
Prototyping a ROOT-based distributed analysis

workflow for HL-LHC: the CMS use case

Tommaso Tedeschia,b,∗, Vincenzo Eduardo Padulanoc,∗, Daniele Spigaa,
Diego Ciangottinia, Mirco Tracollia, Enric Tejedor Saavedrac, Enrico

Guiraudc,e, Massimo Biasottod

aINFN Sezione di Perugia, Via A. Pascoli, 06123 Perugia, Italy
bDepartment of Physics and Geology, University of Perugia, Via A. Pascoli, 06123

Perugia, Italy
cEP-SFT, CERN, Meyrin, 1211 Geneva, Switzerland

dINFN Laboratori Nazionali di Legnaro, Viale dell’Università 2, I-35020 Legnaro, Italy
ePrinceton University, Princeton, NJ 08544, USA

Abstract

The challenges expected for the next era of the Large Hadron Collider (LHC),
both in terms of storage and computing resources, provide LHC experiments
with a strong motivation for evaluating ways of rethinking their computing
models at many levels. Great efforts have been put into optimizing the com-
puting resource utilization for the data analysis, which leads both to lower
hardware requirements and faster turnaround for physics analyses. In this
scenario, the Compact Muon Solenoid (CMS) collaboration is involved in
several activities aimed at benchmarking different solutions for running High
Energy Physics (HEP) analysis workflows. A promising solution is evolving
software towards more user-friendly approaches featuring a declarative pro-
gramming model and interactive workflows. The computing infrastructure
should keep up with this trend by offering on the one side modern interfaces,

∗Corresponding author
Email addresses: tommaso.tedeschi@pg.infn.it (Tommaso Tedeschi),

vincenzo.eduardo.padulano@cern.ch (Vincenzo Eduardo Padulano),
daniele.spiga@pg.infn.it (Daniele Spiga), diego.ciangottini@pg.infn.it (Diego
Ciangottini), m.tracolli@gmail.com (Mirco Tracolli),
enric.tejedor.saavedra@cern.ch (Enric Tejedor Saavedra),
enrico.guiraud@cern.ch (Enrico Guiraud), massimo.biasotto@lnl.infn.it
(Massimo Biasotto)

Preprint submitted to Computer Physics Communications July 25, 2023

ar
X

iv
:2

30
7.

12
57

9v
1 

 [
cs

.D
C

] 
 2

4 
Ju

l 2
02

3



and on the other side hiding the complexity of the underlying environment,
while efficiently leveraging the already deployed grid infrastructure and scal-
ing toward opportunistic resources like public cloud or HPC centers. This ar-
ticle presents the first example of using the ROOT RDataFrame technology to
exploit such next-generation approaches for a production-grade CMS physics
analysis. A new analysis facility is created to offer users a modern interactive
web interface based on JupyterLab that can leverage HTCondor-based grid
resources on different geographical sites. The physics analysis is converted
from a legacy iterative approach to the modern declarative approach offered
by RDataFrame and distributed over multiple computing nodes. The new
scenario offers not only an overall improved programming experience, but
also an order of magnitude speedup increase with respect to the previous
approach.

Keywords: High Energy Physics, Distributed Computing, Analysis Facility,
ROOT, Dask, HTCondor

1. Introduction

Research in High Energy Physics (HEP) is characterized by complex com-
putational challenges raised by the need for processing huge amounts of data
regarding particle collisions. The largest source of such data is the Large
Hadron Collider (LHC), hosted at CERN in Switzerland, which since its
start has reached peaks of 1 PB/s of data generated from physics events.
The machine follows a cycle of on and off periods, also called runs. The
current run, Run 3, has begun in 2022 and will last until 2025. The next
run will see an upgraded hardware configuration of the machine, named High
Luminosity LHC (HL-LHC) [1], which will start operations in 2029 and it is
estimated that it will require between 50 and 100 times more computational
resources than those currently used [2].

Such estimate reinforces the need for developing performant software tai-
lored to the HEP use case, something which has always been addressed in
the field. Traditionally, distributed computing has been one of the main
strategies to tackle processing the large physics datasets. In particular, the
Worldwide Computing LHC Grid (WLCG) [3] was developed in cooperation
between CERN and other research institutes as a shared computing infras-
tructure serving all interested scientists around the world. Alongside this
main distributed facility, it is common to have smaller computing clusters at

2



the level of the single research institution.
In this context, the workflow of analysts involves developing applications

that are submitted to the grid through thousands of jobs, each processing a
different set of physics events. This is enabled by the fact that the events
are statistically independent, so even though they are stored in large datasets
with billions of entries, they can be processed independently thus allowing for
an embarrassing parallelization of the analysis. A single large-scale analysis
in production run by an LHC experiment collaboration can process multiple
TBs of data, involving thousands of jobs sent to the grid and spanning multi-
ple hours or days. It also comprises two main stages, which closely resemble
the MapReduce paradigm [4]: in the first stage all jobs are submitted and
process different portions of the input dataset; in the second stage all the
partial results need to be merged in order to produce the final desired result,
which usually comes in the form of a high number of relevant statistics and
plots such as histograms. This workflow becomes particularly tedious since
the two stages are independently developed and deployed: users need to write
separate applications to submit the initial jobs and then retrieve and merge
their results.

Tackling the previously mentioned computing challenges is a matter of
developing faster software as well as improving the productivity of the final
users. On the one hand, increasing data processing throughput is crucial to
cope with the future increasing data rates. On the other hand, ergonomic
interfaces should be added to remove the lower-level programming burden
from analysts. Other industries have faced similar issues and a few solutions
have spawned in the data science community at large to streamline data
processing pipelines with higher-level interfaces. The most widely used im-
plementation of the MapReduce paradigm comes from the Apache software
suite and in particular Apache Spark [5] has gained wide popularity as a
distributed execution engine for many types of workloads. A similar exam-
ple comes from the Dask Python library [6], which also supports arbitrary
computation graphs not strictly applicable with MapReduce.

In the same scope, users should not have to deal with building and pack-
aging the entire software stack needed for their analysis. At the same time,
each research group may need slight adjustments to their analysis algorithms
and applications. It is quite often seen that many small software frameworks
are developed, based on larger utility libraries used in the field. If people
interested in using a specific set of libraries do not have access to exactly the
same machine, creating a coherent software stack over different nodes can

3



become a burden quite quickly. In recent years, the efforts towards improv-
ing user productivity have also started focusing on streamlining the creation
of a software stack that can be easily set up and reproduced over different
nodes. On the one hand, services like CVMFS [7] make it easy to ship cen-
trally produced environments to user machines or even computing clusters.
On the other hand, various institutions have begun proposing a combination
of coherent and easily accessible software and hardware resources with the
general label of analysis facilities.

Although each research group may need to tweak their analysis to use
specific libraries, most software environments in HEP use ROOT [8] as the
tool for storing, analyzing and visualising physics data coming from the ac-
celerator. This library defines a I/O layer and a data format through which
more than 1 Exabyte of data is stored. It also offers a high-level interface to
data analysis called RDataFrame [9], which is more user-friendly with respect
to other ROOT facilities and has already seen wide usage in the community.

This article highlights the recent efforts in building an infrastructure for
HEP analysts that provides solutions to the aforementioned challenges. A
new analysis facility is engineered on INFN (Italian national institute for
nuclear physics research) resources, accessible through a web-based interface
where users can develop their analysis in Python, a language that is gaining
increasing popularity in the HEP community. The code can be written in a
Jupyter notebook [10], through which a set of distributed resources can be
accessed. As a benchmark of this new facility, a full-scale CMS analysis is
ported to RDataFrame, which can take full leverage of the remote computing
resources transparently while running the full application within the same
notebook. Furthermore, using RDataFrame provides tangible performance
improvements over the previous approach.

The document is structured as follows. Section 2 highlights relevant work
that can be connected to some of the issues brought up so far. The main
software building blocks for this work are described in Section 3. Section 4
provides more details about the concept of analysis facility in HEP. Sec-
tions 5 and 6 describe more concretely the proposed new developments of
this work. Section 7 shows the results obtained in comparison with the old
approach. Finally, Section 8 closes the discussion and gives some perspective
for future work.

4



2. Related work

The traditional programming model for HEP data analysis applications
is usually based on custom loops over the events of a ROOT dataset. Each
event is processed as needed, for example by filtering it out if not interesting
or using it to compute new observables. A more simplified syntax was of-
fered by TTreeFormula [11], a DSL within ROOT to access and process the
events in a dataset. At a broader scope, different utility libraries have been
developed in the field to abstract from the lower-level syntaxes, usually only
of practical use in small use cases. Some examples include the nanoAOD-
tools [12] by CMS, coffea [13], the Latinos framework [14], Bamboo [15] or
CMGTools [16]. It is worth noting that, although providing a more mod-
ern and abstract interface than what was previously available, some facilities
such as RDataFrame or coffea still represent a low-level approach when com-
pared to more experiment-specific tools such as the others cited above. This
usually boils down to the fact that the latter kind of libraries usually feature
functions in their API which directly refer to computations or calibrations
that physicists may need to use in their daily analysis routines.

In the last few decades, most programming models in this field applied
inside user code were decoupled from the job distribution, which happened
by manually submitting job description files to the scheduler of a batch sys-
tem such as HTCondor [17] or Slurm [18]. In parallel, other scientific and
industrial communities investigated more interactive approaches, where the
programming interface could describe both the computation and the connec-
tion to the distributed resources. Apache Spark became a popular tool in a
wide range of use cases, thanks to the efficient usage of resources through the
MapReduce paradigm coupled with a declarative approach [19]. Dask has
gained traction in more recent years, with examples from Earth and Climate
sciences [20, 21] and from molecular dynamics [22]. Although the idea of
streamlining distributed HEP analysis is not a novel idea, since ROOT has
been offering a parallel system for analysis called PROOF [23] for many years
now, the issue of making this process truly flexible and smooth for final users
is yet to be solved.

The recent trend to steer towards more interactive data analysis and ac-
cess to distributed resources is being picked up in the HEP community. In
particular, the ingredients of HEP analysis facilities should include modern
programming models, a coherent software stack, abstracting the infrastruc-
ture for the final user and giving a full interactive analysis experience end-to-

5



end. An example of analysis facility developed at CERN is SWAN [24]. This
is a web-based platform that all CERN users can access, giving them storage,
software and computing power in the same web page. Analysts write their
applications in Jupyter notebooks and also have a filesystem with storage
quota at their disposal. If their notebook needs to distribute computations,
a Spark cluster at CERN is made available and the user can connect to it
via a GUI. Another example is given by a prototype analysis facility in the
USA called coffea-casa (University of Lincoln, Nebraska) [25]. This facil-
ity leverages Dask to distribute computations. It is built on top of a local
Kubernetes cluster and integrates dedicated resources allocated via fairshare
through an HTCondor scheduler. Similarly, another analysis facility proto-
type was developed at Fermilab with the label “Elastic Analysis Facility” [26].
The analysis facility implementation described in this work follows the same
trend as the prototypes just mentioned, while aiming to involve the different
geographic clusters at INFN with a novel scheduler-client connection system.

Of the available literature regarding LHC experiments analysis workflows,
many were carried out with the aim of evaluating the current processes at the
time (e.g. [27]). This work instead offers a one-to-one comparison between
the more modern, declarative and interactive approach offered by distributed
RDataFrame and the traditional approach used in CMS data analysis.

3. Tools

3.1. ROOT

ROOT is the most widely used software framework for storing, analysing,
processing, and displaying HEP data. It has seen wide adoption at CERN
and several other institutions worldwide connected with it, such as those
participating in WLCG.

The framework defines a common data structure and data layout to store
HEP datasets, called TTree [28]. Its layout is columnar on the disk, so that
different columns can be treated independently. The ROOT I/O subsystem
is able to read just a portion of a dataset, to minimize read requests to the
filesystem. The minimal amount of information that can be read indepen-
dently from other parts of the file is called a cluster, which corresponds to a
range of entries that can belong to one or more columns. ROOT datasets can
be stored and read within the local filesystem of the user machine, but very
often are located in remote, distributed storage systems and can be accessed
through remote protocols like HTTP or XRootD [29].

6



The main interface for analysing a TTree (and other data formats) within
ROOT is called RDataFrame. With RDataFrame, users can focus on their
analysis as a sequence of operations to be performed on the dataset, while the
framework takes care of the management of the loop entries as well as low-
level details such as I/O operations and parallelization, effectively creating
a computation graph, that is a directed graph where each node corresponds
to one of the operations to be performed on data. RDataFrame provides
methods to perform the most common operations required by HEP analyses,
such as Define to create a new column in the dataset or Histo1D to create
a histogram out of a set of values. Other than TTree, the interface supports
processing datasets stored in formats like CSV, Apache Arrow or NumPy
arrays [30]. Users can also create an empty dataset with a certain amount of
rows that can be filled through the operations in the API. This is particularly
useful for benchmark and simulation scenarios.

RDataFrame has been built with parallelism in mind. In fact, it is na-
tively able to exploit all cores of a single machine through the implicit multi-
threading interface available in ROOT. Moreover, the scalability of this tool
is ensured by its distributed version. Indeed, RDataFrame can natively dis-
tribute physics computations on multiple nodes by splitting the analysis in
tasks and executing them in a MapReduce pattern [31].

3.2. Dask

Dask [6] is a Python library that allows to easily parallelise existing work-
flows. It is mainly targeted at supporting other common Python analysis
tools like Numpy [30] or Pandas [32], but is flexible enough to accommodate
any type of computation. Thus, it offers many interfaces for data process-
ing, including machine learning and real-time analysis. In the context of
this work, Dask is employed as a distributed scheduler, offering a wide set
of configurations thanks to which an application can be scaled to different
cluster setups like:

1. Start all the remote nodes from a single machine through SSH.

2. Leverage existing cluster deployments with Kubernetes or YARN.

3. Connect to high performance computing resource managers that im-
plement batch submission systems, like HTCondor, Slurm or PBS.

Two ingredients are necessary in order to distribute computations in a
Dask application. The first is the object representing the remote cluster itself,
including how many resources will be assigned to it for the duration of the

7



application. The second is an object representing the connection between the
local machine and the remote cluster. This is simply called Client and can be
used with any of the different implementations of resource managers available
in Dask described above. The Client API allows users to asynchronously
launch tasks to the remote cluster.

3.3. XRootD

The XRootD [29] framework is a C++-based suite targeting fast, low
latency and scalable data access. Generically it can serve any kind of data
that can fit in a hierarchical filesystem-like approach, abstracting away from
the particular implementation of the data format. The core functionalities
are greatly extended by a rich plugin system. It is widely used in High Energy
Physics both for its remote I/O protocol and for the suite of data access tools
that allow to expose the presence of large physics datasets from the storage
facilities to other nodes of the Grid. The library supports caching data on
one node or on a federated system of nodes, a technology that is also referred
to as XCache by the community.

ROOT natively supports reading/writing files from/to remote servers via
the XRootD protocol, thanks to a plugin of the TFile class. Whenever a user
specifies a path that contains the root:// prefix, that file will redirect all
I/O transactions through the XRootD API.

4. The analysis facility paradigm

4.1. Enhancing analysis turnaround

As highlighted in the introduction of this work, the challenges that LHC
experiments are expected to deal with are forcing the corresponding com-
munities to rethink their computing models, moving towards more efficient
approaches. More specifically, considering the case of CMS, the introduction
of NanoAOD format five years ago (an extremely reduced columnar data for-
mat, which still contains all necessary information on high-level physics ob-
jects to run an analysis [33]) pushed towards a shift in the analysis paradigm,
allowing for the adoption of a quasi-interactive approach, which at the same
time delivers a lower time-to-insight. Since LHC experiments share per-
formance needs that can be tackled together, and their needs in terms of
software can be made generic enough, recent R&D was aimed at investigat-
ing industrial data-science-like approaches for the data exploration capable
of efficiently exploiting the existing resources.

8



4.2. Federated, distributed, heterogeneous resources

For all its computing operations, CMS exploits the previously-introduced
WLCG, built up from the different resources provided by the collaboration
members. The reason for this is two-fold: on the one hand, it would be
difficult to concentrate all CMS operations in a single place due to the high
experiment resource demands; on the other hand, in this way the experiment
can exploit facilities outside of CERN, provided by member institutions from
all over the world. Computing centers were originally arranged in a strict
tiered structure, with well-defined tasks for each tier: only one Tier-0, around
ten Tier-1s, and a large number of Tier-2s. The last ones are responsible for
providing resources for analysis, even though the differences between Tier-1s
and Tier-2s have been blurring in the recent years. In addition, CMS mem-
bers can also exploit available opportunistic (cloud) and specialized (HPC)
resources [34].

5. Developing a facility model: the strategy

5.1. Implementation pillars

The analysis facility solution we propose is founded on a few pillars:
a single central JupyterHUB [35] for the data analysis, to which users get
access interacting with a single entrypoint via CMS INDIGO-IAM, deploying
their own JupyterLab [36] instance; containerized solutions (Singularity [37])
to allow the user to bring their own computational environment, both in
the hub and on distributed resources; the possibility to scale computations
leveraging distributed computing resources from Italian Tier-2 centers, HPC
or even opportunistic accessible via ssh connection; access to experiment
data, obtained via XRootD protocol from the grid or local XCache instances.

5.2. A declarative and scalable software framework

The usage of a declarative approach is crucial since it allows the analyzer
to focus on the physics itself, removing from the user scope all the boilerplate
code necessary to access data, loop on events, distribute computation, and
aggregate results: the time needed for the user to set up, test, tune and
debug each of these steps is non-negligible, and distracts the analyzer from
the physics goals. As explained in section 3.1, ROOT’s RDataFrame interface
offers a declarative solution to efficiently augment and filter data stored in
NanoAOD-like file types. The users only need to specify the operations they

9



want to run on the data, then start the analysis. The execution of the
computation graph together with the retrieval of the results happens in the
very same Jupyter notebook, as opposed to the various scripts that have to
be run asynchronously in the legacy approach. Thus, the user can profit from
the interactivity of this approach, running cells multiple times and drawing
histograms directly as output of the cells.

5.3. A flexible and distributed computing infrastructure

In this context, the infrastructure of the facility should comply with two
main characteristics: on one hand, it should be easily extensible, allowing
to accommodate multiple users and different analysis needs; on the other
hand, it should be capable of exploiting the very same legacy infrastructure
of present Tier-2s with no additional hardware requirements. This can be
achieved by leveraging Dask and its compatibility with HTCondor. In fact,
the Dask-jobqueue [38] library allows to deploy a Dask cluster on top of an
HTCondor pool. In such a way, the same resources can be used in a legacy
fashion (with a batch computing approach) or quasi-interactively from a
notebook after having deployed the necessary Dask cluster.

6. Exploring distributed RDataFrame on geographic cluster at INFN

6.1. Infrastructure of the analysis facility

The ideas and practices highlighted in Sections 4 and 5 are concretely
applied in the creation of an analysis facility, whose infrastructure is depicted
in Figure 1. First of all, a JupyterHUB [35] instance is deployed on the central
Kubernetes cluster hosted at INFN-CNAF (Italy), as well as all HTCondor
central components (Collector, Negotiator, CCB and Schedd). The Dask
cluster deployment model presents some peculiarities enabling the shipping
of a whole self-contained Dask cluster (meaning both the scheduling and
executing parts) on any remote set of resources with ”egress” capabilities.
In fact, in the presented use case we were able to spawn a Dask cluster on
a Tier-2 grid site with minimal changes from the site perspective. A full
Dask cluster offloading capability is the key concept of such an R&D that
allows for the implementation of an overlay federation mechanism where an
heterogeneous set of resource providers can be made available to the users in
a seamless fashion, with minimal operational requirements. From a technical
perspective, the deployment of the Dask cluster happens on top of HTCondor
via the Dask-jobqueue library, enriched with a custom-derived plugin [38]

10



Figure 1: Simple schema of INFN Analysis Facility prototype

(integrated with a dedicated Dask Labextension [39]) developed to support an
HTCondor pool with specific requirements and to allow the submission of the
Dask Scheduler job and the interaction with it. A forwarder service is used to
make Dask HTCondor jobs reachable from the JupyterLab instance via ssh

connections. Finally, an HTTP controller service controls the interaction
between the Dask Labextension in the JupyterLab instance and the Dask
Scheduler. The overlay system implemented through HTCondor has a key
role for a fair comparison of the presented results: it allows to use the very
same infrastructural setup and the very same configuration changing only
the software that runs on top.

6.2. Prototype usage of the infrastructure

The proposed infrastructure can support analysis workflows implemented
in various ways, in particular it still supports the legacy batch-like approach
while at the same time enabling more modern distributed workflows with
RDataFrame. For the latter case, users can deploy a Dask cluster au-
tonomously through a GUI (the Dask Labextension previously mentioned).
This provides a few options, for example selecting the desired computing site
or the container image for the distributed worker. Once selected, the system
will submit a Dask scheduler job to the selected HTCondor pool (which in

11



turn can exploit available Tier-2 sites, opportunistic resources, HPC facili-
ties, etc.). Once the job is running, via the same extension, the user can
scale up the cluster, submitting Dask worker jobs. As for the data access,
a VOMS [40] proxy-file is needed to be uploaded to the workers via a Dask
Plugin. The user can also replicate data on the grid into a desired site via
Rucio [41, 42].

7. Commissioning and first benchmarks with a real use case

In order to achieve the first benchmark for this infrastructure and ap-
proach, a real use case has been chosen. More specifically, the very same
CMS analysis has been implemented using a legacy batch-like approach and
an RDataFrame-based one, and both workflows have been run on the pre-
sented facility and compared. In this section, the details of the use case are
shown, as well as the metrics used for the comparison benchmark are de-
tailed. Finally, the results of the comparison benchmark are presented and
discussed.

7.1. The analysis use case

This study takes into account a production-grade analysis with the CMS
detector which runs, for one data taking year, over nearly 700 million Monte
Carlo (MC) events (produced by the CMS Collaboration), of which more than
300k populate the final histograms considered in the statistical analysis.

7.2. Legacy approach

The legacy approach of this analysis is based on a two-step procedure
(see left column of Figure 2): a preselection step, where the original files
are skimmed (using a selection based on triggers and loose requirements on
objects) and corrections are computed, producing reduced flat ROOT-files;
and a postselection step, in which the proper analysis is run, with the pro-
duction of histograms, for each systematic variation, to be used for the final
statistical analysis. The preselection part exploits the NanoAOD-tools [12]
suites, which is a collection of Python-based analysis modules orchestrated
by a post-processor, developed by the CMS Collaboration. The postselec-
tion part is run using simple PyROOT scripts, with some helper functions
from NanoAOD-tools. Both are parallelized using a simple HTCondor sub-
mission procedure. The postselection step also needs a subsequent local
merging procedure to aggregate output from different jobs, as well as a local
histogramming step.

12



7.3. RDataFrame approach

The new RDataFrame-based approach keeps the same workflow, in order
to achieve a one-to-one mapping to the legacy approach (as depicted in Figure
2): legacy Python-based modules and functions have been translated to C++
functions that manipulate ROOT’s RVec objects, also exploiting an existing
solution developed inside the CMS Collaboration for jet and MET corrections
[43]. This allowed to use a distributed RDataFrame approach, with Dask as
backend, for both steps of analysis. The MapReduce nature of distributed
RDataFrame computations makes any merging steps unnecessary, allowing
to directly produce, in a single event loop, final histograms, even including all
systematic variations. In order to use Dask as a backend for the distributed
execution of ROOT’s RDataFrame computations from a notebook, the user
needs to instantiate a Dask client and use it in the definition of a distributed
RDataFrame.

Figure 2: One-to-one mapping between legacy and new approaches.

7.4. Benchmark procedure and metrics

The testbed used for this benchmark measurement is a 3-node HTCondor
pool deployed at the Tier-2 data center of LNL laboratories in Legnaro, Italy
[44]. Each node is a Dell R430 server with the following properties: two Intel
Xeon E5-2640 v3 @2.60 GHz, 8 physical cores (16 logical) each, 128 GB of
RAM, 1 TB of spinning disk storage and one ethernet controller Broadcom

13



BCM5720, 1 Gb/s. Each node features Telegraf [45] sensors, that inject met-
rics time-series into a dedicated influxDB [46] (with 1-minute granularity).
In such a way, metrics values are accessible via web through an interac-
tive dashboard. These metrics include: CPU usage percentage; amount of
occupied memory; cumulated amount of data read from the network and
first derivative of data read from the network (network read throughput).
Moreover, monitoring scripts were also added to the single jobs in order to
have complete information about the execution. More specifically, for each
HTCondor job and Dask task, overall and event-loop time durations are re-
trieved, and CPU usage and memory occupancy (of the specific process) as
functions of time are obtained leveraging psutil Python library [47] and saved
in .csv files. Combining information from the dashboard and from the single
jobs, the comparison can be made on the basis of certain metrics.

• Overall execution time: time elapsed from the start of the distributed
analysis execution to the end of it. This quantifies the actual anal-
ysis time experienced by the user. A derived quantity is the overall
rate (events analyzed per second), which is the ratio between the total
number of events analyzed and the overall execution time.

• Network read: per-node information about the total amount of bytes
read from the network during the execution, taken from the dashboard.
This information is then summed up across all the nodes. This allows
to monitor if the tool efficiently reads only what is really needed for
the analysis. This measurement is crucial since the future CMS data
management model (the so-called Data Lake) will strongly rely on a
cache layer to distribute data to the computing centers: a minimal data
read directly maps to lower requests on caches performances, as well
as to higher CPU efficiency.

• Absolute memory occupancy: this value is directly taken from the dash-
board for each node, and then it is averaged across the execution time
and across all the available nodes. This metric is monitored to ensure
that new approaches do not introduce any unsustainable increase in
resource usage.

• Job rate, which indicates the actual throughput of this approach: this
value is obtained as

rate =

∑
#eventsi∑

ti
(1)

14



where i is the index of i-th job, ti its time duration, and #eventsi the
number of events read by it. Depending on the way ti is computed, one
can obtain the rate quantity either including (job rate) or excluding (job
event-loop rate) script initialization time. This metric is chosen since
it measures the throughput of the approach with minimal dependence
on job-splitting pattern or cluster size.

The benchmark comparison is done considering separately only the dis-
tributed steps of preselection and postselection: more specifically, the latter
considers 3 different kinematic variables and 30 different systematic varia-
tions (of which 8 modify the topology of the event, and thus require addi-
tional event loops in the legacy approach).

7.5. Results

The target of the benchmark is the analysis of MC samples, simulating
2017 data-taking operating conditions, for a total of 656978035 events, di-
vided into 1274 nanoAOD files, summing up to around 1.1 TB. The legacy
approach implements, for both preselection and postselection, one job per
file, while the RDataFrame-based approach is applied using a number of par-
titions (i.e. Dask tasks) approximately equal to three times the number of
workers in the Dask cluster. HTCondor legacy jobs require 1 CPU, while
the CPU resources taken up by the Dask scheduler job and by each Dask
worker job are, respectively, 4 CPUs and 1 CPU. Input and output data, for
all analysis steps, are stored at the LNL laboratories Tier-2 and are accessed
via the XRootD protocol.

First of all, for each scenario, the per-job (per-task) CPU usage and
memory consumption were checked in order to detect pathological or wrong
behaviors, like memory leaks.

Figure 3 shows CPU usage and memory occupancy, as functions of time,
of one example job or task for the legacy and RDataFrame-based preselec-
tion, as they are retrieved by psutil [47] Python library. As one can see,
in both cases the 100% CPU usage is reached, but the RDataFrame-based
preselection task presents a noticeable oscillation in the second part of the
execution, which is related to the saturation of the bandwidth (as will be
highlighted in the following), while such oscillations are smaller in the other
case. As for the occupied memory, an ascending behavior in the first sec-
onds of execution is detected, which can be justified by the loading of all
necessary functions and libraries, as well as by the reading of the first chunk

15



Figure 3: CPU usage and memory consumption for one job or task of legacy (left column)
and RDataFrame-based (right column) preselection scenario.

of data. After this initial phase, the memory value remains approximately
stable during the execution.

Figure 4 shows the same quantities for the postselection scenario: also
here, for both approaches, the 100% CPU usage is reached during the proper
event-loop execution with no significant oscillating behavior with respect to
the preselection case. Correspondingly, the stabilization of memory usage,
for both approaches, happens at lower values with respect to preselection.

Figure 4: CPU usage and memory consumption for one job or task of legacy (left column)
and RDataFrame-based (right column) main postselection scenario.

Afterwards, the overall behaviour of the execution was checked by looking

16



at the dashboard values. More specifically, figure 5 shows the CPU usage and
the network throughput, as functions of the time of execution, reported for
each one of the 3 nodes (represented by lines of different colours), in the
case of legacy and RDataFrame-based preselection. As one can see, in both
cases the overall execution does not reach 100% of CPU usage: in the case of
RDataFrame, this is justified by the network read throughput, which clearly
reaches a plateau at around 120 MB/s, that corresponds to the nominal
throughput of the network interface on the node, namely 1 Gb/s; in the case
of legacy, no saturation in bandwidth is detected.

0 25 50 75 100 125 150
Time [min]

0
10
20
30
40
50
60
70

CP
U 
us
ag

e 
pe

rc
en

ta
ge

0 5 10 15 20 25
Time [min]

0

20

40

60

80

CP
U 
us
ag

e 
pe

rc
en

ta
ge

0 25 50 75 100 125 150
Time [min]

0

10

20

30

40

Ne
tw

or
k 
re
ad

 th
ro
ug

hp
ut
 [M

B/
s]

0 5 10 15 20 25
Time [min]

0

20

40

60

80

100

120

Ne
tw

or
k 
re
ad

 th
ro
ug

hp
ut
 [M

B/
s]

Figure 5: Per-node (differently-coloured lines) CPU usage and network read throughput
for legacy (left column) and RDataFrame-based (right column) preselection scenario, when
using 96 logical CPUs (48 physical).

Figure 6 shows the same quantities for the postselection scenario. In this
case, for both approaches, the CPU usage is nearly 100% for most of the
execution and no saturation in the bandwidth is detected.

A set of 3 measurements for each scenario and approach was performed
and metrics values were recorded: then, for each metric, the average was
taken as the estimated value with the maximum semi-dispersion as its error.
Results, presented separately for each scenario, are shown in table 1.

Additionally, a check has been made in order to test if the preselection
RDataFrame performance is actually limited by the bandwidth and thus the

17



0 10 20 30 40
Time [min]

0

20

40

60

80

100
CP

U 
us
ag

e 
pe

rc
en

ta
ge

0 2 4 6 8 10 12
Time [min]

0

20

40

60

80

100

CP
U 
us
ag

e 
pe

rc
en

ta
ge

0 10 20 30 40
Time [min]

0

2

4

6

8

10

12

14

Ne
tw

or
k 
re
ad

 th
ro
ug

hp
ut
 [M

B/
s]

0 2 4 6 8 10 12
Time [min]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ne
tw
or
k 
re
ad
 th
ro
ug
hp
ut
 [M
B/
s]

Figure 6: Per-node (differently-coloured lines) CPU usage and network read throughput
for legacy (left column) and RDataFrame-based (right column) postselection scenario,
when using 96 logical CPUs (48 physical).

PRESELECTION - 96 logical CPUs (48 physical)

Metrics Legacy New
Overall time [min] 164.18 ± 0.08 21.9 ± 0.8
Overall rate [Hz] 66.69k ± 0.03k 500k ± 18k
Job rate [Hz] 859 ± 1 7371 ± 79
Job event-loop rate [Hz] 951 ± 2 8148 ± 92
Network read [GB] 484.6 ± 0.6 353.37 ± 0.08
Average per-node memory occupancy [GB] 18.35 ± 0.08 29.6 ± 0.2

POSTSELECTION - 96 logical CPUs (48 physical)

Metrics Legacy New
Overall time [min] 46.7 ± 0.1 11.8 ± 0.4
Overall rate [Hz] 4.72k ± 0.01k 18.8k ± 0.6k
Job rate [Hz] 63.04 ± 0.06 303 ± 9
Job event-loop rate [Hz] 65.82 ± 0.08 366 ± 13
Network read [GB] 84.4 ± 0.1 17.56 ± 0.06
Average per-node memory occupancy [GB] 8.86 ± 0.07 28.3 ± 0.3

Table 1: Benchmark results for legacy and new approaches, for both preselection and
postselection scenarios.

18



related results we present represent a lower limit. Actually, when manually
lowering the number of CPUs (and thus Dask workers) per node, from the 32
logical (16 physical) CPUs to 8 logical and physical CPUs, one obtains the
results shown in figure 7. As expected, keeping the same number of tasks,
the RDataFrame-based CPU usage rises, reaching a plateau at over 80% (the
node with lower CPU usage is affected by the presence of the Dask scheduler),
while no saturation effect is present: the network read throughput averages
at 60/70 MB/s.

0 10 20 30 40
Time [min]

0

20

40

60

80

CP
U 
us
ag

e 
pe

rc
en

ta
ge

0 10 20 30 40
Time [min]

0
10
20
30
40
50
60
70

Ne
tw

or
k 
re
ad

 th
ro
ug

hp
ut
 [M

B/
s]

Figure 7: Per-node (differently-coloured lines) CPU usage and network read throughput
for RDataFrame-based (right column) preselection scenario, when using 24 logical CPUs
(24 physical).

7.6. Discussion

Considering the results shown in table 1, one can conclude that the
RDataFrame-based approach outperforms the legacy one in terms of time
and job rate in every scenario. More specifically, considering the preselec-
tion and postselection scenarios as a whole, one can see that, moving to
the new approach, a factor six speedup is achieved, corresponding to a net
84% reduction of overall execution time. This can be justified by both the
pure increase of the average job rate (around 8.6 times and 4.8 times higher
for RDataFrame-based preselection and postselection, respectively) and the

19



higher efficiency in task distribution and data read of the method itself. This
means that, for an analysis similar to the one that is discussed here, a physi-
cist can analyze, in a given time window, a factor of 6 more simulated events
with respect to the old method. Furthermore, there is a reduction in net-
work read of about 35%. This is expected for two main reasons: on one
hand, the legacy preselection step needs each job to download the full nec-
essary nanoAOD-tools repository branch, which is worth 101 MB (summing
up to 129 GB, and therefore accounting for most of the difference in network
read for preselection); on the other hand, data is read 9 times in the case of
legacy postselection (once for nominal values and once for each non-event-
weight systematic variation), whereas, in the case of RDataFrame, just one
event loop is performed. Moreover, the memory occupancy of the new ap-
proach remains bearable for such a system, since the overall node memory is
128 GB. Finally, the bandwidth-saturating behavior of RDataFrame-based
preselection shows that this approach pushes the I/O capabilities of the node
to the limit, as confirmed by the aforementioned additional check.

8. Conclusions and future outlook

The future computational challenges that High Energy Physics commu-
nities have to deal with are pushing towards intensive R&D activities which
include also the search for new efficient data analysis approaches and re-
source access: this translates to the adoption of declarative tools and flexible
infrastructures. In this work we show the analysis facility model imple-
mented and deployed at INFN resources that offers a way of running CMS
data analyses by accessing a single customizable JupyterLab environment
and scaling up the computation on Italian geographically distributed Tier-2
resources, with the possibility to implement both batch-like approaches and
distributed RDataFrame-based workflows, taking advantage of Dask and cus-
tom plugins. This infrastructure has been tested and benchmarked consid-
ering a real CMS analysis: this was implemented using both a legacy and
an RDataFrame-based approach. The two were run on the very same re-
sources and compared on the basis of several metrics. More specifically, the
modern RDataFrame approach proves to be 6 times faster, while reducing
network read by more than 30 %. Projecting these numbers into a hypotheti-
cal HL-LHC scenario, considering the same analysis, the new approach could
therefore introduce a CPU resources saving of a factor around an order of
magnitude with respect to the legacy one for the same time-to-insight, also

20



opening to the possibility of running the analysis in just 1 step, with a differ-
ent impact on the resource scheduling with respect to a pure batch system
(spikes of utilization of many resources instead of long-lasting jobs on few
resources), and on the end-user experience. If further studies could confirm
this order of magnitude of gain on a broad spectrum of different analyses
(and the adoption of NanoAODs becomes even wider throughout the Collab-
oration), the effort in changing the CMS analysis model could be justified.
More specifically, the effort would reside only on the adoption of declarative
data analysis tools, since the analysis facility concept allows to seamlessly
exploit the current available WLCG infrastructure: only the software should
be rewritten. On one hand, this demonstrates the strategic importance of
R&D activities for CMS, given their actual impact; on the other hand, this
motivates further studies that will be funded by CMS in the future, which
would possibly include the test of different tools and the integration of legacy
interfaces with the modern backends.

9. Acknowledgments

The authors thank the CMS Collaboration: in particular, the CMS Offline
Software and Computing groups for the technical discussions and the CMS
Physics Coordination groups for the physics-related discussions, which both
helped the development of this work, as well as all the other members of the
Collaboration, who contributed to preparing, producing, and curating the
simulated data and part of the code considered in this work.

The authors of this work are funded by the respective affiliations and this
research received no specific grant from any funding agency in the public,
commercial, or not-for-profit sectors.

References

[1] G. Apollinari, I. Béjar Alonso, O. Brüning, P. Fessia, M. Lamont, et al.,
High-Luminosity Large Hadron Collider (HL-LHC): Technical Design
Report V. 0.1, Tech. rep., CERN (2017). doi:10.23731/CYRM-2017-
004.

[2] E. Elsen, A Roadmap for HEP Software and Computing R&D for the
2020s, Comput Softw Big Sci 16 (3) (2019). doi:10.1007/s41781-019-
0031-6.

21

https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1007/s41781-019-0031-6
https://doi.org/10.1007/s41781-019-0031-6


[3] I. Bird, Computing for the Large Hadron Collider, Annual Review of Nu-
clear and Particle Science 61 (1) (2011) 99–118. doi:10.1146/annurev-
nucl-102010-130059.

[4] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on
Large Clusters, Commun. ACM 51 (1) (2008) 107–113. doi:10.1145/
1327452.1327492.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark:
Cluster Computing with Working Sets, in: Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
USENIX Association, Boston, MA, USA, 2010, p. 10.
URL https://www.usenix.org/conference/hotcloud-10/spark-
cluster-computing-working-sets

[6] M. Rocklin, Dask: Parallel Computation with Blocked algorithms and
Task Scheduling , in: K. Huff, J. Bergstra (Eds.), Proceedings of the
14th Python in Science Conference, SciPy, online, 2015, pp. 130 – 136.

[7] J. Blomer, C. Aguado-Sánchez, P. Buncic, A. Harutyunyan, Distributing
LHC application software and conditions databases using the CernVM
file system, Journal of Physics: Conference Series 331 (4) (2011) 042003.
doi:10.1088/1742-6596/331/4/042003.

[8] R. Brun, F. Rademakers, ROOT — An object oriented data analysis
framework, Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment 389 (1) (1997) 81–86, New Computing Techniques in Physics Re-
search V. doi:https://doi.org/10.1016/S0168-9002(97)00048-X.

[9] D. Piparo, P. Canal, E. Guiraud, X. Valls Pla, G. Ganis, et al.,
RDataFrame: Easy parallel ROOT analysis at 100 threads, EPJ Web
Conf. 214 (2019) 06029. doi:10.1051/epjconf/201921406029.

[10] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
et al., Jupyter Notebooks - a publishing format for reproducible com-
putational workflows, in: F. Loizides, B. Scmidt (Eds.), Positioning
and Power in Academic Publishing: Players, Agents and Agendas, IOS
Press, 2016, pp. 87–90. doi:10.3233/978-1-61499-649-1-87.
URL https://eprints.soton.ac.uk/403913/

22

https://doi.org/10.1146/annurev-nucl-102010-130059
https://doi.org/10.1146/annurev-nucl-102010-130059
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://doi.org/10.1088/1742-6596/331/4/042003
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1051/epjconf/201921406029
https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/
https://doi.org/10.3233/978-1-61499-649-1-87
https://eprints.soton.ac.uk/403913/


[11] P. Canal, TTreeFormula (May 2019).
URL https://indico.cern.ch/event/769263/contributions/
3406095/

[12] CMS Collaboration, nanoAOD-tools, https://github.com/cms-
nanoAOD/nanoAOD-tools, accessed: 2023-06-12 (2023).

[13] Smith, Nicholas, Gray, Lindsey, Cremonesi, Matteo, Jayatilaka, Bo,
Gutsche, Oliver, et al., Coffea columnar object framework for effective
analysis, EPJ Web Conf. 245 (2020) 06012. doi:10.1051/epjconf/
202024506012.
URL https://doi.org/10.1051/epjconf/202024506012

[14] CMS Collaboration, LatinoAnalysis, https://github.com/latinos/
LatinoAnalysis, accessed: 2023-06-12 (2023).

[15] P. David, Readable and efficient HEP data analysis with bamboo, EPJ
Web Conf. 251 (2021) 03052. doi:10.1051/epjconf/202125103052.
URL https://doi.org/10.1051/epjconf/202125103052

[16] CMS Collaboration, CMGTools, https://github.com/CERN-PH-CMG/
cmgtools-lite, accessed: 2023-06-12 (2019).

[17] T. Tannenbaum, D. Wright, K. Miller, M. Livny, Condor – A Distributed
Job Scheduler, in: T. Sterling (Ed.), Beowulf Cluster Computing with
Linux, MIT Press, MA, USA, 2001.

[18] M. Jette, C. Dunlap, J. Garlick, M. Grondona, SLURM: Simple Linux
Utility for Resource Management, Tech. rep., LLNL (7 2002).
URL https://www.osti.gov/biblio/15002962

[19] Salloum, Salman and Dautov, Ruslan and Chen, Xiaojun and Peng,
Patrick Xiaogang and Huang, Joshua Zhexue, Big data analytics on
Apache Spark, International Journal of Data Science and Analytics 1
(2016) 145–164. doi:10.1007/s41060-016-0027-9.

[20] M. Rilee, N. Griessbaum, K.-S. Kuo, J. Frew, R. Wolfe, STARE-Based
Integrative Analysis of Diverse Data Using Dask Parallel Programming
Demo Paper, in: Proceedings of the 28th International Conference on

23

https://indico.cern.ch/event/769263/contributions/3406095/
https://indico.cern.ch/event/769263/contributions/3406095/
https://indico.cern.ch/event/769263/contributions/3406095/
https://github.com/cms-nanoAOD/nanoAOD-tools
https://github.com/cms-nanoAOD/nanoAOD-tools
https://doi.org/10.1051/epjconf/202024506012
https://doi.org/10.1051/epjconf/202024506012
https://doi.org/10.1051/epjconf/202024506012
https://doi.org/10.1051/epjconf/202024506012
https://doi.org/10.1051/epjconf/202024506012
https://github.com/latinos/LatinoAnalysis
https://github.com/latinos/LatinoAnalysis
https://doi.org/10.1051/epjconf/202125103052
https://doi.org/10.1051/epjconf/202125103052
https://doi.org/10.1051/epjconf/202125103052
https://github.com/CERN-PH-CMG/cmgtools-lite
https://github.com/CERN-PH-CMG/cmgtools-lite
https://www.osti.gov/biblio/15002962
https://www.osti.gov/biblio/15002962
https://www.osti.gov/biblio/15002962
https://doi.org/10.1007/s41060-016-0027-9


Advances in Geographic Information Systems, SIGSPATIAL ’20, As-
sociation for Computing Machinery, New York, NY, USA, 2020, p.
417–420. doi:10.1145/3397536.3422346.

[21] J. Gharat, B. Kumar, L. Ragha, A. Barve, S. M. Jeelani, et al.,
Development of NCL equivalent serial and parallel python routines
for meteorological data analysis, The International Journal of High
Performance Computing Applications (2022) 10943420221077110doi:
10.1177/10943420221077110.

[22] Shujie Fan, Max Linke, Ioannis Paraskevakos, Richard J. Gowers,
Michael Gecht, et al., PMDA - Parallel Molecular Dynamics Analy-
sis, in: Chris Calloway, David Lippa, Dillon Niederhut, David Shupe
(Eds.), Proceedings of the 18th Python in Science Conference, SciPy,
online, 2019, pp. 134 – 142. doi:10.25080/Majora-7ddc1dd1-013.

[23] D. Feichtinger, P. Canal, C. Reed, C. Loizides, M. Ballintijn, et al.,
PROOF - The Parallel ROOT Facility, in: 2006 15th IEEE International
Conference on High Performance Distributed Computing, EDP Sciences,
Les Ulis, France, 2006, pp. 379–380. doi:10.1109/HPDC.2006.1652193.

[24] D. Piparo, E. T. Saavedra, P. Mato, L. Mascetti, J. Moscicki, et al.,
SWAN: A service for interactive analysis in the cloud, Future Genera-
tion Computer Systems 78 (2018) 1071–1078. doi:https://doi.org/
10.1016/j.future.2016.11.035.

[25] O. Shadura, A prototype u.s. cms analysis facility (7 2020). doi:

10.5281/zenodo.4136273.
URL https://doi.org/10.5281/zenodo.4136273

[26] M. A. Flechas, G. Attebury, K. Bloom, B. Bockelman, L. Gray,
et al., Collaborative computing support for analysis facilities ex-
ploiting software as infrastructure techniques (2022). doi:10.48550/
ARXIV.2203.10161.
URL https://arxiv.org/abs/2203.10161

[27] D. Duellmann, B. Panzer-Steindel, M. Schulz, A. Sciabà, D. Smith,
Analysis for LHC experiments at CERN - Executive Summary (May
2022). doi:10.5281/zenodo.6535077.
URL https://doi.org/10.5281/zenodo.6535077

24

https://doi.org/10.1145/3397536.3422346
https://doi.org/10.1177/10943420221077110
https://doi.org/10.1177/10943420221077110
https://doi.org/10.25080/Majora-7ddc1dd1-013
https://doi.org/10.1109/HPDC.2006.1652193
https://doi.org/https://doi.org/10.1016/j.future.2016.11.035
https://doi.org/https://doi.org/10.1016/j.future.2016.11.035
https://doi.org/10.5281/zenodo.4136273
https://doi.org/10.5281/zenodo.4136273
https://doi.org/10.5281/zenodo.4136273
https://doi.org/10.5281/zenodo.4136273
https://arxiv.org/abs/2203.10161
https://arxiv.org/abs/2203.10161
https://doi.org/10.48550/ARXIV.2203.10161
https://doi.org/10.48550/ARXIV.2203.10161
https://arxiv.org/abs/2203.10161
https://doi.org/10.5281/zenodo.6535077
https://doi.org/10.5281/zenodo.6535077
https://doi.org/10.5281/zenodo.6535077


[28] ROOT team, TTree class reference guide, https://root.cern.ch/doc/
master/classTTree.html, accessed: 2023-06-12 (2023).

[29] A. Dorigo, P. Elmer, F. Furano, A. Hanushevsky, XROOTD - a highly
scalable architecture for data access, WSEAS Transactions on Comput-
ers 4 (2005) 348–353.

[30] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virta-
nen, et al., Array programming with NumPy, Nature 585 (7825) (2020)
357–362. doi:10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2

[31] V. E. Padulano, I. D. Kabadzhov, E. Tejedor Saavedra, E. Guiraud,
P. Alonso-Jordá, Leveraging state-of-the-art engines for large-scale data
analysis in high energy physics, Journal of Grid Computing 21 (1) (2023)
9. doi:10.1007/s10723-023-09645-2.
URL https://doi.org/10.1007/s10723-023-09645-2

[32] Pandas, Homepage, https://pandas.pydata.org/, accessed on 2019-
10-10 (2022).

[33] Rizzi, Andrea, Petrucciani, Giovanni, Peruzzi, Marco, A further reduc-
tion in cms event data for analysis: the nanoaod format, EPJ Web Conf.
214 (2019) 06021. doi:10.1051/epjconf/201921406021.
URL https://doi.org/10.1051/epjconf/201921406021

[34] J. Adelman-McCarthy, T. Boccali, R. Caspart, A. D. Peris, M. Fischer,
et al., Extending the distributed computing infrastructure of the cms
experiment with hpc resources, Journal of Physics: Conference Series
2438 (1) (2023) 012039. doi:10.1088/1742-6596/2438/1/012039.
URL https://dx.doi.org/10.1088/1742-6596/2438/1/012039

[35] Jupyter, Jupyterhub documentation., https://jupyter.org/hub, ac-
cessed: 2023-06-12 (2023).

[36] Jupyter, Jupyterlab documentation., https://jupyter.org/, accessed:
2023-06-12 (2023).

[37] Sylabs Inc., Singularity documentation, https://docs.sylabs.io/
guides/3.5/user-guide/introduction.html, accessed: 2023-06-12
(2023).

25

https://root.cern.ch/doc/master/classTTree.html
https://root.cern.ch/doc/master/classTTree.html
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/s10723-023-09645-2
https://doi.org/10.1007/s10723-023-09645-2
https://doi.org/10.1007/s10723-023-09645-2
https://doi.org/10.1007/s10723-023-09645-2
https://pandas.pydata.org/
https://doi.org/10.1051/epjconf/201921406021
https://doi.org/10.1051/epjconf/201921406021
https://doi.org/10.1051/epjconf/201921406021
https://doi.org/10.1051/epjconf/201921406021
https://dx.doi.org/10.1088/1742-6596/2438/1/012039
https://dx.doi.org/10.1088/1742-6596/2438/1/012039
https://doi.org/10.1088/1742-6596/2438/1/012039
https://dx.doi.org/10.1088/1742-6596/2438/1/012039
https://jupyter.org/hub
https://jupyter.org/
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html


[38] MircoT, dciangot, comp-dev-cms-ita/dask-remote-jobqueue: v2.0.5-
zenodo (may 2023). doi:10.5281/zenodo.7920958.
URL https://doi.org/10.5281/zenodo.7920958

[39] I. Rose, MircoT, M. Rocklin, J. Tomlinson, J. Signell, et al., comp-dev-
cms-ita/dask-labextension: v2.0.2-zenodo (May 2023). doi:10.5281/
zenodo.7920951.
URL https://doi.org/10.5281/zenodo.7920951

[40] VOMS, VOMS documentation, https://italiangrid.github.io/
voms/index.html, accessed: 2023-06-12 (2023).

[41] M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado, et al.,
Rucio: Scientific data management, Computing and Software for Big
Science 3 (1) (2019) 11. doi:10.1007/s41781-019-0026-3.
URL https://doi.org/10.1007/s41781-019-0026-3

[42] Vaandering, Eric, Transitioning cms to rucio data managment, EPJ Web
Conf. 245 (2020) 04033. doi:10.1051/epjconf/202024504033.
URL https://doi.org/10.1051/epjconf/202024504033

[43] CMS Collaboration, CMSJMECalculators, https://gitlab.cern.ch/
cp3-cms/CMSJMECalculators/-/tree/main, accessed: 2023-06-12
(2023).

[44] S. Badoer, et al., The Legnaro-Padova distributed Tier-2: challenges
and results, J. Phys. Conf. Ser. 513 (2014) 032090. doi:10.1088/1742-
6596/513/3/032090.

[45] influxdata, Telegraf documentation, https://www.influxdata.com/
time-series-platform/telegraf/, accessed: 2023-06-12 (2023).

[46] influxdata, InfluxDB documentation, https://www.influxdata.com/,
accessed: 2023-06-12 (2023).

[47] Giampaolo Rodola, psutil documentation, https://

psutil.readthedocs.io/en/latest/, accessed: 2023-06-12 (2023).

26

https://doi.org/10.5281/zenodo.7920958
https://doi.org/10.5281/zenodo.7920958
https://doi.org/10.5281/zenodo.7920958
https://doi.org/10.5281/zenodo.7920958
https://doi.org/10.5281/zenodo.7920951
https://doi.org/10.5281/zenodo.7920951
https://doi.org/10.5281/zenodo.7920951
https://doi.org/10.5281/zenodo.7920951
https://doi.org/10.5281/zenodo.7920951
https://italiangrid.github.io/voms/index.html
https://italiangrid.github.io/voms/index.html
https://doi.org/10.1007/s41781-019-0026-3
https://doi.org/10.1007/s41781-019-0026-3
https://doi.org/10.1007/s41781-019-0026-3
https://doi.org/10.1051/epjconf/202024504033
https://doi.org/10.1051/epjconf/202024504033
https://doi.org/10.1051/epjconf/202024504033
https://gitlab.cern.ch/cp3-cms/CMSJMECalculators/-/tree/main
https://gitlab.cern.ch/cp3-cms/CMSJMECalculators/-/tree/main
https://doi.org/10.1088/1742-6596/513/3/032090
https://doi.org/10.1088/1742-6596/513/3/032090
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/

	1 Introduction
	2 Related work
	3 Tools
	3.1 ROOT
	3.2 Dask
	3.3 XRootD

	4 The analysis facility paradigm
	4.1 Enhancing analysis turnaround
	4.2 Federated, distributed, heterogeneous resources

	5 Developing a facility model: the strategy
	5.1 Implementation pillars
	5.2 A declarative and scalable software framework
	5.3 A flexible and distributed computing infrastructure

	6 Exploring distributed RDataFrame on geographic cluster at INFN
	6.1 Infrastructure of the analysis facility
	6.2 Prototype usage of the infrastructure

	7 Commissioning and first benchmarks with a real use case
	7.1 The analysis use case
	7.2 Legacy approach
	7.3 RDataFrame approach
	7.4 Benchmark procedure and metrics
	7.5 Results
	7.6 Discussion

	8 Conclusions and future outlook
	9 Acknowledgments

