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Abstract
Research in high energy physics (HEP) requires huge amounts of computing and storage, putting strong constraints on the 
code speed and resource usage. To meet these requirements, a compiled high-performance language is typically used; while 
for physicists, who focus on the application when developing the code, better research productivity pleads for a high-level 
programming language. A popular approach consists of combining Python, used for the high-level interface, and C++, used 
for the computing intensive part of the code. A more convenient and efficient approach would be to use a language that pro-
vides both high-level programming and high-performance. The Julia programming language, developed at MIT especially 
to allow the use of a single language in research activities, has followed this path. In this paper the applicability of using the 
Julia language for HEP research is explored, covering the different aspects that are important for HEP code development: 
runtime performance, handling of large projects, interface with legacy code, distributed computing, training, and ease of 
programming. The study shows that the HEP community would benefit from a large scale adoption of this programming 
language. The HEP-specific foundation libraries that would need to be consolidated are identified.
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Introduction

High throughput computing plays a major role in high 
energy physics (HEP) research. The field requires the 
development of sophisticated computing codes, which are 
continuously evolving in the course of the research work. 

Computing grids, connecting computer centers all around 
the world, are required to process the experiments’ data [1]. 
Computer algebra systems and high performance comput-
ers are used to build new models and to calculate particle 
production cross sections.
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Fig. 1 shows the expected needs for the ATLAS and CMS 
experiments [2, 3] at the Large Hadron Collider (LHC) [4] 
and its successor, the high-luminosity LHC (HL-LHC) [5], 
together with the estimated planned resources. A data pro-
cessing improvement from R&D is required for HL-LHC to 
fit within the planned resources, which total 20 ⋅ 109 HS061 
units of CPU resource.

The need to reconcile high performance with fast develop-
ment has led to the development of a C++ interpreter [8] that 
provides the convenience of a read-eval-print-loop (REPL) 
interactive experience, also known as programming shell, that 
supports just-in-time compilation, and allows the use of the 
same programming language for compiled and interpreted 
code. The same analysis framework ROOT [9, 10] can then 
be used with compiled code and interactively. In addition 
to the REPL, ROOT supports Jupyter notebooks, which are 
another convenient method for interactive use. The shortcom-
ing of this approach is that the use complex programming lan-
guage is not optimal for easy and fast coding. For this reason, 
another approach that consists of using two languages, one 
optimal for fast development, typically Python, and one opti-
mal for high performance, typically C++, is often adopted.

Using two languages is not ideal: it expands the required 
area of expertise; it forces the reimplementation, in the high-
performance language, of pieces of code originally written 
with the fast-development language when they do not meet 
the required performance; and it reduces the reusability of 
code.

In 2009, J. Bezanson, A. Edelman, S. Karpinski, and V. B. 
Shah imagined a new programming language to address this 
“two language problem” by providing high performance and 
ease of programming [11–13] simultaneously. It has been 
a successful approach. The new language, Julia, which has 
evolved year upon year, is now used by many users. Julia 
is a dynamic language, similar to Python, yet with a per-
formance similar to C/C++. As of October 11, 2022, 8387 
packages were registered in the Julia general registry [14], 
which are accessible to Julia’s integrated package manager. 
Fig. 2 shows the rapid growth in the number of packages.

As demonstrated by M. Stanitzki and J. Strube [15], the 
Julia language is a good alternative to the combination of 
C++ and Python for HEP data analysis and it fulfils its 
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Fig. 1  Estimated CPU required by the CMS (top) and ATLAS (bot-
tom) experiments for LHC and HL-LHC [6, 7]

Fig. 2  Number of packages registered in the Julia general repository 
that can be installed by the integrated package manager (top) and of 
Julia language code GitHub stars (bottom) as function of time. The 
trend of the star counts is compared with Numba and Jax 

1 https:// www. spec. org/ cpu20 06/.

https://www.spec.org/cpu2006/
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promise to be an easy, high performance language. This 
report extends that study. It explores the possible benefits 
of the adoption of Julia as the main programming language 
for HEP, in place of C++-Python, in a similar way as hap-
pened with the switch from Fortran to C++ in the late 90’s.

The Programming Language Community

More important than a list of technical features, however, are 
the culture and interests of a programming language’s com-
munity, because the language and its implementation will 
evolve to satisfy those interests. For instance, the Haskell 
community is focused on language theory, and is unlikely 
to put much effort into optimization for high performance 
computing, and the Go community is so focused on language 
simplicity that they have resisted try-catch logic [16]. The 
Julia community’s interests are well aligned with HEP, and 
many Julia users are in the sciences. We see this in some 
design choices inherited from existing technical languages 
(Fortran, R, MATLAB, Wolfram), like 1-based indexing, 
column-major arrays, and built-in N-dimensional arrays, and 
also in the effort placed on interoperability with other lan-
guages: ccall, PyCall.jl, RCall.jl, MathLink.
jl, and JavaCall.jl. Julia is supported by NumFO-
CUS (like many Python data science projects), and many of 
its most prominent applications are in numerical comput-
ing: NASA spacecraft modeling [17]; climate science [18]; 
and the Celeste project [19], which achieved 1.54 Petaflops 
on the Cori II supercomputer [20], a first for a dynamic 
language.

Key Features of Julia

To locate Julia in the space of programming languages, its 
primary features are characterized below.

• A single implementation, rather than an abstract language 
specification with multiple slightly incompatible imple-
mentations. The Julia computing platform is primarily 
implemented in Julia (most parts), C, and C++ (LLVM), 
and it has a built-in REPL.

• Every function, including those entered interactively, is 
compiled just-in-time (JIT) using LLVM as the back end. 
Julia has no virtual machine, and the JIT is eager (always 
compiles before execution), unlike the tracing/hot spot 
JIT seen in LuaJIT [21] or metatracing [22] like PyPy 
[23].

• Partly thanks to dynamic typing, and also being a JIT lan-
guage, Julia fully supports: type reflection, source code 
as a built-in data type, which enables Lisp-like (hygienic) 
macros2.

• Fast N-dimensional arrays that store elements in-place.
• Multiple dispatch (MD): a function-call invokes the most 

specific method that matches the type of all arguments. 
While many languages support (opt-in) multiple dispatch 
(C#, Common Lisp), Julia is the first language that uses 
MD as the central paradigm3 while focusing on perfor-
mance. MD allows for a surprising amount of code reuse 
and composition among packages that do not know about 
about each other (often a problem with OOP languages), 
this is further discussed in the “Polymorphism in C++, 
Python, and Julia” section.

• Apart from the lack of classes, Julia has a fairly standard 
mix of imperative and functional programming styles. 
Immutability is encouraged by default, but mutable 
structs and arrays are allowed and are frequently used.

• Built-in parallel processing support. Any piece of a pro-
gram can be marked for execution in parallel. Threads 
are scheduled globally—allowing a multithreaded func-
tion to call other multithreaded function—on available 
resources without oversubscribing, saving the developer 
from the burden of taking care of the number of threads. 
Computing distributed on several computers is sup-
ported. Julia code can run natively on GPUs.

• Objects are not reference counted, but are garbage col-
lected. The garbage collector is standard mark-and-
sweep, generational (like Java), but non-compacting, so 
pointers to objects are valid as long as the objects remain 
in scope.

The manner in which polymorphism is supported is the most 
noticeable difference with CBOO programming languages, 
like C++ and Python, and it merits a dedicated discussion.

Polymorphism in C++, Python, and Julia

Polymorphism is the “ability to provide a single interface to 
entities of different types” [24, 25]: a polymorphic function 
will accept arguments of different types. Here we compare 
Julia with C++ and Python due to their prevalence in HEP.

We can distinguish two classes of polymorphism [26, 27]: 
ad-hoc polymorphism where a different implementation is 
provided for each set of types, and universal polymorphism, 
where a single generic implementation is provided for all 
the sets.

Function overloading is an example of ad-hoc polymor-
phism, while C++ templates are an example of universal 
polymorphism. Ad-hoc polymorphism can be combined 
with universal polymorphism using template specialization: 

2 https:// en. wikip edia. org/ wiki/ Hygie nic_ macro.

3 Not only Julia lacks OOP by design, it also has highest number of 
methods and degree of specialization among languages that support 
MD [11].

https://en.wikipedia.org/wiki/Hygienic_macro
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several implementations are provided, while each implemen-
tation can be generic, either partially or totally. A particular 
universal polymorphism is based on subtypes: the function 
scope is extended to all subtypes of its argument.

Polymorphism can be static, i.e., resolved at compile 
time, or dynamic, i.e., resolved at runtime. It can apply to 
a single entity e.g., one of the arguments of a function, or 
multiple entities e.g., all the arguments of a function. In a 
function call, the mechanism that selects the implementation 
to execute according the passed argument types is called 
dispatch.

In the following of this subsection, we will compare poly-
morphism provided by Julia, C++ and Python. Code exam-
ples illustrating our statements can be found in Appendix A.

Polymorphism is provided in C++ by two paradigms: 
one based on class inheritance, function overloading, and 
function overriding; the other based on templates. The first 
provides ad-hoc and subtype polymorphisms over func-
tions, while the second provides universal and ad-hoc poly-
morphisms over both functions and types. By exploiting 
the concepts feature introduced by C++ 20, subtyping 
polymorphism support can be added to the templates. The 
functionalities of the two paradigms overlap.

In C++, class non-static member functions take a special 
argument, the class instance reference (x) or pointer (ptr), 
through a dedicated syntax, x.f() and ptr->f(). Both 
static and dynamic polymorphism are supported over this 
argument, while only static polymorphism is provided for 
the other arguments. Object copy with implicit type conver-
sion can make difficult to follow the polymorphism flow of 
an object.

Static ad-hoc polymorphism is supported over the argu-
ments of global functions and static member functions. C++ 
class templates provide static universal polymorphism. One 
notable usage is the containers of the standard template 
library.

The class inheritance is twofold, it provides inheritance of 
the interface through the subtype polymorphism previously 
described and inheritance of the data fields, a type is an 
aggregation of its fields and all the fields of its supertypes. 
The bounding of the two inheritances can result in break-
ing encapsulation [28] and it is often advocated to prefer 
composition to inheritance for the fields, as dictated by the 
“second principle of object-oriented design” of Ref. [29].

Python provides single dynamic dispatch for the class 
instance argument of member functions. It does not provide 
polymorphism for other arguments. Multiple dispatch emu-
lation can be implemented in the function using conditions 
on the argument types or using a decorator [30].

Julia provides ad-hoc and universal polymorphism, 
including subtype polymorphism [31], within a consistent 

multiple-dispatch paradigm. Extending the dynamic dispatch 
of C++ to all arguments of a functions makes it extremely 
powerful, especially in terms of code re-usability. The Julia 
multiple dispatch exploits JIT compilation and the classi-
fication into static and dynamic dispatches is less relevant 
here: a specialized function is compiled only before its use, 
although the behavior is always consistent with dynamic dis-
patch; inlining and other compile-time optimizations can be 
performed despite the dynamic behavior. Nevetheless, this 
optimisation is subject to the ability of the compiler to infer 
the type of the passed arguments and requires some attention 
from the developer. In particular, when code performance 
is important, the developer must make sure that the return 
type of a function can be inferred from the types of the its 
arguments. Julia ad-hoc and universal polymorphism uses a 
simple syntax similar to function overloading, but with argu-
ment types specified only when required, either to extend a 
function or to enforce the types of arguments.

The implementation of a two-argument function to be 
called by default, in absence of a more specialized imple-
mentation fitting better with the types of the passed argu-
ments, will be defined as . Its spe-
cialization for a first argument of type A or of a subtype of 
A will be defined by suffixing the first argument  with  . It 
can be further specialized for a first argument of type A or a 
subtype of A and second argument of type B or of a subtype 
B, by annotating both arguments respectively with   and 

, which will read as, .
Universal polymorphism for type definition is supported 

by parametric types. In the following example the type 
Point has two fields of the same type, that must be a sub-
type of the Number type.

Contrary to C++, in Julia, subtyping does not involve 
field inheritance. Data aggregation must be done using com-
position, enforcing the “second principle of object-oriented 
design”. Subtypes are used to define a type hierarchy for the 
subtype polymorphism. The hierarchy tree is defined with 
abstract types that do not contain data, only the leaves of the 
tree can be a concrete type.

Because variable assignment and function argument pass-
ing do not trigger an object copy, Julia is not affected by 
the difficulty encountered in C++ mentioned before. This 
is demonstrated with the “King of Savannah” example dis-
cussed in the Appendix A.
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HEP Computing Requirements

Because the program codes used in HEP research are very 
large, with high interdependence, a code typically uses 
many open source libraries developed by other authors; 
thus the effort to change programming language is conse-
quential. The adoption of a new language can happen only 
if it brings a substantial advantage over the already used 
paradigm.

The key advantage of Julia that can make the language 
switch worthwhile is the simplification that will arise from 
using a single language in place of a combination of two, 
C++ and Python.

HEP computing is wide and includes many use cases: 
automation for the controls of the experiment, data acquisi-
tion, phenomenology and physics event generation, simula-
tion of the physical experiment, reconstruction of physics 
events4 from recorded data, analysis of the reconstructed 
events, and more.

We will review in this section the properties required for 
event analysis, event reconstruction, event simulation and 
event generation. We will start with general features, com-
mon to all the use cases.

General Features

An Easy Language

The easy language is one-side of the high-level and high-
performance coin property that would motivate the adop-
tion of Julia as a programming language. It is easy at 
least in two ways: easy, imperative syntax, and free of 
strong typing when writing code. The surface syntax of 
Julia largely resembles Python, MATLAB (control flow, 
literal array), while also getting inspiration, such as the 
do-block, from Lua and Ruby. It has all the high-levelness 
one would expect from a language: higher-order functions 
(functions can be returned and passed as variables), native 
N-dimensional arrays, nested irregular arrays (arrays of 
different-size arrays), and a syntax for broadcasting over 
arrays.

As a syntax comparison example, a for-loop will look like 
the following in Python, Julia, and C++.

We will note in this example that Julia is free of type 
declaration, just like Python. In this example, we use the 
C++   type declaration feature to achieve the same goal. 
It is worthy of mention that, as in C++, Julia code interpre-
tation is not sensitive to changes in indentation: appending 
two spaces at the beginning of the last line, will change the 
behavior of the Python code only.

Julia supports list comprehension, like Python, as illus-
trated in this example that creates a vector with the series 
1, 1∕2,… , 1∕10:

NumPy [32] function vectorization is provided natively in 
Julia for all functions and operators, including those defined 
by the user, through the broadcast operator: a dot prefix is 
used to specify that the function must be applied to each 
element of a vector or of an array. The syntax is illustrated 
below.

4 In HEP experiments, we observe collisions of subatomic parti-
cles or atoms. The result of a collision that produces new particles is 
called an event. Detectors, that can be complex apparatus as large as 
46m × 25m producing tens of millions of MBytes of data per sec-
ond, are used to capture the event.
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The following example illustrates the native support of 
linear algebra and multi-dimensional arrays and highlight 
the concise syntax it provides. It solves the simple equation,

Because broadcasting has its own syntax, Julia is able to 
use mathematical operators “correctly” when they are not 
broadcast, instead of relying special names e.g., matrix mul-
tiplication (np.matmul) and exponentiation (np.ling.
expm).

Two additional language design choices are worth 
noting for their contribution to make the language easy 
to use without sacrificing performance. The first is the 
evaluation of the function default parameter values, done 
at each call, instead of once for all in Python. Thanks to 
this choice, a function   that appends the ele-
ment x to vector v and returns the latter will always return 
a one-element when called as f(x) in Julia, while it will 
return a vector growing in size at each new call in Python. 
The second is the copy performed by the updating opera-
tors (+=, *=,..) instead of the in-place operation done by  
Python. In the Julia code,  ,  
the operator +=  will not modify the content of the 
vector A , it is syntactically strictly equivalent to 
B = B + [1, 1]), while it will in the Python code  

. 
We judge these two Julia behaviors more natural and more 
likely to match to what a non-expert would expect when 
writing or reading the code.

As we illustrated with few examples, the Julia language 
is as easy as Python and sometimes easier thanks to a native 
support of features provided by external packages in Python 
that allows for a more concise and natural syntax.

Performance

The other major advantage to Julia is high performance. 
Julia provides performance similar to C++, and in some 
cases even surpassing C++, as can be seen in Fig 3. The 
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shown comparison is obtained by repeating the micro-
benchmark5 for Julia version 1.9.0rc1 and Python 3.9.2. C 
and Julia implementations use OpenBLAS for the matrix 
operations, while Python uses NumPy (version 1.24.2) 
and OpenBLAS. This benchmark compares the run time 
of some short algorithms implemented in a similar way 
in the different languages. The results are divided by the 
time the C/C++ implementation takes. The GNU compiler 
gcc version 10.2.1 has been used. The test is performed 
on a laptop equipped with a 11th Gen Intel(R) Core(TM) 
i5-1135G7@2.40GHz CPU and 16 GB of random access 
memory (RAM) running the Linux operating system com-
pile for x86 64-bit architecture. The 64-bit flavor OpenB-
LAS library version 0.3.21 is used. This setup is used for all 
performance tests described in this paper, if not specified 
otherwise. The score goes from 0.73 to 1.67 (smaller is bet-
ter) for Julia and 1.12 to 107 for Python. C is doing the best 
with respect to the two other languages for the recursive 
Fibonacci algorithm, implemented in Julia as below.

This benchmark tests the performance for recursive calls. 
While expert developers typically avoid it for performance 
reasons, a recursive expression is the easiest and most natu-
ral way to implement a recursive algorithm. The mathemati-
cal series u

n+1 = f (u
n
) maps directly to a recursive comput-

ing function call. We compute the 20th Fibonacci series 
elements, which results in 21,891 nested calls, a good exam-
ple of recursive calls. The C/C++ implementation is doing 
better because of a tail recursion optimization performed 

Fig. 3  Comparison of C/C++, Python and Julia language perfor-
mance for a set of short algorithms. OpenBLAS, together with 
NumPy in the Python case are used for matrix operation. The score is 
defined as the time to run the algorithm divided by the time to run the 
C version of the same algorithm

5 https:// julia lang. org/ bench marks/.

https://julialang.org/benchmarks/
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by the compiler, that removes one of the two nested calls, 
disabling this optimization leads to performance a little 
worse than with Julia. The gain from this optimization is far 
from the one obtained by using a for-loop implementation 
instead of the recursion. Such implementation runs ≈1000 
times faster. The tail recursion optimization does not work 
for the recursive quicksort, leading to similar performance 
from C/C++ and Julia (7% difference in favor of C/C++).

We can use LHC open data to test performance on HEP-
oriented code. We make this test with a di-muon analysis on 
CMS data of LHC Run-1, from 2011 and 2012. The analysis 
consists of measuring the spectrum of the mass of the system 
made of a muon and an antimuon, produced in proton-proton 
collisions at the center-of-mass energy 

√

s = 7 TeV. It uses 
data in which the muons and antimuons are already recon-
structed and identified. It does not correct for instrumental 
efficiencies, contrary to the published physics results.

Different implementations have been compared: the for-
loop based Julia implementation from Ref. [33], the equiva-
lent for-loop based implementations in Python and C++, 
the ROOT data frame (RDataFrame) implementation from 
Ref. [34], its equivalent in C++ in two flavors, and a data 
frame based implementation done in Julia using the Data-
Frames.jl package [35]. In the data frame implementa-
tion, the table rows are first filtered to obtain a data frame 
with the di-muon events of interest, then a column with the 
dimuon mass is added to the data frame, and finally a histo-
gram is filled. RDataFrames use lazy operations, and only 
the histogram is materialized, limiting the memory footprint. 
In the first flavor of the C++ implementation, the formula 
to compute the mass is provided as a character string and 
the code for this computation is compiled JIT. In the second 
flavor a user-defined C++ function is provided to compute 
this mass.

The input data are read from a file stored in the ROOT 
format with compression turned off. The UnROOT.jl 
package [36] (version 0.9.2) is used to read the file with 
the Julia code. This package is written in pure Julia. The 
native ROOT library (version 6.26/10) serves to read the 
files from C++ and Python. The GNU gcc compiler (ver-
sion Debian-10.2.1-6) is used with a level-three optimization 
(option -O3). When JIT compilation is involved (the cases 
of Julia and JIT RDataFrame) the event analysis function 
is first run on a ten-event data file to trigger compilations 
before performing the timing on 1 billion events. For the 
Julia implementations, subsequent compilations occur dur-
ing the timing loop; they represent only 1.1% of the time. In 
the case of JIT RDataframe an overhead (time independent 
of number of processed events) of 5.0 ± 0.2 ms ( C + + ver-
sion) or 11.2 ± 2 ms (Python version) is present in spite of the 
warm-up. The overhead is subtracted from the measurement. 
The obtained numbers are provided in Table 1. We observe 
that slight changes of source code can change the runtime of 

the C++ for-loop and native RDataFrame implementations 
beyond the statistical uncertainties. This effect is estimated 
by varying the code outside if the timed loop (addition of 
a print-out statement, change of code statement order) and 
included in the quoted uncertainties. For the other imple-
mentations, no significant change is observed and the quoted 
uncertainty include the statistical component only (at 68% 
confidence level).

In this example, the for-loop Julia implementation runs 
the fastest, the C++ for-loop implementation is slightly 
behind (11% slower). The Julia implementation using data 
frames takes 21% less time to run than with C++ RData-
Frame. The Python for-loop implementation is 1000 times 
slower than with Julia. Delegating the loop to an underlying 
compiled library (in our case the ROOT library) is not suf-
ficient to achieve good performance with Python: the RData-
Frame python implementation is 2.2 (resp. 2.8) times slower 
than the Julia data frame (resp. for-loop) implementation. 
The C++ RDataFrame implementations are slower than the 
Julia and C++ for-loop implementations by a factor from 
1.4 to 2.1 depending on the implementations we compare. 
The dimuon spectrum obtained with the Julia code is shown 
in Fig. 4.

The data frame benchmark includes the insertion of a 
column in the data frame with the dimuon mass. In the Julia 
case, the insertion is not needed for the analysis itself, but 
keeping it is interesting for benchmark purpose. The data 
frame returned by UnROOT does not allow direct insertion 
and the selected rows are copied to a DataFrames.jl data 
frame supporting such an insertion. That leaves room for 
improvements; we estimate that improved tools that would 
allow such insertion with no copy would reduce the runtime 
by 16%.

For Python, the pure python library Uproot [37] can be 
used instead of the native ROOT library to read the data. This 
library loads all the data of a file into the memory, similar to 
the Julia data frame implementation. The data can be pro-
vided as a set of Awkward Arrays [38], NumPy arrays, or as 
a Pandas data frame [39]. All these data structures support 

Table 1  Comparison of the runtime of the di-muon spectrum analysis 
for implementations performed in different programming languages. 
The time corresponds to a run over 1 million events

Implementation Time to process 106 events

Julia for-loop 0.147 ± 0.0014 s
Julia Dataframe 0.1839 ± 0.0019 s
Python for-loop 153.7 ± 5.7 s
Python RDataFrame 0.4083 ± 0.0083 s
C++ for-loop 0.1627 ± 0.0019 s
C++ RDataFrame 0.2338 ± 0.00031 s
C++ RDataFrame JIT 0.3051 ± 0.0023 s
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vectorized operations permitting a delegation of the event 
loop to underlying compiled libraries improving the running 
time. The results are shown in Table 2. The measurement 
is done with Uproot version 4.3.4 (with awkward pack-
age version 1.10.3). The implementation using Awkward 
Arrays operating on a vector of all events runs faster than the 
Python RDataFrame implementation and is only 1.6 times 
slower than with the Julia for-loop. We note that the Python’s 
performance is highly dependent on the algorithm imple-
mentation: the time ratio with respect to the Julia for-loop 
goes up to 63 for a vectorized implementation using Pandas 
data frames and to 1200 with the event loop.

Running on a 61.5 million event file shows that the for-
loop and RDataFrame implementations scale well with 
larger input files with no penalty on the event throughput as 
we could have expected. The other implementations would 
require modifications in the code in order to process events 
in chunks and reduce the memory usage. The awkward array 
implementation requires 14.5 GiB, at the limit of 15 GiB 
available on the machine used for the measurement, while 
the Pandas and Julia data frame versions exceed this limit.

We see in this example that Julia is performing similar or 
better than C++ frameworks. For an event loop, Python is 
slower by three-orders-of-magnitude than Julia. Vectoriza-
tion of event processing serves as a mitigation of Python’s 

slowness by delegating the event loop to underlying com-
piled libraries and sacrifice flexibility, without achieving the 
performance of C++ and Julia6.

Interoperability with Legacy Code

HEP computing is based on a heritage of program code 
written over decades. Interfacing to libraries developed in 
C++ and Fortran is unavoidable, apart from the last-step of 
analysis domain (and even here it would still be an attractive 
feature). Julia can natively call C and Fortran functions with 
no overhead compared to calling them from their native lan-
guage. Examples of such calls are given in Listings 1 and 2. 
For convenience, a wrapper function written in Julia can be 
used to handle errors, as in the example in Listing 3.

Bindings to Python are supported thanks to the PyCall 
package. The interface is very convenient and transparent in 
both directions, Python from Julia and Julia from Python, as 
we can see in the examples provided in Listings 4 and 5. In a 
Jupyter notebook, in addition to calling a Julia function from 
a notebook running a Python kernel using these interfaces 
and vice-versa, it is possible to write Julia code in cells of 
a notebook using a Python Kernel, and mix cells written in 
Julia and in Python languages, as illustrated in Fig. 5.

Table 2  Runtime of the dimuon spectrum analysis for three Python 
implementations using the Uproot library to read the data

Implementation Time to process 106 events

Vectorized with Awkward Arrays 0.2343 ± 0.0027 s

Vectorized with Panda dataframes 9.225 ± 0.081 s

For loop 177.2 ± 1.8 s

Fig. 4  Dimuon spectrum obtained from the CMS open data of Run 
2012 with the Julia implementation of the analysis

Fig. 5  Example of a Jupyter notebook mixing cells with Julia and 
Python code

6 Recently, it became possible to use Numba + Awkward Array to 
enable fast loops, sacrificing some Python features due to the more 
strict compiling model
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The CxxWrap  package [41] can be used to add 
Julia bindings to C++ libraries. Once bound, the 
library is accessed transparently from Julia as if it was 
a native Julia package. The   
and   C++ like method calls 
translate into the Julia-like call .  
The package philosophy is similar to Boost.Python 
[42] and Pybind11 [43]: the bindings are produced with 
few lines of C++ code, one line per class and one line per 
method, which must be compiled as a shared library. The 
package provides all the flexibility to expose a different 
Julia interface to the C++ one, for instance to adapt it to the 
Julia context and style of programming. CxxWrap inter-
nally uses the built-in Julia-C interface, used for the inter-
face between shared libraries and Julia. The C++ standard 
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template library   and  are mapped to 
Julia   with zero copy.

The WrapIt project [44] has demonstrated that binding 
code can be generated automatically from a library’s header 
files, which would make the process of adding Julia bind-
ings to C++ libraries very easy. Automation of this Julia 
binding has been tested on the ROOT libraries, and we have 
been able to produce, draw, and fit histograms and graphs 
(  class). The fit has been tested with both functions 
defined in ROOT and functions defined in Julia, demonstrat-
ing a perfect integration.

Unlike direct calls into C or Fortran libraries via the  
function, calls between C++ and Julia have to go through 
the intermediate layer created by the wrapper code. We per-
form several measurements to estimate the overhead from 
the C++-Julia interface. The measurement is performed on 
a call to the ROOT  method, that adds a value to 
a histogram: we time a loop of 1 million calls and average 
the result to get the time per call. First, we create a shared 
library, that exports C functions, we call from Julia with the 

 method. The pointer to the histogram object is passed 
to the C function as a  type. When compared with a 
direct call to the  method within the same C++ code, 
the call from Julia shows an overhead of 0.23 ns. This over-
head is unexpectedly smaller than when calling the wrapper 
function of the shared library from a program written in C: 
observed overhead of 0.74 ns in this case. In the end, the call 
from Julia takes only 4% more time than a direct call from 
C++. It is 38 times faster than a call from Python. Meas-
urement is also done for a binding based on CxxWrap. All 
results are shown in Table 3.

We could imagine the Julia engine performing just-in-
time compilation of C++ using the LLVM infrastructure it 
uses for the Julia code. The Cxx package [45] is providing 

this feature for Julia releases from 1.1.x to 1.3.x. With 
this package we can access to a C++ library without the 
need of a C++ wrapper. Nevertheless, a Julia wrapper 
is needed to provide the same transparency—calls to the 
C++ functions similar as calls to a Julia functions. Using 
this package the call to the   function in our example 
is found to be as fast as when using the C interface, as 
shown in Table 3. We used Julia version 1.3.1 to perform 
this measurement. The Cxx approach is a good alternative 
to CxxWrap.

In Ref. [15], CxxWrap was used to interface to the 
LCIO C++ library [46] to read ILC [47] simulated events 
and to Fastjet [48, 49] to cluster hadronic jets. The loss 
of event throughput compared to a code uniformly written 
in C++ was 37%.

Support of Standard HEP Data Formats

Different file formats are used to store HEP data and sup-
porting them is crucial to a streamlined physics analysis 
experience.

The file formats currently used to store physics events 
are mainly HepMC, LHE [50], LCIO, and ROOT. The 
pachages LHE.jl [51] and LCIO.jl [52] provide sup-
ports for LHE and LCIO. Two packages are available to 
read ROOT files: UpROOT.jl [53] and UnROOT.jl [36].

The UpROOT.jl package uses the Uproot pure-
Python library to provide read and write support. When 
using this package, a loop on events typically suffers of the 
same performance penalty as with Python. This has moti-
vated the development of UnROOT.jl, a package written 
in pure Julia that provides a fast processing of events, as 
demonstrated in the performance measurements done in 
the previous section, which used this package. It leaves 
the flexibility to use an explicit event loop, with a small 
memory footprint, or works on vector of event quantities 
(“columnar analysis”). An event loop will look like the fol-
lowing code snippet, where  is a vector (transverse 
momenta of the muons contained in the event).

Table 3  Mean time to call the  method of a ROOT histogram 
from C++, Julia and Python

The time corresponding to a single call is averaged on 106
 calls. Three cases are considered for Julia: use of the 

plain Julia C interface (“C API”), use of CxxWrap, and use of Cxx. 
For reference the time to call the same function from C/C++, within 
the same code (“C++ ”) and through the shared library developed the 
Julia C interface, is also measured

Mean time [ns]

C++ 5.74 ± 0.01
C API from C 6.48 ± 0.04
C API from Julia 5.97 ± 0.03
Julia - CxxWrap 8.21 ± 0.04
Julia - Cxx 5.97 ± (< 0.01)

Python 226 ± 5
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UnROOT.jl uses thread-local storage to maximize 
performance and maintain thread-safety. An event loop can 
be parallelized in several threads with little effort using the 
standard Julia  macro:

The performance measurement presented in the "Perfor-
mance" section are done in single-thread mode. There are 
limitations. First, this package does not support data write. 
Both UpRoot.jl and UnROOT.jl can access only to 
objects of a limited set of types, either stored as such in the 
file or in a  . The supported types covers already a large 
set of use cases, but not schemes where data is stored as 
object of serialized C++ classes. Using the genuine ROOT 
library via a Julia binding based on CxxWrap can be an 
alternative approach when required. We have successfully 
read and write histograms (  objects) and graphs (  
objects) using this approach.

We expect the implementation of the support of   
to be easier than  that it is expected to replace, thanks 
to its design. Data are stored in column of fundamental types 
(float, int,...) [54], similar to Apache Arrow [55], which 
should ease support from programming languages other than 
C++ like Julia.

In the neutrino physics community, the industry-standard 
HDF5 and Parquet have been used at scale, and these files 
can be readily read and write from Julia via their respective 
packages.

Parallel Computing

Apart from having memory shared multi-threading, Julia 
also ships with out-of-core distributed computing capabil-
ity as a standard library (Distributed). In fact, it is as 
easy to command an array of heterogeneous nodes in real-
time via packages such as ClusterManagers.jl [56], 
which can mimic Dask’s experience [57] with a fraction 
of the code. For more advanced features, such as building 
out-of-core computation graphs, Dagger.jl [58] provides 
facilities.

While these libaries allow distribution of execution 
within the Julia code, parallelization can be also done, as 
with C++ and Python, by running parallel jobs of the 
same executable using commands of a batch processing 
system, like HTCondor [59, 60], typically used in computer 
cluster facilities.

Platform Supports and License

Julia is supported on all major platforms, a list of which can 
be found on the Julia website7. Three different support tiers 
are provided. The platforms with full-fledged support (clas-
sified as tier 1) are, as of Oct, 2022:

• macOS x86-64
• Windows x86-64 and CUDA
• Linux x86-64 and CUDA
• Linux i686

Worth noting that many platforms well on their way into tier 
1, such as macOS with ARMv8 (M-series chips).

Julia is distributed under the MIT license along with vast 
majority of the ecosystem, which guarantees free use, modi-
fication, and re-distribution for any use case.

Reproducibility

Julia includes a package manager and a general registry 
used by the whole community in an organized manner. In 
particular, each package contains a Project.toml file, 
that records the dependency and compatibility with other 
packages in an uniform way.

Furthermore, any binary dependencies are also captured 
by the package system: they are distributed as “Artifact”—
packages with names ending _jll—but still behave as 
normal packages when it comes to dependency and com-
patibility resolution. This eliminates a few problems, includ-
ing running out of pip space just because you depend on 
a large library (e.g., CUDA). More details are giving in the 
"Packaging" section.

On the end-user side, one can easily capture the an envi-
ronment by working with the Manifest.toml file. While 
Project.toml records compatibility and dependencies, Julia 
would try to use the latest compatible packages when instantiat-
ing the environment. Manifest.toml, on the other hand, 
captures the exact versions of every package used (recursively) 
such that exact reproducibility can be guaranteed.

Numerical Optimization

The statistical inference procedures relevant to HEP use 
numerical optimization heavily, from Maximal Likelihood 
Estimation (MLE) to scans over Parameters of Interest (POI) 
and obtaining the test statistics. Traditionally this is done 
by minuit2 [61, 62] in ROOT, which uses the finite dif-
ference method to provide gradient information for some of 
its optimization.

7 https:// julia lang. org/ downl oads/# suppo rted_ platf orms.

https://julialang.org/downloads/#supported_platforms
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Julia has a solid ecosystem in numerical optimization 
(NLopt.jl [63], Optim.jl [64], and meta algorithm 
package such as Optimization.jl [65] that brings 
local and global optimization together). Julia’s performance 
has lead to most libraries being written in pure Julia, which 
means that optimization tasks can often use better algo-
rithms such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
[66–69] that rely on gradient provided by automatic differ-
entiation. Support for automatic differentiation is further 
described in the “Automatic differentiation” section.

Construction of a complex probability distribution func-
tion is a common problem in HEP. Description of continu-
ous spectra often requires a multicomponent probability 
density function (PDF) e.g., a sum of a signal component 
and a background component. In addition, the convolution 
with the model PDF with the experimental resolution is an 
essential for the HEP applications. The RooFit framework 
is the standard tool for building complex high-dimensional 
parametric functions out of lower dimensional building 
blocks. As great convenience, the framework provides a 
homogeneous treatment of the PDF variables and param-
eters that can be fixed, restricted to a range, or constrained 
by a penalty to the likelihood functions. The framework 
is written in C++ and available in Python. A pure-python 
package zfit [70, 71] give an alternative solution to Python 
users that can better integrate with the scientific Python 
ecosystem.

Julia ecosystem offers a large variety of standard density 
functions in the Distributions.jl package [72, 73]. 
The package largely exploits the properties of the standard 
density functions, such as moments and quantiles, which are 
computed using analytic expressions for the unbound PDFs. 
Moreover, flexible construction functionality is greatly miss-
ing. The mixture models of the Distributions.jl are 
the holder for the multicomponent PDF, however, they can-
not be used for fitting of the component fractions, the prior 
probabilities. Extension of the convolution functionality 
beyond a small set of low-level functions is required. The 
management of the distribution parameters is a key missing 
functionality in Julia modelling ecosystem.

Specific Needs for Analysis of Reconstructed Events

Tools to Produce Histograms and Publication‑Quality Plot

The statistics community in Julia has support for N-dimen-
sional histograms with arbitrary binning in StatsBase.
jl [74], an extension to this basic histogram is implemented 
in FHist.jl [75], which added support for bin error and 

under/overflow and for filling the histograms in an event 
loop, as typically done in HEP analyses.

Many libraries of high quality are available for plotting 
from Julia. In the interests of standardization, the Plots.
jl [76] package provides a front-end interface to many 
plotting packages, allowing easy switching from one to 
another. It supports the concept of recipes used by pack-
ages processing data to specify how to visualize them, 
without depending on the Plots package: the dependency 
is limited to the RecipeBase.jl [77] package which 
has less than 350 lines of code. The package supports, 
currently, 7 backends. It supports themes, which are sets 
of default attributes and provide a similar feature to the 
ROOT  class. The back end selected by default in 
Plots is GR [78], a rich visualization package providing 
both 2D and 3D plotting and supporting LaTeX for text. 
The GR package, or its GRUtils.jl [79] extension, can 
be used directly when a shorter warm-up time is needed 
before obtaining the first plot of a running session (see the 
“Just-in-time compilation latency” section for a discussion 
on the warm-up time).

We should also mention the Makie.jl ecosystem 
[80], a rich plotting package targeting publication-quality 
plots, which is increasingly popular. This package supports 
the recipe and theme features, but is not itself supported by 
Plots.jl. For instance, the FHist.jl HEP-oriented 
histograming package mentioned before provides a recipe 
to plot the histograms. Makie.jl suffers from a longer 
time to obtain the first plot, even larger than with the 
Plots.jl package with its default backend OpenGL.

Use of LaTeX to generate high-quality plots has been 
popularized in HEP community with the plotting system 
of the Rivet Monte-Carlo event generator validation toolkit 
[81]. The PFGPlots [82] and PFGPlotsX [83] packages 
offer LaTeX-based plotting. They are both supported by 
the Plots.jl package. The Gaston.jl [84] package 
provides plotting using the popular Gnuplot.jl utility 
[85].

People used to the Python  set of func-
tions [86] can use the PyPlot.jl package that provides 
a Julia API to this package. Those who prefer plotly 
to matplot, can use the PlotlyJS.jl, a Julia inter-
face to plotly. The high-level grammar of interactive 
graphics Vega-Lite [87] is also supported, thanks to 
the VegaLite.jl [88] package that supports exports 
to bitmap and vector image files, including the PDF for-
mat, which is convenient to include in papers written with 
LaTeX. Plotting can also be done on a text terminal, using 
the UnicodePlots.jl [89] package, supported by the 
Plot front end.
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The visualization tool ecosystem for Julia is rich, with 
the added benefit of staying in the same environment as the 
analysis and enabling an interactive workflow.

Notebook Support

A computational notebook is an interface for literate pro-
gramming that allows embedding calculations within text. 
Notebooks have been made popular by Mathematica [90], 
which has supported notebooks starting from its first ver-
sion, 1.0, released in 1988. In HEP, notebooks are widely 
used by theoreticians for symbolic calculation e.g., with 
Mathematica, and by experimentalists, for data analysis, and 
plotting using Python or C++ as programming language.

The notebook system used with Python, Jupyter, fully 
supports Julia. The “ju” of Jupyter stands for Julia, while 
“py” stands for Python and “er” for the R language. The 
ROOT analysis framework brings C++ support to Jupyter.

The notebook support for Julia is richer than for Python 
and C++. In addition to Jupyter, Pluto.jl [91] provides 
a new-generation notebook system for Julia. This system 
keeps track of the dependency of all calculations spread 
in the document and updates automatically any dependent 
results when a one of them is edited. Beyond being conveni-
ent, this automatic update provides reproducibility.
Pluto.jl is also a very easy solution for interactive 

notebooks, where buttons, drop-down menus and slides can 
be included. This is useful for students. It can also be used 
to build a tool for experiments running shifters to analyze 
the data quality in quasi-realtime.

With Pluto.jl, notebooks are normal executable Julia 
files. Notebook functionality is offered through special com-
ments. This helps with version control.

Specific Needs for Physics Event Reconstruction, 
Simulation and Data Acquisition Trigger Software

Physics event reconstruction, simulation and trigger soft-
ware are typically large codes developed by the experiment 
and project collaborations. The software stack of the LHC 
experiments is particularly large and complicated, due to 
the complexity of their detectors. The software is developed 
collaboratively by many developers, with different levels of 
software skills. Tools for both collaborative development 
and quality assurance are essential for all experiment soft-
ware. Software distribution and release management are also 
important. The complexity of the C++ language, used in 
most of these frameworks, can limit the integration of con-
tributions developed by students. This is more and more true 
given the growing use of high-level language (e.g., Python) 
as the teaching language for computing in universities, espe-
cially among natural science departments.

The Julia language and its ecosystem have been built 
using an open-source and community approach. Tools have 
been put in place and are widely adopted for efficient col-
laborative development. Julia comes with a standard and 
convenient package management system providing repro-
ducibility, see the “Packaging” section Julia has built-in unit 
testing, coverage measurement, and officially maintained 
continuous integration recipes and documentation generator. 
These are used in almost all of the Julia packages registered 
publicly, thanks to the streamlined experience and low bar-
rier to entry.

The simulation software of the experiments depends on 
external libraries to simulate the underlying physics, such 
as Monte Carlo event generators, and on some others, like 
Geant4 [92], to simulate the transport of the produced par-
ticles and their interaction with the detector. Interoperability 
with libraries written in C, C++, or Fortran, as discussed in 
the “Interoperability with legacy code” section, it is essential 
not to have to re-write all the external libraries in Julia.

Simulation and reconstruction is compute intensive and 
therefore good performance is essential: performance has a 
direct impact on the computing infrastructure cost. We have 
seen in the previous section that Julia meets the C/C++ per-
formance and sometimes surpasses it. Code parallelization 
and efficient use of single instruction multiple data (SIMD) 
vectorization features of CPUs is essential at the LHC and 
for HL-LHC to efficiently use current hardware resources, 
with a high density of computing cores, including accel-
erators (e.g., GPU) that can count tens of thousands core 
[6]. The Julia language provides a very good support for 
multi-threading: a loop can be parallelized by a single macro 
( ), an operation can be made atomic by prefixing it 
with  , a more general lock mechanism is provided, 
asynchronous tasks, with distribution of tasks to different 
threads, is natively supported. Julia supports distributed 
computing, using its own communication mechanism but 
also using MPI [93, 94]. It is possible to use Julia’s compiler 
to vectorize loops by using the   macro or the more 
advanced   from the LoopVectorization.jl 
package [95].

Due to its effective metaprogramming capabilities, Julia 
has great support for running code on heterogeneous archi-
tectures, Julia code can be compiled for Nvidia (CUDA), 
AMD (ROC) and Intel (oneAPI) GPUs via compiler written 
in Julia8, without dependency on, for example, C++ CUDA 
or HIP library. Packages like GPUArrays.jl and Ker-
nelAbstractions.jl allow the use of exactly the same 
core algorithm written in Julia to be executed across differ-
ent vendor platforms with minimal boilerplate code, which 
is a currently a unique feature among languages.

8 https:// github. com/ Julia GPU/ GPUCo mpiler. jl.

https://github.com/JuliaGPU/GPUCompiler.jl
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On the more user-facing front, libraries such as Tul-
lio.jl [96] combine metaprogramming and kernel pro-
gramming ability to allow users to express tensor operation 
with Einstein notations regardless of whether the array lives 
on RAM or GPU VRAM. This is very relevant for data pres-
ervation and for unifying effort to write algorithms once and 
run them everywhere.

The ability to run native Julia code on both CPUs and 
GPUs, combined with the support for automatic differentiation 
in Julia, makes Julia an excellent platform for machine learning 
(ML) research. This is especially true for advanced scientific 
machine learning that goes beyond combining conventional 
matrix-crunching ML-primitives/layers and uses physical/
semantic models or mixes them with generic ML constructs.

Specific Needs for Event Generation 
and for Phenomenology

Symbolic Calculations in Julia

Julia is a fast, solid and reliable programming language with 
a well developed Computer Algebra System (CAS) such as 
Symbolics.jl [97], a language for symbolic calculations 
such as Symata.jl [98], and an interface to Mathemat-
ica such as MathLink.jl [99], that could be widely 
used in HEP, considering the advantages Julia has.
Symbolics.jl [100] is a CAS written in pure Julia, 

which is developed by the SciML community [101] who 
also maintain the state-of-the-art differential equations 
ecosystem [102]. The package has scalable performance 
and integrates with the rest of Julia ecosystem thanks to its 
non-OOP design and multiple dispatch [97]. Some of the 
main features of Symbolics.jl include pattern match-
ing, simplification, substitution, logical and boolean expres-
sions, symbolic equation solving, support for non-standard 
algebras with non-commutative symbols, automatic conver-
sion of Julia code to symbolic code and generation of high 
performance and parallel functions from symbolic expres-
sions [103], which make it even more interesting for possible 
applications in HEP. At the heart of Symbolics.jl, we 
find ModelingToolkit.jl, a symbolic equation-based 
modeling system [104], and SymbolicUtils.jl, a rule-
based rewrite system [105].
Symata.jl [98] is a language for symbolic computa-

tions in which some features, such as evaluation, pattern 
matching and flow control, are written in Julia, and symbolic 
calculations are developed by wrapping Sympy, a python 
library for symbolic mathematics.
MathLink.jl [99] is a Julia language interface for the 

Wolfram Symbolic Transfer Protocol (WSTP) (this requires 
the installation of Mathematica or the free Wolfram Engine 

to run properly). The interface is a W"" string macro used 
to define Mathematica symbols. MathLinkExtras.jl 
[106] adds extra functionalities such as W2Mstr, which 
allows the conversion of Julia MathLink expressions into 
Mathematica expressions, and  which converts 
Julia MathLink.jl expressions into LaTeX format. And, 
finally, one can evaluate the expression in Mathematica 
using  .

Event Generators

To be prepared for future needs for event generation [107], 
it is conceivable to rewrite parts of the existing event gen-
erators in Julia and making use of modern parallelisation 
technologies. One of the most demanding tasks in event 
generation is the evaluation of matrix elements and cross 
sections, where Julia provides several useful tools.

The package Dagger.jl is a framework for out-of-core 
and parallel computing written in pure Julia. It is similar 
to the python library Dask and provides a scheduler for 
parallelized execution of computing tasks represented as a 
directed acyclic graphs (DAGs). Such DAGs could be used 
to represent the evaluation of matrix elements in terms of 
elementary building blocks, similar to HELAS-like functions 
in Madgraph4GPU (see e.g., [108]). Furthermore, Dag-
ger.jl supports the selection of different processors as 
well, making it possible to be use for distributed computing 
on GPU as well (see e.g., DaggerGPU.jl [109]).

Table 4  Summary of features needed for HEP applications and their 
availability in the Julia ecosystem

Requirement Fulfilled by Julia

Easy to learn for HEP physicists ✓

Performance ✓

Interoperability with legacy code ✓

Support for HEP standard formats Partial
Support for architectures and open license ✓

Cross-platform reproducibility ✓

Tools to perform optimization/minimization ✓

Histogramming ✓

Plotting with publication quality ✓

Notebook support ✓

Tooling for large project (unit tests, continuous 
integration, software distribution)

✓

SIMD and multi-threading ✓

Distributed parallel computing ✓

Native GPU support ✓

Machine learning libraries ✓

Computer Algebra System ✓
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Feature Summary

The Table 4 summarizes the programming language and 
ecosystem features we have identified as required for HEP. 
It is surprising how Julia language manages to fulfill almost 
all of these features. We should note that the interoperability 
is less transparent for C++ than with the other languages as 
it requires to write a code wrapper. Many HEP file format are 
already supported, including for ROOT files, without cover-
ing the full versatility offered by this format.

The Bonuses

In addition to solving the two-language problem and the 
mandatory features listed in the previous section, the Julia 
ecosystem will provide other advantages over the C++ and 
Python languages currently used.

Packaging

Julia comes with a built-in package manager, Pkg.jl. It 
builds on the experience of package managers in other eco-
systems, and it can be used to install packages and manage 
“environments”, similar to the concept of virtual environ-
ments in Python. A Julia environment is defined by two files:

• Project.toml: this file records version and UUID 
of the current project, it also contains the list of direct 
dependencies of this project, as well as the compatibility 
bounds with these packages and Julia itself. Moreover, 
all Julia packages follow semantic versioning (semVer 
[110]): version numbers are composed of three parts, 
major, minor and patch numbers, and breaking changes 
can only be introduced in versions which change the 
left-most non-zero component (e.g., going from 0.0.2 
to 0.1.0, or from 2.7.3 to 3.0.0 are considered breaking 
changes).

• Manifest.toml: this file is automatically generated 
by the package manager when instantiating an environ-
ment, if not already present, and it captures all packages 
in the environment with their versions, including all indi-
rect dependencies. When used together with Project.
toml, Manifest.toml file describes an exact envi-
ronment that can be recreated on any other platforms, 
which is particularly important for reproducibility of 
applications (e.g., analysis pipelines).

Julia packages are organized in directories (usually also Git 
repositories) in which there is a Project.toml file to 

define its environment. Packages can be installed either via 
path (local path on a machine, or URL to a remote Git repos-
itory), or by name if they are present in a package registry. 
Pkg.jl is able to deal with multiple registries at the same 
time, which can be both public and private, in case there is 
a need to provide packages relevant only to a single group 
or collaboration.

Because there is only one package manager and only 
one way to record package dependency, the Julia package 
registry simply records the dependency and compatibility 
metadata separately from package’s source code. It allows 
a local resolver to correctly resolve compatibility in a short 
amount of time.

Users can interact with the package manager either by 
using its programmatic API (useful for scripting) or an inter-
active REPL mode, which can be entered by typing the clos-
ing square bracket ] in Julia’s REPL. The package manager 
can also be used to run the tests for packages with a sin-
gle command (Pkg.test using the API, or the command 
test in the REPL). Since Pkg.jl is a standard library and 
has many capabilities, all users are familiar with it and do not 
need to resort to third-party, mutually incompatible tools.

Multiple Dispatch and Fast Development

We group multiple dispatch and fast development (i.e., hot 
reloading) into the same section because of their direct 
impact on design of the packages and the quality of life of 
developers.

A side-by-side comparison between OOP and multiple dis-
patch has been shown in the "Polymorphism in C++, Python, 
and Julia" section. Here, we highlight that multiple dispatch is 
also a known solution to the expression problem [111, 112]. 
Essentially, in class-based OOP, one of the following is much 
less natural than the other:

• add new methods to existing data type (class/struct).
• add new data type (class/struct) for existing algorithm 

(method).

In OOP, the second one is easy, think inheritance; but the 
first requires access to source code. In Julia, the first one is 
trivial since methods do not bind to data type (class/struct) 
to begin with. But the second one can also be easily done by 
sub-typing the upstream abstract type.

Making it easy for developers to reuse existing pack-
ages is crucial in HEP also because libraries are sometimes 
under-maintained. If we can cleanly extend and reuse these 
libraries without making private forks, overall efficiency 
would be boosted.
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As a dynamic language, hot reloading should not come as 
a surprise. It is, in fact, crucial for Julia, due to the inevitable 
latency introduced by the JIT compiler. The go-to package 
for this is Revise.jl [113] which automatically detects 
file modifications and re-compiles the relevant functions on 
the fly. It can also reload the source code of any Julia Base 
module, saving a lot of time if (re)compiling Julia.

Automatic Differentiation

The multiple dispatch system and the native speed of Julia 
eliminated the need for many specialized libraries to imple-
ment the same interface (e.g NumPy-interface in JAX [114], 
TensorFlow [115], PyTorch [116]). Instead, package 
maintainers only have to focus on providing rules for the 
built-in functions as they are fast already and downstream 
packages are mostly pure-Julia too, see ChainRules.jl 
[117]. A dedicated organization, JuliaDiff [118] collects all 
the packages and efforts regarding what each autodiff engine 
is good at.

Foundation HEP‑Specific Libraries to be 
Developed or Consolidated

Integration in the ROOT Framework

Because of the ubiquity of ROOT in HEP, a Julia interface 
to this framework, similar to the existing Python one and 
that will allow people familiar to it to find their way easily, 
is essential for the development of Julia in the HEP com-
munity. In addition, this will provide access to a large set 
of software used in HEP (storage support, statistics tools, 
unfolding, etc.) before their counterpart are implemented 
in Julia.

HEP‑Specific Data Storage Format

It will be important to consolidate the support for the ROOT 
data format. The ROOT data format is very versatile and 
allows the storage of instances of arbitrary C++ classes (this 
is true of the current TTree and the new RNTuple format). 
Current Julia packages for ROOT I/O do not cover this whole 
versatility and do not allow for reading and writing files with 
objects of sophisticated types.

Physics Object Types and Histogram

Packages to manipulate Lorentz vectors and to build histo-
grams are already available [75, 119]. Leveraging multiple 
dispatch, these packages are relatively easy to implement, 

and compose well with rest of the Julia ecosystem (e.g., 
collection of 4-vectors can be stored and sorted efficiently 
without any special care). Defining a standard interface to 
Lorentz vectors and histogram data structures, with a similar 
approach as the Table interface [120] could be beneficial.

HEP Specific Statistical Tools

Over years, HEP community has developed its statistical 
standard to assert a level of confidence of the experimental 
results, for measurements, limits and observation of new 
phenomena. The Julia ecosystem contains several high-
quality packages for Bayesian statistics and inference. Two 
examples are BAT.jl (Bayesian Analysis Toolkit in Julia) 
BAT.jl [121] and Turing.jl [122], which already have 
been used in several physics analyses. Both packages are 
being actively developed with good communication of the 
authors across the development teams. Common interfaces 
[123–125] have been established to increase interoperability.

More development is required for the frequentist CLs 
approach used at LHC [126–129] and based on profiled like-
lihood fits. The method is derived from the hybrid method of 
the same name developed at LEP [130, 131] and used later 
at Tevatron [132, 133]. The C++ tools typically used by 
LHC experiments are the RooFit (originally developed for 
the BaBar experiment [134, 135]) and RooStats libraries 
included in the ROOT framework. For multinodal distribu-
tions these libraries are used through the HistFactory 
[136] or HiggsCombine [127, 137, 138] tools. The pyhf 
package [139] provides a pure-Python implementation of 
HistFactory that offers different computational back-
ends to perform the likelihood maximization and is gaining 
popularity. The HistFactory, HiggsCombine, and 
pyhf are standalone tools, for which inputs are provided in 
text files (XML or JSON). Thanks to the transparent Julia-
Python interface, pyhf can also be used in a Julia session 
or code. For a perfect integration and to exploit the language 
performance, a Julia implementation is desirable. An effort 
to implement pyhf in Julia has already started [140] and 
would need to be consolidated.

Histogram unfolding [141] is another statistical tool 
widely used in HEP experiments. It is used to correct from 
the effect of the finite resolution of the particle detectors 
in differential cross section measurement. The TUnfold 
[142] and RooUnfold [143] are the most commonly used 
packages. The RooFitUnfold [144] package provides 
an extension of RooUnfold. New techniques to perform 
unbinned high-dimensional data unfolding has been recently 
developed [145]. Like for CLs, unfolding comes at the last 
step of a HEP data analysis, and a Julia implementation 
would be useful.
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Limits of the Julia Programming Language

Language Popularity

Despite its smaller user base than C++ and Python, we have 
found that it is extremely easy to find information on the 
web, either from Stack Overflow or from dedicated chan-
nels, on Discourse, Slack, and Zulip. The community is very 
collaborative. An annual conference JuliaCon9 is boosting 
this collaboration. In particular, it encourages exchanges 
between different fields, both from Academia and Industry. 
The popularity of Julia is growing and it has been adopted by 
large academic projects, like the Climate Modeling Alliance 
(CliMA); and companies like ASML, the largest supplier of 
photolithography systems; Pharmacology actors like Pfizer, 
Moderna, and AztraZeneca [146–148]; finance actors like 
Aviva, one of the largest insurers, and the Federal Reserve 
Bank of New York [149–151].

Just‑In‑Time Compilation Latency

While applications written in Julia run faster than with an 
interpreted language, the first execution requires additional 
time to perform the just-in-time (JIT) compilation. In order 
to limit this overhead, the intermediate results of the com-
pilation, called precompiled code, is cached on disk. The 
precompilation of a package code is typically performed 
in parallel at installation time, and the cached content 
includes, but is not limited to: lowered code, type inference 
result, etc.; but at the time of writing, Julia does not yet 
cache compiled machine code10. The latency is often called 
"time-to-first-plot".

The JIT compilation latency has been improved from 
version-to-version, in particular with versions 1.5, 1.6, 1.8, 
and 1.9 by reducing the number of required recompilations. 
The various sources of latency have been studied extensively 
[152, 153] and the reduction of the time-to-first-plot is a 
high priority for the compiler team. Besides improvements 
coming from the compiler, following the general guidelines 
of Julia code style for performance [40], which ensure that 
the compiler can easily infer variable types, should reduce 
such latency [152]. At the same time, tools have been devel-
oped to both help “hunt” down unnecessary recompilation 
(SnoopCompile.jl [154]), as well as help precom-
pile known common user routinges at installation time 
(PrecompileTools.jl [155]).

The latency can also be drastically reduced by prepar-
ing a custom system image: the system image contains 
cached machine code for a set of precompiled packages 
and past executions. It comes with the drawback that ver-
sions of the packages shipped in the system image take 
precedence over the ones installed via the package man-
ager [156], which can be confusing and be a source of 
bugs. Updating these packages requires rebuilding the 
custom system image.

The time to produce a first plot, consisting of a 2-D plot 
of 100 points, was measured to be 2.09 ± 0.01 s with Julia 
1.9.0-rc1 and the Plots.jl [76] package. The Makie.
jl package took 7.57 ± 0.02 s using the Cairo backend. 
Time is similar with the GL backend. Subsequent plots take 
less than a millisecond. Building a custom system image 
brings down the latency to below 50 ms for both packages. 
While for Plots.jl, the latency using the standard sys-
tem image is acceptable, building a custom system image 
would make use of Makie.jl for an interactive session or 
for a short batch script much more convenient. To measure 
the improvement brought by the efforts of Julia develop-
ers, the measurement is repeated with the older long-term-
support release 1.6.7. With this older release the result is 
29.0 ± 0.1 s for Makie.jl, showing an improvement larger 
than a factor of 4.

The start-up time could be a concern for large HEP 
experiment simulation and reconstruction software. As an 
example of software size, the CMS experiment software, 
CMSSW [157], totals more than 2 million of lines of C++ 
code. The assessment was done with release 12.3.5 and the 
number of lines of code was defined as the number of semi-
colons contained in the code. In lieu of a similar sized HEP 
software package written in Julia, we have measured the 
start-up time on the relatively large package Ordinary-
DiffEq, using its version 6.49.4. The package consists of 
about 125,000 lines of Julia code, excluding comments, and 
390,000 when including the external packages. The lines 
of code have been counted with the Tokei software [158] 
version 12.1.2. and the extra time to run the Example 1 of 
the manual [159] the first time, compared to subsequent 
executions, was 5.91 ± 0.01 s . It goes down to 826 ± 2ms 
when using a custom system image. We should also note 
that the precompilation happening on package installation 
for the package and its dependencies (120 packages) took 
256 s only.

For a large experiment software framework, attention will 
need to be paid to limit code invalidation by respecting the 
guidelines to ease type inference. This will also help the 
compiler to optimize the code. While minimizing start-up 
time may require some effort for large HEP project, we do 
not expect it to be a show stopper. At worst, it will require to 9 https:// julia con. org/.

10 Progress is being made, see https:// github. com/ Julia Lang/ julia/ 
pull/ 44527.

https://juliacon.org/
https://github.com/JuliaLang/julia/pull/44527
https://github.com/JuliaLang/julia/pull/44527
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use custom images, with a conciliation on the package man-
agement. In addition, development to improve the start-up 
time is on-going and we should expect significant progress 
in the near future [160].

Application Programming Interface Specification

Julia lacks a single standard to define the application pro-
gramming interface (API) of a package. The one with the 
best support is the use of the export directive to list the 
symbols exposed to the user. The directive is recognized by 
the language’s introspection functions. The names function 
lists, by default, the exported symbols, with an option to list 
all symbols. The methodswith function, used to retrieve 
functions with an argument of a given type will list only 
functions from the export list.

Nevertheless, the export directive has the side-effect 
that all the public symbols end up in the user’s namespace, 
if the package is imported with the using statement. To 
quote the Julia manual [40], “it is common to export names 
which form part of the API. [...] Also, some modules don’t 
export names at all. This is usually done if they use common 
words, such as derivative, in their API, which could easily 
clash with the export lists of other modules.”.

The Julia language itself uses the user manual to define 
the API, as explained in the “Frequently asked questions” 
of this document [40]. With such an approach, we lose the 
benefit of the introspection functions, themselves agnostic 
to the API information.

A built-in unexport directive, that would allow list-
ing public symbols that the using statement must keep in 
the module namespace and which would be recognized by 
the introspection functions and also by the documentation 
generator [161], would be very beneficial.

Training and Language Transition Support

Julia has been successfully introduced into existing teams, 
gradually replacing their C++ with Julia packages over time, 
for example in the LEGEND and BAT groups at the Max-
Planck-Institute for Physics. Julia is also the official second-
ary language (after Python) of the whole LEGEND [162] 
collaboration.

Observed experience is that students with a basic program-
ming background (e.g., in Python or C++) do learn the lan-
guage very quickly and become productive after just a few days. 
After exposure to the language for a few weeks, students are 

typically able to make contributions to larger software packages 
as well. No problems have been found using Julia for short-term 
thesis work (e.g., three-month bachelor theses) and even two-
week internship, with students and interns who were new to the 
language. The reaction of these students has been uniformly 
positive.

Master and PhD theses that used Julia as the primary 
language have resulted in very positive experience for 
both students and supervisors. Students who use Julia in 
longer-term projects not only become very proficient in 
the language, but also gain a lower-level understanding of 
computing, data structures and performance implications 
of modern hardware in general, compared to students who 
work in Python. This is because Julia makes it very easy 
the move between higher-level and lower-level program-
ming, in contrast to the Python-plus-C++ two-language 
approach.

More code reuse and transfer has been observed across 
student generations in Julia, compared to C++. This is due 
to the combination of an excellent package management 
with the use of multiple dispatch as a foundation. The first 
simplifies the maintenance of systems consisting of smaller 
and more modular packages, while the second solves the 
expression problem.

Conclusions

The Julia programming language has been presented and 
compared with C++ and Python. To study the potential 
of Julia for HEP, a list of requirements for offline and 
software-based-trigger HEP applications, covering both 
the language and its ecosystem, has been established. 
The compatibility of Julia with these requirements has 
been studied. Julia and its ecosystem are impressively 
fulfilling all these requirements. Moreover, Julia brings 
other features—integrated packaging system with repro-
ducibility support, multiple dispatch and automatic dif-
ferentiation—from which HEP applications would 
benefit.

The capacity to provide, at the same time, ease of pro-
gramming and performance makes Julia the ideal pro-
gramming language for HEP data analysis and is more 
generally an important asset for all the considered HEP 
applications. The dynamic multiple dispatch paradigm of 
Julia has proven to ease code reuse. This property will 
greatly benefit HEP community applications that involve 
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code developed by many people from many different 
groups.

Using a single and easy programming language will 
facilitate training. Experience has shown students 
with either a C++ or Python background learn the 
language very quickly, being productive after a few 
days. Using Julia as mainstream language in a col-
laboration allows students on short-term projects to 
use the common programming language, while in case 
of C++, using a simpler language as Python is often 
needed. This eases the reuse of the code developed in 
such context.

We have measured the performance provided by the 
language in the context of HEP data analysis. The meas-
urements show excellent runtime performance, compet-
itive with C++: 11% faster for the simple LHC event 
analysis example used as benchmark. When compared 
to Python, in addition to being faster, it is much less 
sensitive to implementation choices. The Python imple-
mentation was shown to be three orders of magnitude 
slower than Julia when the event loop is performed in 
Python. Vectorization techniques can be used to move 
the event loop by using underlying compiled libraries 
and this reduces the gap in performance.

One difference with C++ and Python is that Julia is 
younger and has a smaller community. The Julia community 
is very collaborative and, despite its lower popularity, infor-
mation for developing with this language is easy to find on 
the Internet. Julia’s rapid growth in academia and industry 
gives us confidence on the long term continuity of the Julia 
language, which is essential for HEP projects, because of 
their large time span.

In view of this study, the HEP community will defini-
tively benefit from a large scale adoption of the Julia pro-
gramming language for its software development. Con-
solidation of HEP-specific foundation libraries will be 
essential to ease this adoption.

Appendix A

Polymorphism in C++ and Julia Illustrated in Code

Differences of polymorphism support in C++, Julia, and 
Python are discussed in the “Polymorphism in C++, 
Python, and Julia” section. This appendix provides code 
examples illustrating the discussion.

Static ad-hoc function polymorphism can be implemented in 
C++ using two different paradigms, function overriding and 
templates. We will illustrate this with an example. Let us consider 
two classes,   and a derived class , and a global function 

. Using the function overriding paradigm, the ad-hoc poly-
morphism on the function argument can be implemented as,  

The same ad-hoc polymorphism can be implemented in 
the template paradigm as follows.

Both implementations can be tested with the following 
code, which will result in the same output.

While in C++, an ad-hoc function polymorphism can 
be implemented using two different paradigms, the multi-
ple dispatch feature of the Julia language provides a single 
and consistent way to implement polymorphism. The Julia 
implementation looks like the following.
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In C++, the dispatch on argument type can be static 
or dynamic for the class instance argument ( ) and is 
always static for the other arguments. This situation can be 
intricate as in the example below, where the selection of a 
static or dynamic dispatch over the   argument depends 
on the type of the other argument.

The C++ language includes an implicit type conversion 
when copying an object. This feature can lead to confusion, 
as illustrated in the code below.

This pitfall does not exist in Julia. There is a single way 
to pass arguments, “call by sharing” [163], which does not 
copy the arguments.
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The lion is grateful to Julia for honoring his title.
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