cds.cern.ch/record/1456844
https://cds.cern.ch/record/1456844
https//cds.cern.ch/record/1379837
https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit
https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit
https://doi.org/10.21105/joss.02823
https://doi.org/10.5281/zenodo.7435541
https://doi.org/10.5281/zenodo.7435541
https://doi.org/10.1002/9783527653416.ch6
https://doi.org/10.1088/1748-0221/7/10/T10003
https://doi.org/10.1088/1748-0221/7/10/T10003
https://doi.org/10.5170/CERN-2011-006.313
https://arxiv.org/abs/1105.1160
https://arxiv.org/abs/1105.1160
https://doi.org/10.1142/S0217751X20501456
https://doi.org/10.1142/S0217751X20501456
https://doi.org/10.1103/PhysRevLett.124.182001
https://doi.org/10.1103/PhysRevLett.124.182001
https://juliacomputing.com/case-studies/pfizer/
https://live.juliacon.org/talk/9N9HZ3
https://juliacomputing.com/case-studies/astra-zeneca/
https://juliacomputing.com/case-studies/astra-zeneca/
https://juliacomputing.com/industries/banking-and-finance/
https://juliacomputing.com/case-studies/aviva/
https://juliacomputing.com/case-studies/aviva/
https://juliacomputing.com/case-studies/ny-fed/
https://julialang.org/blog/2020/08/invalidations/
https://julialang.org/blog/2020/08/invalidations/
https://julialang.org/blog/2021/01/precompile_tutorial/
https://julialang.org/blog/2021/01/precompile_tutorial/
https://github.com/timholy/SnoopCompile.jl
https://github.com/timholy/SnoopCompile.jl
https://github.com/JuliaLang/PrecompileTools.jl
https://github.com/JuliaLang/PrecompileTools.jl
https://julialang.github.io/PackageCompiler.jl/v2.0/sysimages.html
https://julialang.github.io/PackageCompiler.jl/v2.0/sysimages.html
https://github.com/cms-sw/cmssw
https://github.com/cms-sw/cmssw
https://github.com/XAMPPRocky/tokei
https://github.com/XAMPPRocky/tokei
https://diffeq.sciml.ai/v7.3.0/
https://diffeq.sciml.ai/v7.3.0/
https://live.juliacon.org/talk/DUQQLN
https://live.juliacon.org/talk/DUQQLN
https://juliadocs.github.io/Documenter.jl/v0.27/
https://juliadocs.github.io/Documenter.jl/v0.27/
http://arxiv.org/abs/2107.11462
https://en.wikipedia.org/wiki/Evaluation_strateg
https://en.wikipedia.org/wiki/Evaluation_strateg

	Potential of the Julia Programming Language for High Energy Physics Computing
	Abstract
	Introduction
	The Programming Language Community
	Key Features of Julia
	Polymorphism in C++, Python, and Julia

	HEP Computing Requirements
	General Features
	An Easy Language
	Performance
	Interoperability with Legacy Code
	Support of Standard HEP Data Formats
	Parallel Computing
	Platform Supports and License
	Reproducibility
	Numerical Optimization

	Specific Needs for Analysis of Reconstructed Events
	Tools to Produce Histograms and Publication-Quality Plot
	Notebook Support

	Specific Needs for Physics Event Reconstruction, Simulation and Data Acquisition Trigger Software
	Specific Needs for Event Generation and for Phenomenology
	Symbolic Calculations in Julia
	Event Generators

	Feature Summary

	The Bonuses
	Packaging
	Multiple Dispatch and Fast Development
	Automatic Differentiation

	Foundation HEP-Specific Libraries to be Developed or Consolidated
	Integration in the ROOT Framework
	HEP-Specific Data Storage Format
	Physics Object Types and Histogram
	HEP Specific Statistical Tools

	Limits of the Julia Programming Language
	Language Popularity
	Just-In-Time Compilation Latency
	Application Programming Interface Specification

	Training and Language Transition Support
	Conclusions
	Appendix A
	Polymorphism in C++ and Julia Illustrated in Code

	Acknowledgements
	References

