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Abstract: We study black hole linear perturbation theory in a four-dimensional Schwarzschild
(anti) de Sitter background. When dealing with a positive cosmological constant, the correspond-
ing spectral problem is solved systematically via the Nekrasov-Shatashvili functions or, equiva-
lently, classical Virasoro conformal blocks. However, this approach can be more complicated to
implement for certain perturbations if the cosmological constant is negative. For these cases, we
propose an alternative method to set up perturbation theory for both small and large black holes
in an analytical manner. Our analysis reveals a new underlying recursive structure that involves
multiple polylogarithms. We focus on gravitational, electromagnetic, and conformally coupled
scalar perturbations subject to Dirichlet and Robin boundary conditions. The low-lying modes of
the scalar sector of gravitational perturbations and its hydrodynamic limit are studied in detail.
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1 Introduction

In this paper, we study analytical approaches to solve the differential equations describing black
hole (BH) linear perturbation theory. The concrete problem consists in the study of Einstein
equations with a cosmological constant, approximated around a particular BH solution to first
order in perturbation theory.1 Because of the symmetries of the Schwarzschild (anti) de Sitter
solution, the linearised equations separate and reduce to a second-order linear ODE of Fuchsian
type; we refer to [1] for a review and a list of references. In the particular cases we study in this
work, the relevant equation has four or five regular singularities. Fuchsian equations appear in
many fields of theoretical and mathematical physics, and the relevance of the parametric analysis
of their solutions and the corresponding connection coefficients goes well beyond the application
to BH perturbation theory. In this paper, we employ two distinct, complementary strategies to
analytically study such equations.

First, by following modern developments in the context of the supersymmetric gauge theories,
we tackle such problems using the Nekrasov-Shatashvili (NS) functions [2] (see Appendix A for
their definition). These functions have been shown to be building blocks to compute quantum
periods [2–6], eigenfunctions [7–13], Fredholm determinants [14, 15], and connection coefficients
[12] for Fuchsian differential equations and their irregular limits. These techniques were recently
applied to studying spectral problems describing black hole perturbation theory. Initially intro-
duced in [16] for the study of quasinormal modes (QNMs) in four-dimensional asymptotically flat
black holes, this approach has been generalized to various gravitational backgrounds and extends
beyond the QNMs computation [17–34].2 Other interesting related results have been elaborated
in [41–64].

In this paper, we further extend this approach to the framework of four-dimensional BHs
in the de Sitter (dS) background. More precisely, we compute the relevant connection formulae
following the methodology developed in [12], where exact connection formulae for the Heun equa-
tion were obtained from the classical limit of Virasoro conformal blocks, which is, in turn, related
to NS functions.3

The approach based on the NS functions can be applied in its simplest form only when the
boundary conditions of the spectral problem are imposed at singular points of the differential
equation. However, there are cases when this condition is not satisfied. For example, when
considering gravitational or conformally coupled scalar perturbations of black holes in a four-
dimensional anti-de Sitter (AdS) spacetime, see Sec. 4. Moreover, the NS functions expansion is
potent but only in some regions of parameter space, and to explore other regions, it is sometimes
necessary to resort to other analytic methods. This happens, for instance, in studying the so-
called hydrodynamic limit.4 In these situations, we analyze the equation using an alternative
"polylog" method where we reduce the relevant problem to recurrence relations which we solve
in terms of multiple polylogarithms.

This paper is structured as follows.
In Sec. 2, we briefly describe the NS and the polylog methods and comment on their imple-

mentation.
1Higher orders in perturbation theory can also be studied with the methods we develop here, but this is beyond

the scope of this work.
2See also [35–40] for another approach based on Painlevé equations.
3For a discussion of these connection formulae from a mathematical viewpoint, see [65].
4Indeed, the natural expansion in this limit does not map to the instanton expansion in gauge theory. This

obstacle may be overcome by using TBA techniques for the computation of the NS functions and the corresponding
quantum periods, see [29–31]. However, we will not explore this path in this work.
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In Sec. 3, we study conformally coupled scalar, electromagnetic, and vector-type gravitational
perturbations of four-dimensional Schwarzschild de Sitter black holes (SdS), where both methods
are applicable. We use the Heun connection formulae to obtain the quantization condition in
Sec. 3.1, which gives the quasinormal frequencies as series expansions in the radius of the black
hole horizon Rh. In Sec. 3.2, we apply the polylog method and express the corresponding wave
functions in terms of multiple polylogarithms in one variable. By gluing the relevant local so-
lutions, we determine the frequencies of the QNMs, and the resulting series expansions in Rh

agree with the ones obtained in Sec. 3.1. In all computed orders, we find purely imaginary QNM
frequencies in agreement with the earlier observations made by numerical computations [66–68].

In Sec. 4, we study the same class of perturbations of Sec. 3 in the case of four-dimensional
Schwarzschild anti-de Sitter black holes (SAdS) imposing Dirichlet boundary conditions at spatial
infinity. For these perturbations, one of the boundary conditions is imposed at a regular point
of the equation. Hence the method based on the NS function is more complicated to implement,
and we apply the polylog method instead. As in the Schwarzschild de Sitter case, the two local
solutions are described in terms of multiple polylogarithms in one variable. We check our analytic
results against the numerical values of [69].5 Our results suggest that the leading order of the
imaginary part of the QNM frequencies is −cR2ℓ+2

h in the small Rh approximation, where ℓ is the
angular quantum number and c is a real positive constant depending on all the quantum numbers.
This is consistent with earlier numerical results obtained via the Breit-Wigner approach [71] and
some earlier analytic studies in [72].

In Sec. 5, we study the low-lying modes of the scalar sector of gravitational perturbations
of Schwarzschild anti-de Sitter black holes in the big Rh limit. In this Section, we use Robin
boundary conditions at spatial infinity, which preserve the metric at the boundary and, as such,
are more suited for holography. The corresponding differential equation has five regular singular
points, and we use the polylog method to compute the relevant local solutions as Taylor expansions
in 1/Rh. To make this computation more efficient, we introduce three local regions. In the region
near the horizon, the local solution is given in terms of multiple polylogarithms in several variables
(all but the first argument are constants). The local solutions are described in terms of Laurent
polynomials in the other two regions. The QNM frequencies are obtained by gluing the three
local solutions, and the first two orders in 1/Rh agree with the results from [73]. Theoretically,
one can compute the QNM frequency up to any given order in 1/Rh. However, due to the
exponential growth of the number of polylogarithm functions that appear in each order in the
perturbative expansion, we could determine the QNM frequency up to order 1/R6

h. By taking
the hydrodynamic limit, we can also reproduce the results from [74] and obtain four additional
corrections in the expansion.

Appendix A introduces the notations and conventions used in the main text for the NS
functions. Appendix B reports relevant identities between classical polylogarithms and multiple
polylogarithms and relations for multiple zeta values. In Appendix C, we prove by induction on
K ∈ N that the local solutions at order RK

h in Sec. 3 and Sec. 4 are given in terms of multiple
polylogarithms in one variable of weight at most K. Appendix D presents the linear basis of
multiple polylogarithms in several variables that describes the local solution near the horizon in
Sec. 5. We also show how nontrivial identities arise between multiple polylogarithms at a fixed
level. In Appendix E, we write the Heun connection formula relevant to the Schwarzschild anti-
de Sitter case. We obtain the first order correction in Rh of the QNM frequency with n = 0,

5With the current version of Mathematica (12.1 or higher), one can use the numerical implementation of Heun
functions to get very accurate results for the QNM frequencies for most quantum numbers, see e.g [70].

– 3 –



ℓ = s = 1, which matches the result obtained in Sec. 4, although the procedure is more involved
and less efficient.

The interested reader can find the relevant Mathematica files on https://github.com/
GlebAminov/BH_PolyLog. More precisely

• In the folders "(A)dS General n,l,s", we list explicit results for some quantum numbers
(n, ℓ, s) and also include executable files to make the computation at higher quantum num-
bers. This can be done just by specifying (n, ℓ, s) at the beginning of the file "Nf4−exe" in
the subfolder "Executable files". In the subfolder "Heun wave functions", one can find the
expansion to the first orders of the solutions to the differential equation in both left and
right regions.

• In the folder "Robin general m", we include the relevant orders for our computations of
the solutions to the differential equation in the three regions in the files "WFL−Robin.m",
"WFM−Robin.m", and "WFR−Robin.m". Moreover, in the file "Robin−QNM", we list
the first seven orders of the expansion of the low-lying QNM frequencies ωk and their
hydrodynamic limit in the file "Robin−QNM−hydro".

More details are given in the README.md and Comments.md files on the GitHub link above. At-
tached to the arXiv submission, the notebooks with the computed frequencies can also be found.
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2 Methodology

2.1 The gauge theory approach

Following [16–28], our first approach to study black hole perturbation theory is to identify the
differential equations coming from the gravitational side with the differential equations originating
from Seiberg-Witten theory or, equivalently, satisfied by conformal blocks with a degenerate
primary insertion; hence use the NS functions to solve the corresponding spectral problem. In
particular, we apply this method when dealing with the Heun equation, which is a second-order
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differential equation with four regular singularities, for which the connection formulae are given
in [12]. The Heun equation is given by(

d2

dz2
+

(
γ

z
+

δ

z − 1
+

ϵ

z − t

)
d

dz
+

αβz − q

z(z − 1)(z − t)

)
ψ(z) = 0,

α+ β + 1 = γ + δ + ϵ.

(2.1)

To study the quasinormal modes equation, the gauge theory approach is useful when the
boundary conditions are imposed at the singularities of the problem, like for the SdS case, analyzed
in Sec. 3. Thanks to the power-like behaviour of the local solutions near the singular points, it
is easy to identify the two local solutions selected by the two boundary conditions. These two
solutions are then used to quantize the frequencies, taking into account the connection formula
that relates them. In these cases the quantization condition is expressed in terms of the quantum
periods of the underlying SW geometry, computed via NS functions (see formula (3.17) and
Appendix A for the conventions used). If, as it happens in the SAdS case analyzed in Sec. 4, at
least one of the boundary conditions is imposed in a regular point of the differential equation, the
gauge theory approach is less effective: it is still possible to solve the problem with the connection
formulae, but the quantization condition for the frequency will not be expressed in terms of NS
functions only (see formula (E.3)).

By introducing an appropriate change of variables, we can always transform the perturbation
equation with four regular singularities in the Heun form and send the singularities in z =
0, 1, t,∞. In all the cases in which the connection formulae are used, we will put us in a regime in
which the complex modulus of t is small, |t| ≪ 1, and such that the relevant connection formula
is among local solutions in z = t and in z = 1. The independent solutions of the Heun equation
for z ∼ t are

ψ
(t)
− (z) = Heun

(
t

t− 1
,
q − tαβ

1− t
, α, β, ϵ, δ,

z − t

1− t

)
,

ψ
(t)
+ (z) = (z − t)1−ϵHeun

(
t

t− 1
,
q − (β − γ − δ)(α− γ − δ)t− γ(ϵ− 1)

1− t
,

− α+ γ + δ,−β + γ + δ, 2− ϵ, δ,
z − t

1− t

)
,

(2.2)

and the ones for z ∼ 1 are

ψ
(1)
− (z) =

(
z − t

1− t

)−α

Heun

(
t, q + α(δ − β), α, δ + γ − β, δ, γ, t

1− z

t− z

)
,

ψ
(1)
+ (z) =(z − 1)1−δ

(
z − t

1− t

)−α−1+δ

Heun

(
t, q − (δ − 1)γt− (β − 1)(α− δ + 1),

− β + γ + 1, α− δ + 1, 2− δ, γ, t
1− z

t− z

)
.

(2.3)

In terms of the connection matrices of hypergeometric functions

Mθθ′(a1, a2; a3) =
Γ(−2θ′a2)Γ(1 + 2θa1)

Γ
(
1
2 + θa1 − θ′a2 + a3

)
Γ
(
1
2 + θa1 − θ′a2 − a3

) , (2.4)

– 5 –



where θ, θ′ = ±, the connection formula for small t from z ∼ t to z ∼ 1 is given by [12]

t−
1
2
+a0∓at(1− t)−

1
2
+a1e∓

1
2
∂atF (t)ψ

(t)
± (z) =(∑

σ=±
M±σ(at, a; a0)M(−σ)−(a, a1; a∞)tσae−

σ
2
∂aF (t)

)
(1− t)−

1
2
+ateiπ(a1+at)e

1
2
∂a1F (t)ψ

(1)
− (z)+

(∑
σ=±

M±σ(at, a; a0)M(−σ)+(a, a1; a∞)tσae−
σ
2
∂aF (t)

)
(1− t)−

1
2
+ateiπ(−a1+at)e−

1
2
∂a1F (t)ψ

(1)
+ (z).

(2.5)
Within the examples analyzed in this paper, the gauge theory approach is particularly effec-

tive in computing quasinormal modes at large ℓ in the SdS case (see subsection 3.1.2).

2.2 The multi polylog approach

When the gauge theory approach proves less effective, we solve the QNM spectral problem order
by order in some suitably chosen expansion parameter κ and for fixed values of some quantum
numbers.6 For instance, we can consider perturbation theory in Rh or R−1

h , Rh being the radius
of the black hole horizon. This is like doing Hamiltonian perturbation theory, and although the
numerical implementation of this algorithm is well known (see e.g. [1, 77–79]), if we want an
analytical answer, the calculation quickly becomes cumbersome. In particular, it is necessary to
find suitable stratagems for higher orders. For the situations we consider in this work, we find
that higher orders can be determined systematically using the underlying structure that involves
multiple polylogarithms (similar techniques are also used to compute Feynman integrals in QCD,
see e.g. [80–85] and references therein). In this section, we sketch the general idea while we give
more details in concrete examples; see Sec. 3, Sec. 4, and Sec. 5. Mathematica notebooks are also
attached.

The spectral problems we are interested in are two-point boundary value problems associated
with differential equations on the sphere with n regular singularities.7 More precisely, we will
focus on the cases n = 4, 5. The boundary conditions are fixed at generic points z = z1 and
z = z2, not necessarily coinciding with the position of the regular singularities.

For the problems at hand, we can use the following Ansatz for the eigenfunctions in each
region of the patch decomposition8 of the n-punctured sphere

ψ (z) = f0 (z) +
∑
K≥1

fK(z)κK . (2.6)

Sometimes, it is useful to introduce additional regions with respect to the minimal patch decom-
position to optimize the efficiency of perturbation theory. Different scalings in κ of the regular
singularities of the equation under the scale redefinitions z → κcz determine the possible num-
ber of regions. We assume that in the differential equation (and therefore in the position of the

6Here "suitably chosen" means that the 0th order is solvable in terms of relatively simple functions (e.g. rational
functions or logarithms). In addition, we would like good convergence properties for the expansions in κ in the
spectral problem. We believe that this is the case, at least for the example of Sec. 3 where κ is related to the
instanton counting parameter t of the underlying gauge theory (see [25, 75, 76] for the study of convergence
properties in gauge theory).

7The case of irregular singularities will appear elsewhere [86].
8We remark that the expansions in z of the local solutions, performed around a given singularity of the problem,

hold in an open disk centered in that singularity. The radius of this disk is equal to the distance between that
singularity and the closest one.
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singularities too), only integer powers of κ appear, therefore c ∈ Z. The position of the regular
singularities can depend on the perturbation parameter κ. Therefore, in the perturbative expan-
sion in κ ∼ 0, the singularities will tend to cluster differently as we change the critical parameter
c. These different clustering schemes define the different regions for the perturbative expansion
and determine a finer structure in the patch decomposition, which also considers the different
geometric situations describing the potential terms in the differential equation. For a nontrivial
example, see Sec. 5. At each order in κ, ψ (z) is determined by a second-order equation

(fK(z))′′ + φ (z) (fK(z))′ + ν(z)fK(z) + ηK(z) = 0, (2.7)

which we solve by using the method of variation of parameters. The functions φ and ν in (2.7)
are known,9 and the non-homogeneous part of the differential equation ηK(z) is fully determined
by the solutions to the previous orders fm with m ≤ K− 1. Let f0, g0 be the two solutions of the
homogeneous part of (2.7).10 Then we write the generic solution to (2.7) as11

fK(z) = bKg0(z) + cKf0(z)− g0(z)

∫ z

f0(z
′)
ηK(z′)

W0(z′)
dz′ + f0(z)

∫ z

g0(z
′)
ηK(z′)

W0(z′)
dz′, (2.8)

where W0 is the Wronskian of the two leading order solutions

W0 ≡ f0 (g0)
′ − (f0)

′ g0. (2.9)

In each region, the integration constants cK ’s can be absorbed into a normalization of the solution,
and they can be fixed to zero without loss of generality. Imposing the two boundary conditions
and gluing the local solutions fixes the integration constants bK and gives the quantization of the
frequency of the perturbation. If either z1,2 has a non-trivial dependence on the parameter κ, the
boundary condition is applied by expanding ψ (z1,2) in powers of κ. In the following sections, we
will be more detailed in describing how this expansion works case by case.

In principle, the relations (2.8) allow us to compute the wave function up to any given order
in κ. However, to implement this algorithm in practice, there is still a non-trivial step: explicitly
compute the integrals in (2.8). In all our examples, the leading order solutions are described
in terms of rational or logarithmic functions, and their Wronskian is a rational function. Hence
the wave function at order κK is described in terms of multiple polylogarithms of weight K and
lower. In the cases analyzed in sections 3 and 4, up to order R4

h, one can avoid using multiple
polylogarithms due to identities (B.6)–(B.9) presented in Appendix B. However, from order R5

h

on, the expansions in multiple polylogarithms cannot be avoided to our knowledge. Here we
would like to mention that a more general statement about multiple polylogarithms in several
variables is well-known. According to Theorem D of [87], not every multiple polylogarithm of
weight ≥ 4 can be expressed as a finite combination of classical polylogarithms. Since, in Sections
3 and 4, we only deal with multiple polylogarithms in a single variable, we can push this bound
to weight 5.

9The wave equation is understood to be Taylor expanded as ψ′′ +
∑+∞

H=0 κ
H(φHψ

′ + νHψ) = 0, so that one
finds explicitly ηK =

∑K
L=1(φLf

′
K−L + νLfK−L). In the text φ0 = φ and ν0 = ν.

10These are the two solutions of the leading order equation, g0 being the one that does not satisfy the relevant
boundary condition.

11The integrals appearing in (2.8) are the indefinite ones.
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3 Perturbations of de Sitter black holes in four dimensions

3.1 Schwarzschild de Sitter black hole

The metric describing the de Sitter Schwarzschild black hole in four dimensions (SdS4) is

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2 (3.1)

with
f(r) = 1− 2M

r
− Λ

3
r2, (3.2)

where M is the mass of the black hole and Λ > 0 is the cosmological constant. In what follows,
we will fix Λ = 3, and then we suppose M to be in the range 0 < M2 < 1/27 to have three real
roots for the equation rf(r) = 0, since otherwise we would have unphysical solutions. We will
denote these roots by

Rh, R±, (3.3)

where Rh ∈]0, 1/
√
3[ is the smallest positive real root, and R± are real and given in terms of Rh

by

R± =
−Rh ±

√
4− 3R2

h

2
. (3.4)

We will study a class of linear perturbations of the SdS4 geometry with spin s ∈ {0, 1, 2}, encoded
in the following radial equation (see [1] and reference therein)(

∂2r +
f ′(r)

f(r)
∂r +

ω2 − V (r)

f(r)2

)
Φ(r) = 0, (3.5)

where the potential is

V (r) = f(r)

[
ℓ(ℓ+ 1)

r2
+ (1− s2)

(
2M

r3

)]
. (3.6)

For s = 0, this equation describes conformally coupled scalar perturbations; for s = 1, elec-
tromagnetic perturbations; and for s = 2, odd (Regge–Wheeler or vector-type) gravitational
perturbations.

The boundary conditions we impose on the wave function are the presence of only ingoing
modes at the event horizon Rh and the presence of only outgoing modes at the cosmological
horizon R+. These conditions can be made explicit by introducing the tortoise coordinate r∗
defined by

dr∗ =
dr

f(r)
. (3.7)

In terms of r∗, the behavior of Φ near Rh, R+ is described by plane waves, so we ask that Φ
behaves as exp(−iωr∗) for r ∼ Rh and as exp(iωr∗) for r ∼ R+. The latter radial equation
apparently has five regular singular points located at r = {0, Rh, R±,∞}. However, as pointed
out in [88], under the change of variable

z(r) =
r(R+ −R−)

R+(r −R−)
, (3.8)

and redefinition of the wave function

ψ(z) = z−γ/2(z − 1)−δ/2(z − t)−ϵ/2
√
f(r)

R−(R+ −R−)

R+(r −R−)
Φ(r), (3.9)

– 8 –



where
t =

Rh(R− −R+)

R+(R− −Rh)
,

γ = 1− 2s,

δ = 1− 2i ω R+

(R+ −Rh)(R+ −R−)
,

ϵ = 1 +
2iωRh

1− 3R2
h

,

(3.10)

the singularity at infinity is removed, and the equation becomes a Heun equation (2.1) with

α = 1− s+
2i ω R−

(R− −Rh)(R− −R+)
,

β = 1− s,

q =
ℓ(ℓ+ 1)

R+(R− −Rh)
+

(1− s)2Rh

Rh −R−
−

s(1− s)R2
−

R+(Rh −R−)
.

(3.11)

In the z coordinate, the horizon r = Rh is mapped to z = t, the cosmological horizons r = R±
are mapped to z = 1 and z = ∞, respectively, while the origin, r = 0, is mapped to z = 0.

The boundary conditions described for Φ imply the following behaviors for the function ψ:

ψ(z) ∼ 1 for z ∼ 1,

ψ(z) ∼ (z − t)1−ϵ for z ∼ t.
(3.12)

We now want to obtain the analytic formula from which the quasinormal modes can be
computed in the limit where t is small, 0 < t≪ 1, or, equivalently, Rh is small, Rh ≪ 1. For this
purpose, we write the following dictionary for the gauge parameters in terms of Heun’s parameters
and gravitational quantities (see appendix A for the conventions used):

t =
Rh(R− −R+)

R+(R− −Rh)
,

a0 =
1− γ

2
= s ,

a1 =
1− δ

2
=

i ω R+

(R+ −Rh)(R+ −R−)
,

at =
1− ϵ

2
= − iωRh

1− 3R2
h

,

a∞ =
α− β

2
=

i ω R−
(R− −Rh)(R− −R+)

,

u(0) =
−2q + 2tαβ + γϵ− t(γ + δ)ϵ

2(t− 1)
.

(3.13)

3.1.1 Connection Problem

The computation of quasinormal mode frequencies is obtained by imposing purely ingoing bound-
ary conditions at the event horizon z = t and purely outgoing at the positive cosmological horizon
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z = 1. The independent solutions of the Heun equation for z ∼ t are given in (2.2), and the ones
for z ∼ 1 are given in (2.3). Taking into account the boundary conditions (3.12), the connection
coefficient between ψ(t)

+ and ψ(1)
+ has to be set equal to zero.

The connection formula [12]12 for small t from z ∼ t to z ∼ 1 is given by

t−
1
2
+a0−at(1− t)−

1
2
+a1e−

1
2
∂atF (t)ψ

(t)
+ (z) =(∑

σ=±
M+σ(at, a; a0)M(−σ)−(a, a1; a∞)tσae−

σ
2
∂aF (t)

)
(1− t)−

1
2
+ateiπ(a1+at)e

1
2
∂a1F (t)ψ

(1)
− (z)+

(∑
σ=±

M+σ(at, a; a0)M(−σ)+(a, a1; a∞)tσae−
σ
2
∂aF (t)

)
(1− t)−

1
2
+ateiπ(−a1+at)e−

1
2
∂a1F (t)ψ

(1)
+ (z).

(3.14)
This leads us to the quantization condition for the quasinormal modes in the form∑

σ=±
M+σ(at, a; a0)M(−σ)+(a, a1; a∞)tσae−

σ
2
∂aF (t) = 0, (3.15)

which can be rewritten as

Γ(1 + 2a)2Γ( 12 − a+ at + a0)Γ(
1
2 − a+ at − a0)Γ(

1
2 − a− a1 − a∞)Γ( 12 − a− a1 + a∞)

Γ(1− 2a)2Γ( 12 + a+ at + a0)Γ(
1
2 + a+ at − a0)Γ(

1
2 + a− a1 − a∞)Γ( 12 + a− a1 + a∞)

t−2ae∂aF (t) = 1.

(3.16)
Note that this is nothing but (see Appendix A)

exp (∂aFfull(t)) = 1, (3.17)

where Ffull(t) is the full NS free energy, since the ratio of Gamma functions in (3.17) represents
the 1-loop corrections.

3.1.2 QNMs at large ℓ

The previous quantization condition gets simplified in the large ℓ limit, where we neglect non-
perturbative effects in ℓ of the form Rℓ

h. This regime was studied for AdS5 black holes in [23, 90],
since in this limit, the quasinormal mode frequencies become real, and, via the AdS/CFT corre-
spondence, they compute the dimensions of certain operators in the holographic conformal field
theory, see [91–98] and references therein. In the dS case, in this regime, the quasinormal mode
frequencies are purely imaginary, and their interpretation from the point of view of holography
is, at present, less clear (at least to us).

In the leading order in Rh, a ∼ ±
(
ℓ+ 1

2

)
. Choosing the plus sign, the quantization condition∑

σ=±
M+σ(at, a; a0)M(−σ)+(a, a1; a∞)tσae−

σ
2
∂aF (t) = 0 (3.18)

simplifies to
M+−(at, a; a0)M++(a, a1; a∞)t−ae

1
2
∂aF (t) = 0, (3.19)

since the other term is exponentially suppressed. This condition is satisfied if and only if

Γ(2a)Γ(1− 2at)Γ(1 + 2a)Γ(−2a1)

Γ(12 + a+ at + a0)Γ(
1
2 + a+ at − a0)Γ(

1
2 + a− a1 − a∞)Γ(12 + a− a1 + a∞)

= 0, (3.20)

12For the computation of the traces of monodromies of the Heun equation, see also [9, 89].
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which is solved at the poles of the Gamma functions in the denominator. Only the last one
admits poles among the four Gamma functions in the denominator, consistently with our regime
Rh ≪ 1. These are given by condition

1

2
+ a− a1 + a∞ = −n, with n ∈ Z≥0. (3.21)

Expanding the parameters in Rh and writing ω as

ω =
∞∑
k=0

ωkR
k
h, (3.22)

we obtain from this condition

ω0 = i(−ℓ− n− 1);

ω1 = 0;

ω2 = − i

8ℓ(ℓ+ 1)(2ℓ+ 1)(2ℓ− 1)(2ℓ+ 3)

{
ℓ4
(
60n2 + 60n+ 22

)
+ ℓ3

(
120n2 + 48ns2 + 122n+

+ 24s2 + 45
)
+ ℓ2

[
8n2

(
3s2 + 2

)
+ n

(
96s2 + 19

)
+ 8s4 + 44s2 + 8

]
+

+ ℓ
[
4n2

(
6s2 − 11

)
+ n

(
24s4 − 43

)
+ 20s4 − 4s2 − 15

]
+ 12(n+ 1)2s2

(
s2 − 2

)}
;

ω3 = 0;

...
(3.23)

Higher orders can also be computed systematically, but their expressions are cumbersome; hence
we do not write them explicitly. Notice that in this limit, all the odd orders ω2k+1 seem to vanish.
Moreover, these formulas are correct for finite ℓ up to order R2ℓ+1

h , as will be shown in section
3.2. We also note that we expect the series (3.22) to be convergent13 in Rh, the need for non-
perturbative effects in ℓ can be inferred from the fact that at higher orders this series develops
some unphysical poles in ℓ. For instance, for s = 0 we have an unphysical pole at ℓ = 0

ω4|s=0 =
i(n+ 1)4

ℓ
+O

(
ℓ0
)
. (3.24)

3.2 Perturbation theory around dS4

3.2.1 QNMs in pure dS4

The pure de Sitter case can be obtained by taking the limit t→ 0 or, equivalently, Rh → 0. As the
event horizon disappears in this limit, it is enough to consider only the region near the cosmological
horizon r = R+. In this limit, the Heun equation becomes a Hypergeometric equation, whose
solutions are

zs−ℓ−1
2F1(−ℓ,−ℓ− iω0;−2ℓ; z), zℓ+s

2F1(ℓ+ 1, ℓ+ 1− iω0; 2ℓ+ 2; z), (3.25)

13The convergence can be inferred from the convergence of the NS functions.
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where ω0 is the leading order term in the Rh expansion of the frequency (3.22). Since ℓ is a
non-negative integer, the hypergeometric functions get truncated to polynomials as

2F1 (−ℓ,−ℓ− iω0;−2ℓ; z) =
ℓ∑

k=0

(−1)k
(
ℓ

k

)
(−ℓ− iω0)k

(−2ℓ)k
zk,

2F1 (ℓ+ 1, ℓ+ 1− iω0; 2ℓ+ 2; z) = (−1)ℓ
(z
2

)−2ℓ−1 ((2ℓ+ 1)!!)2

2 (2ℓ+ 1)

Γ (iω0 − ℓ)

Γ (iω0 + ℓ+ 1)
×

×
ℓ∑

k=0

(−1)k
(
ℓ

k

)
(−ℓ− iω0)k

(−2ℓ)k

(
1− (1− z)iω0

(−ℓ+ iω0)k
(−ℓ− iω0)k

)
zk.

(3.26)
The boundary conditions require that the radial part of the gravitational perturbation Φ (r) is
well-defined as r → 0. Using the dictionary for the wave function (3.9), we rewrite the latter
requirement in terms of ψ (z):

zγ/2ψ (z) = z−s+1/2ψ (z) ∼ 1 for z ∼ 0. (3.27)

Thus, we have to pick a regular solution at z ∼ 0 and consider an additional factor of z−s+1/2.
Looking at the first solution from (3.25), we can see that z−ℓ−1/2

2F1(−ℓ,−ℓ− iω0;−2ℓ; z) is not
regular at z ∼ 0 for any allowed value of ℓ. Indeed, the other combination gives the solution,
which is regular at z ∼ 0:

zℓ+1/2
2F1 (ℓ+ 1, ℓ+ 1− iω0; 2ℓ+ 2; z) ∼ zℓ+1/2 ∼ 0. (3.28)

In addition, the boundary conditions at the cosmological horizon require the eigenfunction to be
regular with a well-defined Taylor expansion at z = 1. This is possible only if iω0 ∈ Z≥0 (due to
the term (1− z)iω0 in (3.26)). Moreover, to avoid the poles in the Gamma functions in (3.26):

Γ (iω0 − ℓ)

Γ (iω0 + ℓ+ 1)
=

ℓ∏
k=−ℓ

(iω0 − k)−1 , (3.29)

we must exclude all the values of iω0 that are smaller or equal to ℓ (these poles indicate that the
second expression in (3.26) have to be rewritten in terms of log (z − 1) for iω0 = ℓ, ℓ−1, . . . ,−ℓ+
1,−ℓ). This gives the well-known quantization condition for the QNM frequencies of the pure
dS4:

iω0 = ℓ+ n+ 1, with n ∈ Z≥0. (3.30)

The corresponding eigenfunction is

fL0 (z) = zℓ+s
n∑

k=0

(−1)k
(
n

k

)
(ℓ+ 1)k
(2ℓ+ 2)k

zk . (3.31)

We also note that the discarded solution is

gL0 (z) = zs−ℓ−1 (1− z)ℓ+n+1
ℓ∑

k=0

(−1)k
(
ℓ

k

)
(n+ 1)k
(−2ℓ)k

zk . (3.32)

The Wronskian between fL0 and gL0 is

WL
0 (z) = −(2ℓ+ 1)z2s−2(1− z)ℓ+n. (3.33)
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3.2.2 Left Region

Here we call the region near the cosmological horizon r = R+ left region due to the analogy with
the corresponding quantum mechanical problem on the complex plane. The local variable in this
region is z, and the leading order solutions in Rh (and so in t) of the Heun equation (2.1) are
given in (3.31), (3.32). Expanding in small Rh the solution and the frequencies we get for the
outgoing solution ψ(1)

− at the cosmological horizon

ψ
(1)
− (z) =

ℓ! (2ℓ+ n+ 1)!

(2ℓ+ 1)! (ℓ+ n)!
f0 (z) +

(−2)ℓ iω1

(iω1 + ℓ+ n+ 1)

n! (2ℓ− 1)!!

(ℓ+ n)!
g0(z) +O (Rh) , (3.34)

where ω1 is a coefficient in the Rh expansion of the frequency (3.22). Since g0(z) blows up as
z → 0, it should not be present in the leading order of the wave function in the left region. Hence,
we require ω1 = 0. On the other hand, the incoming wave solution at the cosmological horizon is

ψ
(1)
+ (z) ∼ (z − 1)iω (1 + iω log (z − 1)Rh) +O

(
R2

h

)
. (3.35)

After we fix ω1 = 0 and proceed with the general method described in Sec. 2.2, the logarithm
function log (z − 1) appears in higher orders in Rh (and t). The only source of this function is
the incoming wave solution (3.35), and we will be canceling any contributions of log (z − 1) by
fixing the coefficients bK in the perturbative expansion of the wave function (2.6), (2.8).

After establishing the boundary condition, we compute the integrals in (2.8). As we show
in Appendix C, these integrals are described in terms of the multiple polylogarithms in a single
variable:

Lis1,...,sk (z) =
∞∑

n1>n2>···>nk≥1

zn1

ns11 . . . nskk
. (3.36)

The latter admits for s1 ≥ 2:

z
d

d z
Lis1,...,sk (z) = Lis1−1,...,sk (z) (3.37)

and for s1 = 1, k ≥ 2:

(1− z)
d

d z
Li1,s2,...,sk (z) = Lis2,...,sk (z) . (3.38)

The weight of the multiple polylogarithm Lis1,...,sk (z) is s1 + · · ·+ sk, and the level is k. At each
order tK+1, both integrands in (2.8) are linear combinations of the following terms with maximum
weight K: ∑r1

m=0 αm z
m

zi1 (z − 1)j1
log (z)p1 ,

∑r2
m=0 βm z

m

zi2 (z − 1)j2
Lis1,...,sk (1− z) , (3.39)

where r1,2, i1,2, j1,2, p1 are some non-negative integers, and 0 ≤ p1 ≤ K, s1+ · · ·+ sk ≤ K. After
taking the integrals, the only new functions that appear are multiple polylogarithms of maximum
weight K+1. Moreover, both integrals in (2.8) are linear combinations of terms similar to (3.39):∑r1+1

m=0 γm z
m

zi1−1 (z − 1)j1−1
log (z)p1 ,

∑r2+1
m=0 δm z

m

zi2−1 (z − 1)j2−1
Lis1,...,sk (1− z) (3.40)

and terms containing new combinations of logarithms and multiple polylogarithms that were not
present in (3.39):

log (z − 1) , log (z)K+1 , Liŝ1,...,ŝk̂ (1− z) , (3.41)
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where the maximum weight is K + 1:

ŝ1 + · · ·+ ŝk̂ ≤ K + 1. (3.42)

One of the differences between (3.39) and (3.40) is that r1,2, i1,2, and j1,2 are shifted by 1 or −1.
These shifts are specific to the left region of the SdS4 case (and even then may be subjected to
reevaluation for some values of quantum numbers n, ℓ, and s that we did not consider). In the
right region, the shifts are different but can be determined on the case by case basis (the details
can be found in the attached Mathematica files, where we distinguish two regimes with ℓ ≤ n and
ℓ > n). Even though the optimal choice of shifts depends on the case at hand, there is a choice
of big enough shifts applicable to all quantum numbers for both regions.

To summarize, we reduced the problem of solving the initial ODE in a given order in t to a
system of linear equations on the coefficients in front of the functions from (3.41) and γm, δm.14

The resulting corrections fLK (z) to the wave function in the left region are linear combinations of
the following functions:

l1∑
m=−k1

ζLm z
m log (z)p1 ,

l2∑
m=−k2

ξLm z
m Lis1,...,sk (1− z) , (3.43)

where k1,2, l1,2, p1 are some non-negative integers, 0 ≤ p1 ≤ K, s1 + · · · + sk ≤ K, and ζLm, ξ
L
m

are z-independent quantities.

3.2.3 Right Region

The right region is near the event horizon r = Rh, or z = t. We introduce the local variable
zR = t/z so that the horizon is at zR = 1. In the zR variable, the equation (2.1) reads

d2ψ(zR)

(dzR)2
+

(
2− γ

zR
+

δt

zR(zR − t)
+

ϵ

zR(zR − 1)

)
dψ(zR)

dzR
+

αβt− qzR

(zR)2(zR − 1)(zR − t)
ψ(zR) = 0.

(3.44)
In the remaining part of this subsection, we will mostly omit the R index on the z variable (except
for the cases where it could be confusing). We take as leading order solutions in Rh (and so in t)
of this equation

fR0 (z) =z−ℓ−s
2F1(−ℓ− s,−ℓ+ s;−2ℓ; z) =

=z−ℓ−s
ℓ−s∑
k=0

(s− ℓ)k (−ℓ− s)k
(−2ℓ)k

zk

k!
,

gR0 (z) =z
−s

{
ℓ−1∑

m=−s

asℓmz
−m + log(1− z)

ℓ∑
m=s

bsℓmz
−m

}
,

(3.45)

with

bsℓm =
(−1)ℓ+m+1

(m+ s)!(m− s)!

(2ℓ+ 1)!

(ℓ+ s)!(ℓ− s)!

(ℓ+m)!

(ℓ−m)!
,

asℓm =− bsℓm(Hℓ+s +Hℓ−s −Hm+s −Hm−s).

(3.46)

14Here we simplified the index structure of γm and δm, the full list of indices should be γm(p1) and
δm(p1, s1, . . . , sk).
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Figure 1. Branch cuts (dashed red lines) on the complex zR plane for de Sitter black holes.

The Wronskian between fR0 and gR0 is

WR
0 (z) =

2ℓ+ 1

z2s(z − 1)
. (3.47)

Here we would like to comment on the choice of the logarithm function log
(
1− zR

)
in the solution

gR0 . The other possible choice of the logarithm could be, for example, log
(
zR − 1

)
. This choice

dictates what functions will appear in higher orders in t and affects the Rh expansion of the
frequency ω. Throughout the paper, we work with the principal value of the complex logarithm,
and thus the change in the argument affects the position of the branch cut on the complex z plane.
Our wave function ψ (z) can be viewed as an analytic continuation of the physical solution on half
of the real line r ≥ 0. In the de Sitter case, the coordinate transformation z (r) is (3.8) with real
parameters R±. Since we want the solution to be continuous across the real slice Rh < r < R+,
the branch cut should not cross the interval t < zR < 1, where t is small and positive. This leaves
us with log

(
1− zR

)
, and the branch cut runs from zR = 1 to zR = +∞. The other logarithm

function that appears in higher orders in t is log
(
zR
)
, and the corresponding branch cut runs

from zR = 0 to zR = −∞ also avoiding the interval t < zR < 1 (see Figure 1).
The boundary condition near the horizon requires us to keep the solution corresponding to

the incoming wave and discard the one corresponding to the outgoing wave. According to (2.2),
the two solutions behave like

outgoing wave : ψ
(t)
−
(
zR
)
∼ 1, zR ∼ 1,

incoming wave : ψ
(t)
+

(
zR
)
∼
(
1− zR

)1−ϵ
, zR ∼ 1.

(3.48)

Since 1 − ϵ = O(Rh), both waves in the rhs of (3.48) have Taylor expansions in Rh that start
with 1. One must also consider the higher orders in Rh to distinguish the two expansions. The
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incoming wave solution has a particular dependence on the logarithm function log (1− z) in each
order in Rh (or t):

ψ
(t)
+ (z) ∼ 1− 2iω0 log (1− z)Rh +O

(
R2

h

)
, z ∼ 1. (3.49)

In the leading order in Rh both ψ(t)
− and ψ(t)

+ are given by the same function fR0 (z). Since the other
function gR0 (z) contains the logarithm, it enters ψ(t)

+ in the higher orders in Rh. The constants
bK from (2.8) are fixed by matching with the logarithmic behavior of the incoming wave solution
(3.49) in each order in Rh.

The integrals in (2.8) are again described in terms of the multiple polylogarithms in a single
variable (see Appendix C). We construct the linear basis of functions for each integral in the way
it was done in the previous section for the left region. The only difference is that we need to
add powers of the second logarithm function log (1− z) to formulas (3.39), (3.40) and (3.41). In
particular, the second integrand from (2.8) at order tK of the form

gR0 (z)
ηRK(z)

WR
0 (z)

(3.50)

will have a maximum weight K because the logarithm function log (1− z) is present in the leading
order solution gR0 (z). The resulting integral, however, will be of the same weight K due to the
pole structure in (3.50). Eventually, the corrections fRK (z) to the wave function in the right region
are linear combinations of the following functions of maximum weight K:

l1∑
m=−k1

ζRm z
m log (1− z)p1 log (z)p2 ,

l2∑
m=−k2

ξRm z
m log (1− z)p3 Lis1,...,sk (1− z) ,

(3.51)

where k1,2, l1,2, p1,2,3 are some non-negative integers, and 0 ≤ p1+p2 ≤ K, p3+s1+ · · ·+sk ≤ K.

3.2.4 Results for QNM frequencies

The final step in the procedure described in Section 2.2 is to glue the local solutions by requiring
that the wave function and its first derivative are continuous at the intersection of the two regions.
There is a certain freedom in choosing the intersection point as long as it lies in the region of
convergence of both local solutions. We choose the point z = t1/2, which is the same as zR = t1/2.
Note that the expansions of ψL,R

(
zL,R

)
are given as series expansions around zL,R = 1 up to

orders tmL,R :

ψL (z) =fL0 (z) +

mL∑
K=1

fLK(z)tK +O
(
tmL+1

)
,

ψR
(
zR
)
=fR0

(
zR
)
+

mR∑
K=1

fRK(zR)tK +O
(
tmR+1

)
.

(3.52)

What happens when we take zL,R ∼ t1/2 and expand for a small t? Some terms fLK(z)tK in
ψL (z) will contribute to orders lower than tK . This could lead to a reshuffling, where, for
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example, fL1 (z)t becomes the leading order contribution at z ∼ t1/2. This happens when ℓ ≥ 1,
as seen from (3.31):

fL0

(
t1/2
)
∼ t(s+ℓ)/2, fL1

(
t1/2
)
t ∼ t(s−ℓ+1)/2. (3.53)

However, since we are within the radius of convergence of ψL (z), this reshuffling involves only a
finite number of terms. For all values of quantum numbers we have considered, the reshuffling is
superficial and goes away after the frequency is set to one of the quasinormal modes.

The continuity condition

∂z log

(
ψL(z)

ψR(t/z)

)∣∣∣∣
z=t1/2

= 0 (3.54)

can be equivalently stated as

ψL
(
t1/2
)
= C (t)ψR

(
t1/2
)
, ∂zψ

L (z)

∣∣∣∣
z=t1/2

= C (t) ∂zψ
R (t/z)

∣∣∣∣
z=t1/2

, (3.55)

where C(t) is a normalization factor. The advantage of (3.55) is that we can use one of the
equations to understand which orders in t we can trust when expanding (3.52) at zL,R = t1/2,
then use the other one to fix the frequencies.

Using Mathematica, we compute the local solutions up to orders mL = 10 and mR = 7. This
allows us to determine the Rh expansion of the frequency up to order R9

h or less depending on
the value of ℓ. In all computed orders, we find the real part of the quasinormal modes is zero,
which agrees with the earlier observations made by numerical computations [66–68]. The results
for the imaginary part of the quasinormal mode frequencies ωn,ℓ,s, starting from n = 0, are

Im (ω0,0,0) = − 1− 5

8
R2

h − 3R3
h −

[
1287

128
+ 2 log (2Rh)

]
R4

h +

[
π2 − 119

4
− 15 log(2Rh)

]
R5

h+

+

[
25

3
π2 − 102 621

1024
− 271

4
log (2Rh)− 5 log2(2Rh) + 6 ζ(3)

]
R6

h +O
(
R7

h

)
,

Im (ω0,1,1) = − 2− 7

12
R2

h +
7123

1728
R4

h + 8R5
h +

[
2 757 809

124 416
+

32

3
log (2Rh)

]
R6

h−

− 4

27

[
13 + 72π2 − 468 log(2Rh)

]
R7

h +O
(
R8

h

)
,

Im (ω0,2,2) = − 3− 27

40
R2

h +
51 423

16 000
R4

h − 72 333 747

3 200 000
R6

h − 72

5
R7

h +

[
60 278 884 503

512 000 000
−

− 144

5
log (2Rh)

]
R8

h +
9

50

[
625 + 240π2 − 1008 log (2Rh)

]
R9

h +O
(
R10

h

)
.

(3.56)

– 17 –



Let us also report the results for n = 1:

Im (ω1,0,0) =− 2− 17

4
R2

h − 24R3
h −

[
9791

64
+ 32 log (2Rh)

]
R4

h +
[
32π2 − 654− 384 log (2Rh)

]
R5

h+

+

[
1408

3
π2 − 1 770 481

512
− 3276 log (2Rh)− 256 log2 (2Rh) + 384 ζ (3)

]
R6

h +O
(
R7

h

)
,

Im (ω1,1,1) =− 3− 21

8
R2

h +
4137

128
R4

h + 72R5
h +

[
249 879

1024
+ 144 log (2Rh)

]
R6

h+

+
[
303− 216π2 + 1188 log (2Rh)

]
R7

h +O
(
R8

h

)
,

Im (ω1,2,2) =− 4− 71

30
R2

h +
1910 399

108 000
R4

h − 44 927 058 551

194 400 000
R6

h − 768

5
R7

h +

[
685 871 572 615 439

279 936 000 000
−

−2048

5
log (2Rh)

]
R8

h +
64

225

[
2880π2 − 53− 10 656 log (2Rh)

]
R9

h +O
(
R10

h

)
.

(3.57)
Some of the results presented above were shortened for the reader’s convenience. The full ex-
pressions and more expansions of frequencies for other choices of ℓ and s can be found in the
attached Mathematica files. The irrational numbers entering these QNM frequencies are log(2)
and multiple zeta values.

4 Perturbations of anti-de Sitter black holes in four dimensions

The metric describing the AdS4 Schwarzschild black hole is given by (3.1), with Λ < 0. We denote
the roots of rf(r) = 0 by

Rh, R±, (4.1)

where, for Λ < 0 , R± are complex conjugate and given by

R± =
−Rh ± i

√
3R2

h −
12
Λ

2
, (4.2)

in terms of the BH horizon Rh ∈ R>0. We will fix Λ = −3 and study the same perturbations of the
Schwarzschild de Sitter case, described by equation (3.5). According to AdS4/CFT3 holography,
the conformally coupled scalar field is dual to scalar operators of conformal dimension ∆ = 1 or
∆ = 2, from the relation µ2 = ∆(∆ − 3). The main difference with the SdS4 case lies in the
boundary conditions we impose on the solution. Indeed, we will still require the presence of only
ingoing modes near the horizon, but we will impose the vanishing Dirichlet boundary condition
at the AdS boundary.15

With the following change of variables

z(r) =
r(R− −R+)

R−(r −R+)
, (4.3)

and redefinition of the wave function

ψ(z) = z−γ/2(z − 1)−δ/2(z − t)−ϵ/2
√
f(r)

R+(R− −R+)

R−(r −R+)
Φ(r), (4.4)

15In the context of AdS/CFT, these are not always the more physically relevant boundary conditions. Alterna-
tively, one often considers Robin boundary conditions, which we discuss in Sec. 5.
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with

t =
Rh(R+ −R−)

R−(R+ −Rh)
,

γ = 1− 2s,

δ = 1− 2i ω R−
(R− −Rh)(R− −R+)

,

ϵ = 1− 2iωRh

1 + 3R2
h

,

(4.5)

the singularity at infinity is removed, and the equation (3.5) becomes a Heun equation (2.1) with

α = 1− s+
2i ω R+

(R+ −Rh)(R+ −R−)
,

β = 1− s,

q =
ℓ(ℓ+ 1)

R−(Rh −R+)
+

(1− s)2Rh

Rh −R+
−

s(1− s)R2
+

R−(Rh −R+)
.

(4.6)

In these coordinates, the horizon is at z = t while the boundary is at

z∞ = 1− R+

R−
. (4.7)

We will also consider the small black hole limit, Rh ≪ 1.
The Dirichlet boundary conditions in terms of the ψ function are given by

ψ(z) ∼ 1 for z ∼ t,

ψ(z∞) = 0.
(4.8)

Notice that the AdS boundary (z = z∞) is not a singular point of the perturbation equation.
This makes the approach based on the Seiberg-Witten theory less effective. One can write the
quantization condition using the connection formulae between Heun functions, but in this case,
an expansion of the Heun functions in Rh is needed. We will report some results in this direction
in appendix E.

4.1 QNMs in pure AdS4

The pure AdS4 case can be recovered in the limit t → 0 or, equivalently, Rh → 0. In this limit,
the z variable is given by

z =
2r

r − i
, (4.9)

and the AdS boundary is at z = 2. The leading order solutions in t of the Heun equation (2.1)
are given by

zs−ℓ−1
2F1(−ℓ,−ℓ+ ω0;−2ℓ; z), zℓ+s

2F1(ℓ+ 1, ℓ+ 1 + ω0; 2ℓ+ 2; z), (4.10)

where ω0 is the leading order term in the Rh expansion of the frequency (3.22). As in the de
Sitter case, these hypergeometric functions reduce to (3.26), where we replace −iω0 by ω0.
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The first boundary condition from (4.8) tells us that the wave function ψ (z) is regular at
z = 0. This singles out the second solution from (4.10). Then, the second boundary condition at
z = 2 requires the following expression to vanish:

2F1(ℓ+ 1, ℓ+ 1 + ω0; 2ℓ+ 2; 2) = 4−ℓ−1 (2ℓ+ 1)!

ℓ!

Γ
(
−ω0−ℓ

2

)
Γ
(
−ω0+ℓ+2

2

) [1 + (−1)ℓ−ω0+1
]
, (4.11)

which gives the quantization condition for the QNM frequencies of the pure AdS4

ω0 = ℓ+ 2n+ 2, n ∈ Z≥0 or ω0 = −ℓ− 2n− 2, n ∈ Z≥0. (4.12)

Here we have two branches of frequencies, positive and negative, and one is related to another by
the complex conjugation of the radial part of the perturbation Φ (r).

In the following subsections, we will perturb around the pure AdS case to obtain the correc-
tions for the Schwarzschild anti-de Sitter small black holes. Following the same logic as in the
de Sitter case, we will divide the space into two regions: left (L) and right (R). The left region
describes the physical space near the AdS boundary with r → ∞, and the right one is the space
near the horizon r = Rh. After having determined the expansion of the solution ψ(z) in each
region up to certain orders in the expansion parameter t, we require that the function ψ (z) and
its first derivative are continuous in a point in the intersection of two regions, which we can fix
at z = t1/2 (other values of z are possible as long as they lie inside the convergence radius of the
two solutions).

4.2 Left Region

The local coordinate in the left region is z, and the AdS boundary is at z∞, which has the following
expansion in Rh:

z∞ =
3R2

h + 4 + i Rh

√
3R2

h + 4

2R2
h + 2

= 2 + iRh −
R2

h

2
+O

(
R3

h

)
. (4.13)

The wave function in the left region ψL (z) satisfies the same Heun equation (2.1). The form of
the leading order solutions depends on which branch of frequencies we choose in (4.12). For the
negative branch ω0 = −ℓ− 2n− 2, we have

fL0 (z) =zℓ+s
2n+1∑
m=0

(−1)m
(
2n+ 1

m

)
(ℓ+ 1)m
(2 ℓ+ 2)m

zm,

gL0 (z) =zs−ℓ−1
ℓ∑

m=0

(−1)m
(
ℓ

m

)
(−2 ℓ− 2n− 2)m

(−2 ℓ)m
zm,

(4.14)

and for the positive branch ω0 = ℓ+ 2n+ 2:

fL0 (z) =
zℓ+s

(1− z)2n+ℓ+2

2n+1∑
m=0

(−1)m
(
2n+ 1

m

)
(ℓ+ 1)m
(2 ℓ+ 2)m

zm,

gL0 (z) =
zs−ℓ−1

(1− z)2n+ℓ+2

ℓ∑
m=0

(−1)m
(
ℓ

m

)
(−2 ℓ− 2n− 2)m

(−2 ℓ)m
zm.

(4.15)
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For both branches, the Wronskian can be written in terms of ω0 as

WL
0 (z) = −(2ℓ+ 1)z2s−2(1− z)−ω0−1. (4.16)

We will apply the perturbative method described in Section 2.2 to both positive and negative
values of ω0, but the final result is straightforward. The only difference between the two branches
is the sign of the real part of the frequency expansion (3.22), which again corresponds to complex
conjugation of Φ (r).

The boundary condition in the left region is simply ψL (z∞) = 0. Since fL0 (2) = 0 and
gL0 (2) ̸= 0, we get the following perturbative expansion for the wave function in the left region:

ψL (z) = fL0 (z) +
∑
K≥1

fLK(z)tK , (4.17)

where fLK(z) are given by (2.8). The constants bK in (2.8) are fixed by expanding ψL (z∞) in
powers of t and requiring the coefficients in this expansion to vanish.

As we explain in Appendix C, the integrals in (2.8) are described in terms of the multiple
polylogarithms in a single variable (3.36). Since the weights of the multiple polylogarithms
appearing at order tK are less or equal to K, we can construct a linear basis of functions in
which the integrals in (2.8) can be expanded. We take the same steps (3.39)–(3.41) as we did
in the SdS4 case to do this. The only difference is that we add the second logarithm function
log (z − 1) to (3.39). To be more precise, the integrands in (2.8) at order tK+1 are given by the
linear combination of the following functions:∑r1

m=0 αm z
m

zi1 (z − 1)j1
log (z − 1)p1 log (z)p2 ,∑r2

m=0 βm z
m

zi2 (z − 1)j2
log (z − 1)p3 Lis1,...,sk (1− z) ,

(4.18)

where r1,2, i1,2, j1,2, p1,2,3 are some non-negative integers and p1+p2 ≤ K, p3+s1+ · · ·+sk ≤ K.
The reasoning behind our choice of the branches of the logarithm functions log (z) and log (z − 1)
is the same as in Section 3.2.3. We want the wave function ψ (z) to be continuous across the real
slice Rh < r < +∞. In the SAdS4 case, the coordinate transformation z (r) is given by (4.3) with
complex parameters R±. Taking into account that r and Rh are real, we have from (4.3):

(Re (z)− 1)2 + Im (z)2 = 1. (4.19)

Thus, the real slice is approximately half the circle with the center in z = 1 on the complex z plane
(see Figure 2). It starts at z = t and ends at z = z∞. Simple analysis shows that Im (t) > 0 and
Im (z∞) > 0 when Rh > 0. This justifies our choice of logarithm functions since both branch cuts
do not cross the real slice. On the other hand, if one picks log (1− z) instead of log (z − 1), the
corresponding branch cut would touch the real slice at the point z = 2 when evaluating ψL (z∞).
This, in turn, would lead to incorrect results for QNM frequencies.

4.3 Right region

In the right region, we introduce local coordinate

zR =
t

z
. (4.20)
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Figure 2. Branch cuts (red lines) on the complex z plane for anti-de Sitter black holes.

The horizon is now situated at zR = 1. The wave function in the right region ψR
(
zR
)

satisfies
the following equation in terms of zR:

d2ψR

(dzR)2
+

(
2− γ

zR
+

δ t

zR (zR − t)
+

ϵ

zR (zR − 1)

)
dψR

dzR
+

αβ t− q zR

(zR)2 (zR − 1) (zR − t)
ψR = 0. (4.21)

Suppressing the R index on zR, the two leading order solutions are given by

fR0 (z) =z−ℓ−s
ℓ+s∑
m=0

(−1)m
(
ℓ+ s

m

)
(s− ℓ)m
(−2 ℓ)m

zm,

gR0 (z) =z−s

{
ℓ−1∑

m=−s

asℓm z
−m + log (1− z)

ℓ∑
m=s

bsℓm z
−m

}
,

(4.22)

where the constants asℓm, bsℓm can be determined for any ℓ ≥ s ≥ 0 as

asℓm = −bsℓm (Hℓ+s +Hℓ−s −Hm+s −Hm−s) ,

bsℓm =
(−1)ℓ+m+1

(m+ s)! (m− s)!

(2 ℓ+ 1)!

(ℓ+ s)! (ℓ− s)!

(ℓ+m)!

(ℓ−m)!
.

The expressions in (4.22) are independent of which branch of frequencies we choose in (4.12)
because the leading order of (4.21) does not contain ω0. The Wronskian of fR0 and gR0 is given by

WR
0 (z) =

2 ℓ+ 1

z2s(z − 1)
. (4.23)
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The boundary condition in the right region tells us that ψR is regular at zR = 1. Thus, we can
write the following perturbative expansion:

ψR (z) = fR0 (z) +
∑
K≥1

fRK(z)tK , (4.24)

where fRK(z) are computed using (2.8). Unlike in the left region, the choice of the logarithm
function in gR0 (z) is unimportant. This is due to the boundary condition that requires can-
celing contributions of log (1− z) in each order tK . The resulting corrections fRK (z) are linear
combinations of the following functions of maximum weight K:

l1∑
m=−k1

ζRm z
m log (z)p1 ,

l2∑
m=−k2

ξRm z
m Lis1,...,sk (1− z) , (4.25)

where k1,2, l1,2, p1 are some non-negative integers, and 0 ≤ p1 ≤ K, s1 + · · ·+ sk ≤ K.

4.4 Results for QNM frequencies

To determine the QNM frequencies, we use the continuity condition in the form (3.55):

ψL
(
t1/2
)
= C (t)ψR

(
t1/2
)
, ∂zψ

L (z)

∣∣∣∣
z=t1/2

= C (t) ∂zψ
R (t/z)

∣∣∣∣
z=t1/2

, (4.26)

where ψL,R
(
zL,R

)
are computed up to orders mL,R in t around zL,R = 1:

ψL (z) =fL0 (z) +

mL∑
K=1

fLK(z)tK +O
(
tmL+1

)
,

ψR
(
zR
)
=fR0

(
zR
)
+

mR∑
K=1

fRK(zR)tK +O
(
tmR+1

)
.

(4.27)

Similarly to the SdS4 case, the reshuffling of terms (3.53) occurs in ψL (z) when we take z ∼ t1/2.
For all values of quantum numbers we have considered, this reshuffling is superficial and goes
away after the frequency is set to one of the quasinormal modes.

Using Mathematica, we compute the local solutions up to orders mL = 7 and mR = 8
(sometimes even up to mL = 9 and mR = 10). This allows us to determine the Rh expansion
of the frequency up to order R7

h or less depending on the value of ℓ. In all computed cases, the
imaginary part does not appear before order 2ℓ+ 2 in Rh:

Im (ωn,ℓ,s) ∼ R2ℓ+2
h . (4.28)

As mentioned, the results computed for negative and positive branches of ω0 only differ by the
sign in the real part of the frequency expansion. Below are the results for the real and imaginary
parts of the quasinormal mode frequencies ωn,ℓ,s corresponding to the positive branch, starting
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from n = 0:

Re (ω0,0,0) =2− 4

π
Rh −

(
1

4
+

24

π2

)
R2

h −
(
4π

3
− 94

3π
− 16

π
log (4Rh) +

208

π3
− 112

π3
ζ (3)

)
R3

h +O
(
R4

h

)
,

Im (ω0,0,0) =− 8

π
R2

h −
(
8 +

16

π2

)
R3

h −
(
40π

3
− 65

π
− 128

π
log (2Rh) +

192

π3
− 448

π3
ζ (3)

)
R4

h +O
(
R5

h

)
,

Re (ω0,1,1) =3− 4

π
Rh +

(
27

8
− 140

3π2

)
R2

h −
(
3π − 601

12π
− 18

π
log (2) +

2020

3π3
− 168

π3
ζ (3)

)
R3

h+

+O
(
R4

h

)
,

Im (ω0,1,1) =− 16

π
R4

h −
(
24 +

96

π2

)
R5

h −
(
60π +

579

π
− 264

π
log (2Rh) +

11 536

9π3
− 1344

π3
ζ (3)

)
R6

h+

+O
(
R7

h

)
,

Re (ω0,2,2) =4− 64

15π
Rh +

(
37

6
− 80 896

1125π2

)
R2

h −
(
256π

45
− 1 536 256

10 125π
− 512

45π
log (2) +

120 946 688

84 375π3
−

−57 344

225π3
ζ (3)

)
R3

h +O
(
R4

h

)
,

Im (ω0,2,2) =− 128

5π
R6

h −
(
256

5
+

6144

25π2

)
R7

h +O
(
R8

h

)
.

For n = 1 we have:

Re (ω1,0,0) =4− 40

3π
Rh +

(
25

6
− 5200

27π2

)
R2

h −
(
160π

9
− 45 064

81π
− 800

9π
log (2)− 128

π
log (Rh)+

+
1 200 800

243π3
− 22 400

9π3
ζ (3)

)
R3

h +O
(
R4

h

)
,

Im (ω1,0,0) =− 32

π
R2

h −
(
64 +

2240

9π2

)
R3

h −
(
640π

3
− 4252

3π
− 1920

π
log (2Rh) +

101 120

9π3
−

−35 840

3π3
ζ (3)

)
R4

h +O
(
R5

h

)
,

Re (ω1,1,1) =5− 172

15π
Rh +

(
2071

120
− 791 372

3375π2

)
R2

h −
(
215π

9
− 27 888 631

40 500π
+

40 678

225π
log (2)+

+
5 269 420 724

759 375π3
− 103 544

45π3
ζ (3)

)
R3

h +O
(
R4

h

)
,

Im (ω1,1,1) =− 400

3π
R4

h −
(
1000

3
+

39 904

27π2

)
R5

h −
(
12 500π

9
+

328 711

27π
− 49 880

9π
log (2Rh)+

+
14 315 216

243π3
− 481 600

9π3
ζ (3)

)
R6

h +O
(
R7

h

)
,

Re (ω1,2,2) =6− 384

35π
Rh +

(
675

28
− 12 163 072

42 875π2

)
R2

h −
(
1152π

35
− 49 433 312

42 875π
+

13 824

49π
log (2)+

+
1 544 254 324 736

157 565 625π3
− 442 368

175π3
ζ (3)

)
R3

h +O
(
R4

h

)
,

Im (ω1,2,2) =− 1792

5π
R6

h −
(
5376

5
+

385 024

75π2

)
R7

h +O
(
R8

h

)
.

Some of the results presented above were shortened for the reader’s convenience. The full ex-
pressions and more expansions of frequencies for other choices of n, ℓ, and s can be found in the
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Rh Re (ω0,0,0) −Im (ω0,0,0)

1/16 1.90959612832 0.01366850348
1/18 1.92054810947 0.01043093333
1/20 1.92919836511 0.00820901816
1/50 1.97338628700 0.00111849414
1/100 1.98698625043 0.00026598052

Table 1. Numerical results from conformally coupled scalar QNM frequency expansion with n = 0, ℓ = 0.

Rh Re (ω0,1,1) −Im (ω0,1,1)

1/16 2.913628697405 0.000151017506
1/18 2.924063021823 0.000086542953
1/20 2.932226938543 0.000053055262
1/50 2.973953080307 0.000000967146
1/100 2.987127374910 0.000000055027

Table 2. Numerical results from electromagnetic QNM frequency expansion with n = 0, ℓ = 1.

attached Mathematica files. From these, one can see that the irrational numbers entering these
QNM frequencies are log(2), π, and Euler sums.

Analytically computing fL1 (z) from (4.17), we can also determine the subleading term in the
QNM frequency expansion with n = 0 and ℓ ≥ 1:

ω0,ℓ,s = ℓ+ 2− 22ℓ+2

π

2 ℓ+ s2

ℓ (ℓ+ 1)

((ℓ+ 1)!)2

(2 ℓ+ 2)!
Rh +O

(
R2

h

)
. (4.29)

For small enough values of Rh, our results agree with the numerical ones obtained earlier in [69].
Since the frequency expansions in higher orders in Rh include multiple zeta values (B.11), we
use different identities of the form (B.12)–(B.16) to compute the corresponding numerical values.
Tables 1–3 present the numerical results from the frequency expansions truncated at R7

h (in the
scalar case with n = l = 0, the expansion was computed up to order R6

h and truncated at the
same order). In these tables, bold digits are the ones that are stable and agree with the numerical
results obtained directly from the Heun function and the continuity condition (3.54). The digit
is considered stable if it does not change when higher orders of Rh are added to the expansion
of the frequency. For example, below are the numerical results from electromagnetic frequency
expansion with n = 0, ℓ = 1 truncated at different powers of Rh = 1/20:

Rh : ω0,1,1 = 2.936338022763,

R2
h : ω0,1,1 = 2.932954718005,

R3
h : ω0,1,1 = 2.932365431000,

R4
h : ω0,1,1 = 2.932257833944− 0.000031830989 i,

R5
h : ω0,1,1 = 2.932232789345− 0.000042370624 i,

R6
h : ω0,1,1 = 2.932227305824− 0.000051050731 i,

R7
h : ω0,1,1 = 2.932226938543 − 0.000053055262 i.

(4.30)
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Rh Re (ω0,2,2) −Im (ω0,2,2)

1/15 3.903277526809 0.000001160789
1/18 3.920419438200 0.000000363885
1/20 3.928811737917 0.000000186778
1/50 3.972361286120 0.000000000619
1/100 3.986303374608 0.000000000009

Table 3. Numerical results from odd gravitational QNM frequency expansion with n = 0, ℓ = 2.

5 Scalar Sector of Gravitational Perturbations - The low-lying modes

Following [99], one can consider a subdivision of gravitational perturbations in different sectors
(scalar, vector, or tensor), whose distinction comes from the expansions in scalar, vector, or tensor
spherical harmonics on the S2 component of AdS4. In Sec. 4 we considered the vector sector of
gravitational perturbations (s = 2). We will now focus on the scalar sector and impose a new
boundary condition at the AdS boundary, namely a Robin boundary condition [73, 100–104], see
also [105] for very recent developments. This choice of boundary condition is motivated by the
AdS/CFT correspondence, and it ensures that the perturbations do not deform the metric on the
boundary of AdS.

From the point of view of the dual CFT, these boundary conditions are related to double-trace
deformations, see for instance [106–108] and references therein. In particular, we will analyze the
so-called low-lying quasinormal frequencies, which, according to AdS/CFT duality, are related
to hydrodynamic modes of the 3d thermal CFT on the boundary [74, 104, 109–116]. We will
therefore expand our quasinormal frequencies for large values of Rh, Rh ≫ 1, differently from the
previous sections. Defining

m = ℓ(ℓ+ 1)− 2 with ℓ ≥ 2, (5.1)

the equation describing the scalar sector of gravitational perturbations in AdS4 can be written
as (see [99, eq. (3.1)] for the definition of the master variable Φ)(

∂2r +
f ′(r)

f(r)
∂r +

ω2 − VS(r)

f(r)2

)
Φ(r) = 0, (5.2)

where
f(r) = 1− 2M

r
+ r2,

VS(r) =
f(r)

(mr + 6M)2

[
m3 +

(
2 +

6M

r

)
m2 +

36M2

r2

(
m+ 2r2 +

2M

r

)]
.

(5.3)

This equation has five regular singularities, located at r = 0, Rh, R±, R5, where

R± =
−Rh ± i

√
4 + 3R2

h

2
, R5 = −

3Rh

(
1 +R2

h

)
m

. (5.4)

The new singularity R5, coming from the potential VS(r), is in the unphysical region r < 0.
Similarly to the previous cases, we introduce the change of variables

z (r) =
Rh

r
(5.5)
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and the new wave function
ψ (z) = r−1eiωr∗Φ (r) . (5.6)

The master equation (5.2) then becomes

ψ′′ (z) +
f′ (z)− 2z−1f (z) + 2i ωR−1

h

f (z)
ψ′ (z)−

(
f′ (z)− 2z−1f (z) + 2i ωR−1

h

z f (z)
+

V (z)

f (z)2

)
ψ (z) = 0,

(5.7)
where

f (z) = (1− z)

(
1 + z + z2 +

z2

R2
h

)
,

V (z) =
f (z)

(mRh + 6Mz)2

[
m3 +

(
2 +

6Mz

Rh

)
m2 +

36M2z2

R2
h

(
m+

2Mz

Rh
+

2R2
h

z2

)]
,

(5.8)

and M is related to Rh via
2M = Rh

(
1 +R2

h

)
. (5.9)

The boundary conditions in terms of the ψ function are given by

ψ(z) ∼ 1 for z ∼ 1,{
d

dz

(
ψ(z)

z

)
+

[
3(1 +R2

h)

m
+
iω

Rh

]
ψ(z)

z

}∣∣∣∣
z=0

= 0.
(5.10)

The five regular singularities of the equation (5.2) have three different scalings with Rh → ∞.
The singularity at r = 0 doesn’t scale, the singularities R± and Rh scale linearly, and R5 scales
as R3

h. Hence, we will divide the space into three different regions and apply the perturbative
method described in Section 2.2.

The three local variables are x = R3
h/(mr)+1/3 for the left region (near the AdS boundary),

y = R2
h/r for the middle region, and z = Rh/r for the right one (near the BH horizon).16 Here

the regions are labeled left and right as they appear on the complex z plane (see Figure 3). From
the point of view of the complex z plane, the left and middle regions represent two zoomings close
to the origin, with different scalings. Considering the normal form of the differential equation
(5.7),

ψ′′(z) + Vz(z)ψ(z) = 0, (5.11)

the potential Vz(z) has the following expansion in 1/Rh

Vz(z) =
z6 + 16z3 − 8

4z2 (z3 − 1)2
+O

(
1

R2
h

)
. (5.12)

The two rescalings x ∼ R2
h z
m and y = Rh z are such that, in both variables, the differential equation

in normal form has a potential, Vx(x) and Vy(y), respectively, with non-vanishing leading order

16We choose to add an intermediate region with local variable y to increase the efficiency of the computation.
According to our estimations (5.21), without the middle region, one would need to compute at least 48 orders in
the expansion of the wave function in the left region (5.20) to get the frequency expansion up to ω5 (assuming we
do not increase the number of corrections computed in the right region). Adding the middle region allows us to
get the same result by computing ψL (x) up to order 15.
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in 1/Rh,

Vx(x) =− 2

x2
+O

(
1

R2
h

)
,

Vy(y) =− 2

y2
+O

(
1

R2
h

)
.

(5.13)

Out of the three, the right region is the one in which it is more challenging to expand the solution
of the differential equation. In particular, the solution involves multiple polylogarithms in several
variables, which we analyze in Appendix D.

Since we will work with Rh ≫ 1, the small parameter is α = 1/Rh, and the frequency
expansion can be written as

ω =
∑
k≥0

ωkα
k. (5.14)

The intersections of the three regions and the boundary points r = Rh,∞ determine three intervals
in which the wave function should be continuous:

x ∈
[
1

3
,
1

3
+

1

αm

]
, y ∈

[
1, α−3/4

]
, z ∈

[
α1/4, 1

]
. (5.15)

From the point of view of x and y, the first two intervals have infinite lengths, their left endpoints
are at finite values and their right endpoints are chosen to meet the next region (and so they
become infinite because of the different scalings of the local variables in powers of Rh). Finally,
we will derive the low-lying QNM frequencies by requiring that the wave function and its first
derivative are continuous at the intersection points y = 1 and z = α1/4. As we explain later, the
second intersection point z = α1/4 is chosen to avoid the reshuffling of terms in the wave function
expansion (5.32).

5.1 Left Region

The left region represents the region close to the AdS boundary, where we impose the Robin
boundary condition. The local variable in this region is

x =
R3

h

mr
+

1

3
=
α−3

mr
+

1

3
, (5.16)

and the AdS boundary is at x = 1/3. The master equation in the left region is obtained by
applying the coordinate transformation z = α2m (x− 1/3) to (5.7) and substituting ψ (z) with
ψL (x). In the leading order in α, we get

∂2x ψ
L (x) +

6

1− 3x
∂x ψ

L (x)− 2 (1− 6x)

x2 (1− 3x)2
ψL (x) +O (α) = 0. (5.17)

The two leading order solutions are

fL0 (x) = 1− 1

3x
, gL0 (x) = x2

(
x− 1

3

)
. (5.18)

Since fL0 satisfies the Robin boundary condition{
d

dx

(
ψL(x)

x− 1
3

)
+
[
3(1 + α2) + i α3mω

] ψL(x)

x− 1
3

}∣∣∣∣
x= 1

3

= 0, (5.19)
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Figure 3. Complex z plane for scalar sector of gravitational perturbations in SAdS4.

the following perturbative expansion for the wave function in the left region can be written:

ψL (x) = fL0 (x) +
∑
K≥1

fLK (x)αK . (5.20)

We do not use (2.8) to compute fLK (x) as they are simple Laurent polynomials in x. The form of
these polynomials depends on whether K is even or odd. The following general result holds for
the first 30 computed orders:

fL2K (x) =

(
x− 1

3

)K−1− 4
3
sin(K π

3 )
2∑

s=−K−1

a2K,s x
s,

fL2K−1 (x) =

(
x− 1

3

)K−3+ 4
3
sin(K π

3 )
2∑

s=0

a2K−1,s x
s,

(5.21)

– 29 –



where the coefficients aK,s depend on the parameters m and ωi. For example, we have for
K = 1, 2, 3, 4:

fL1 (x) = 0, fL3 (x) = −imω0

(
x− 1

3

)
,

fL2 (x) =

(
x− 1

3

)
1

3x2
, fL4 (x) =

(
x− 1

3

)(
1

9x3
− 1

3x2
− imω1

)
.

(5.22)

In each order in α, the contribution of gL0 is fixed by the Robin boundary condition. The contri-
bution of fL0 is arbitrary and can be absorbed into a normalization of the wave function ψL (x).
We choose the normalization so that fL0 is only present in the leading order.

5.2 Middle Region

To match the wave function expansions in the left and right regions, we introduce an intermediate
region with the local variable

y =
R2

h

r
=
α−2

r
. (5.23)

The master equation in the middle region is obtained by applying the coordinate transformation
z = α y to (5.7) and substituting ψ (z) with ψM (y). In the leading order in α, we get

∂2y ψ
M (y)− 2

y
∂y ψ

M (y) +O (α) = 0. (5.24)

The two leading order solutions are

fM0 (y) = 1, gM0 (y) = y3. (5.25)

Strictly speaking, there is no boundary condition in the middle region. However, there is a way
to use the expansion of the wave function in this region and apply the boundary condition near
the horizon y ∼ α−1. This requires a resummation of infinitely many terms, and the results agree
with the ones obtained using three regions instead of just two. Here we focus on the procedure
with three regions as it allows us to get more orders in the QNM frequency expansion. To justify
our choice of functions fM0 and gM0 , we can either use the gluing procedure or look at the behavior
near the horizon. In the first couple of orders in α, there is no resummation of terms in the wave
function ψM (y) when we take y ∼ α−1. Since near the horizon gM0 (y) ∼ α−3, it can only appear
in orders α3 and higher. This leads to the following perturbative expansion of the wave function:

ψM (y) = fM0 (y) +
∑
K≥1

fMK (y)αK . (5.26)

Similarly to the left region, the corrections fMK (y) are Laurent polynomials of the form

fMK (y) =

K− 4
3
sin(K π

3 )
2∑

s=−K

bK,s y
s, (5.27)

where coefficients bK,s also depend on the parameters m and ωi. Starting from order α3, the
gluing procedure fixes the contribution of gM0 , so we keep the corresponding integration constants

– 30 –



cMK in the expressions for fMK , K ≥ 3. Out of the 27 computed orders, we present the first 4:

fM1 (y) = −m

3y
,

fM2 (y) =
m2

9 y2
− i ω0 y,

fM3 (y) = − m3

27 y3
+
m

3 y
− i ω1 y + cM3 y

3,

fM4 (y) =
m4

81 y4
− 2m2

9 y2
− i ω2 y +

2m

3
cM3 y

2 + cM4 y3.

(5.28)

5.3 Right Region

The local variable in the right region is z, and the event horizon is at z = 1. The leading order
in α of (5.7) is

∂2z ψ (z) +

(
z3 + 2

)
z (z3 − 1)

∂z ψ (z) +O (α) = 0. (5.29)

The two leading order solutions are

fR0 (z) = 1, gR0 (z) = log
(
1− z3

)
. (5.30)

The Wronskian between these solutions is

W0 (z) =
3 z2

z3 − 1
. (5.31)

According to the boundary conditions (5.10), the wave function in the right region is regular
at z = 1. The corresponding perturbative expansion of the wave function is then

ψR(z) = fR0 (z) +
∑
K≥1

fRK (z)αK . (5.32)

The corrections fRK (z) are computed with the help of (2.8), where the constants bK are fixed by
the regularity condition at z = 1. The integrals in (2.8) can be described in terms of the multiple
polylogarithms in several variables:

Lis1,...,sk (z1, . . . , zk) =
∞∑

n1>n2>···>nk≥1

zn1
1 . . . znk

k

ns11 . . . nskk
. (5.33)

For s1 ≥ 2, these functions satisfy

z1 ∂z1Lis1,...,sk (z1, . . . , zk) = Lis1−1,...,sk (z1, . . . , zk) , (5.34)

and for s1 = 1, k ≥ 2,

(1− z1) ∂z1Li1,s2,...,sk (z1, . . . , zk) = Lis2,...,sk (z1z2, z3, . . . , zk) . (5.35)

The weight and level of Lis1,...,sk (z1, . . . , zk) are s1 + · · · + sk and k. When taking the integrals
in (2.8) with the input from this section, we will only encounter multiple polylogarithms with
s1 = s2 = · · · = sk = 1 (see Appendix D for more details). In this case, the weight and level
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are the same. Moreover, all arguments zi with i ≥ 2 are constants and can take one of the three
possible values: 1, u1, and u2. These constants are the third roots of unity

u1 = −1

2
− i

√
3

2
, u2 = −1

2
+
i
√
3

2
(5.36)

that arise in the following decomposition of gR0 (z):

gR0 (z) = log (1− z) + log (1− u1z) + log (1− u2z) . (5.37)

Similarly to the previous cases with multiple polylogarithms, the corrections fRK (z) at order αK

are described in terms of functions Lis1,...,sk (z1, . . . , zk) of weight K and lower. This allows us to
construct a linear basis of functions, in which fRK (z) can be expanded:∑l1

m=−k1
ζRm z

m

(1− u1z)
i1 (1− u2z)

j1
log (1− z)p1 log (1− u1z)

p2 log (1− u2z)
p3 ,

∑l2
m=−k2

ξRm z
m

(1− u1z)
i2 (1− u2z)

j2
log (1− z)p4 log (1− u1z)

p5 log (1− u2z)
p6 Li{1}k (z1, z2, . . . , zk) ,

(5.38)

where i1,2, j1,2, k1,2, l1,2, pj are non-negative integers, and 0 ≤ p1 + p2 + p3 ≤ K, 0 ≤ p4 + p5 +
p6 + k ≤ K. Since the first argument in Li{1}k (z1, z2, . . . , zk) can take one of the three possible
forms

z1 = z, z1 = u1z, or z1 = u2z, (5.39)

we have 3k functions that can enter the basis at level k ≥ 2. However, this number is re-
duced due to the identities that involve multiplication by ordinary logarithm functions log (1− z),
log (1− u1z), and log (1− u2z) (see Appendix D). These identities allow us to use only two forms
of the first argument z1 = u1z and z1 = u2z. The reduced number of multiple polylogarithms
that enter the basis is 8× 3k−3 for k ≥ 3, and just 3 for k = 2:

Li1,1 (u1z, u1) , Li1,1 (u1z, u2) , Li1,1 (u2z, u1) . (5.40)

Using Mathematica, we compute 7 corrections fRK (z); the first two are

fR1 (z) =
ω0√
3
(u1 log (1− u1z)− u2 log (1− u2z)) ,

fR2 (z) =− m

3 z
− i ω2

0

3
√
3
[Li1,1 (u1z, u1) + u1 Li1,1 (u2z, u1)− u2 Li1,1 (u1z, u2) ]+

+
i ω2

0

3
√
3

[
log (1− u1z)

2 − log (1− u2z)
2 − u1 log (1− u1z) log (1− u2z)

]
−

− i ω2
0

3
√
3
log (1− z) [u2 log (1− u1z)− u1 log (1− u2z) ] +

ω1 − i ω2
0√

3
log (1− u2z)−

− u1 ω1 − i u2 ω
2
0√

3
log (1− z) + bR2 g

R
0 (z) ,

where

bR2 =
u1 ω1√

3
+
i ω2

0

3
√
3
[u2 log (1− u1)− u1 log (1− u2)− 3u2 ] . (5.41)
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We estimate the following behavior of fRK (z) as z → 0 based on the obtained results:

K ≥ 1 : fR2K−1 (z) ∼ z2−K , fR2K (z) ∼ z−K . (5.42)

Thus, to avoid the reshuffling of terms, we choose the gluing point between the middle and the
right region to be z = α1/4.

5.4 Results for QNM frequencies

We need two continuity conditions to determine the QNM frequencies, at z = α1/4 and z = α:

ψM
(
α−3/4

)
= CM

R (α)ψR
(
α1/4

)
, ∂zψ

M (z/α)

∣∣∣∣
z=α1/4

= CM
R (α) ∂zψ

R (z)

∣∣∣∣
z=α1/4

,

ψL
(
1/3 + (αm)

−1
)
= CL

M (α)ψM (1) , ∂zψ
L
(
1/3 + z

(
α2m

)−1
) ∣∣∣∣

z=α

= CL
M (α) ∂zψ

M (z/α)

∣∣∣∣
z=α

.

(5.43)
The first condition in (5.43) is used to fix the integration constants cMK , and the second one gives
the coefficients ωk in the QNM frequency expansion (5.14). The first seven computed orders of
the wave function expansion in the right region allow us to determine ωk up to k = 6:

ω0 =

√
m+ 2

2
, ω1 = − im

6
,

ω2 =

√
2m

36
√
m+ 2

+
m

√
m+ 2

108
√
2

[
15 +

√
3π − 9 log (3)

]
,

ω3 =− m (m+ 2)

18
√
3

[Li1,1 (u1, u1) + u1Li1,1 (u2, u1)− u2Li1,1 (u1, u2)] +

+
m (m+ 2)

1296
√
3

[
π2 − 6i π log (3) + 9 (u2 − 3u1) log (3)

2
]
+

+
im (m+ 3)

162

[
9 +

√
3π − 9 log (3)

]
,

ω4 =− im (m+ 2)3/2

54
√
6

[
Li{1}3 (u1, u1, u1)− u1 Li{1}3 (u1, u1, 1)− u1 Li{1}3 (u1, 1, u2)−

−2u2 Li{1}3 (u1, u2, 1)− (u1 ↔ u2)

]
+ . . . ,

ω5 =
m (m+ 2)2

162
√
3

[
Li{1}4 (u1, u1, u1, 1) + u2 Li{1}4 (u1, 1, u1, u1)− 2Li{1}4 (u1, 1, 1, u2)−

− u1 Li{1}4 (u1, 1, u2, 1)− 2u2 Li{1}4 (u1, u2, 1, 1)− u1 Li{1}4 (u1, u2, u2, 1)−

− (u1 ↔ u2)

]
+
m (m+ 2)2

486
√
3

[
3Li{1}4 (u1, 1, u1, 1) + 6u1 Li{1}4 (u1, 1, 1, u1)−

−2u2 Li{1}4 (u2, u2, u1, 1)
]
+ . . . ,

(5.44)

where we shortened the results for ω4 and ω5 for readers convenience. The full results, including
the result for ω6, can be found in the attached Mathematica files. Notice that, as compared to the
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QNM frequencies computed in Sec. 3 and Sec. 4, here the frequencies involve different irrational
numbers, for instance, log 3,

√
3, as well as colored multiple zeta values of level 3.

Upon taking the scaling limit

Rh → ∞, ℓ→ ∞,
2 ℓ

3Rh
→ q, (5.45)

where q stays constant, we reproduce the results for the QNM frequencies of the M2-brane in the
AdS4 background (see Table IV in [74]) which are directly linked to hydrodynamics [109–112].
Also, the following rescaling of the frequency is needed:

w =
2ω

3Rh
. (5.46)

Applying this limit to (5.44), we obtain an expansion of w in q:

w =
∑
k≥1

wk q
k, (5.47)

where w1, w2, and w3 agree with the results from [74], and the new results are

w4 =−
√
3

16
[Li1,1 (u1, u1) + u1Li1,1 (u2, u1)− u2Li1,1 (u1, u2)] +

72 i
√
3 + 24 i π + π2

384
√
3

−

− 12 i
√
3 + i π

64
√
3

log (3) +

√
3

128
(u2 − 3u1) log (3)

2 ,

w5 =− i
√
3

32
√
2

[
Li{1}3 (u1, u1, u1)− u1 Li{1}3 (u1, u1, 1)− u1 Li{1}3 (u1, 1, u2)−

−2u2 Li{1}3 (u1, u2, 1)− (u1 ↔ u2)
]
+ . . . ,

w6 =

√
3

64

[
Li{1}4 (u1, u1, u1, 1) + u2 Li{1}4 (u1, 1, u1, u1)− 2Li{1}4 (u1, 1, 1, u2)−

− u1 Li{1}4 (u1, 1, u2, 1)− 2u2 Li{1}4 (u1, u2, 1, 1)− u1 Li{1}4 (u1, u2, u2, 1)−

− (u1 ↔ u2)

]
+

1

64
√
3

[
3Li{1}4 (u1, 1, u1, 1) + 6u1 Li{1}4 (u1, 1, 1, u1)−

−2u2 Li{1}4 (u2, u2, u1, 1)
]
+ . . . ,

(5.48)

where we shortened the results for w5 and w6 for readers convenience. The full results, including
the result for w7, can be found in the attached Mathematica files. The numerical values of these
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coefficients are
w1 =

1√
2
,

w2 = − i

4
,

w3 = 0.155473446153645...,

w4 = 0.067690388847266... · i,

w5 = −0.010733416957692...,

w6 = 0.013959543659902... · i,

w7 = −0.016615814626711... .

(5.49)

These alternate between real and imaginary parts, precisely as predicted in [104, 113].17

6 Conclusions

This paper focuses on analytical aspects of spectral problems associated with perturbation theory
for four-dimensional (A)dS black holes. We explore these problems using two analytic strategies:
one based on the NS functions and one based on a recursive structure involving multiple poly-
logarithms. Thanks to these tools, we can compute the quasinormal mode frequencies and their
eigenfunctions analytically in various regimes. For instance, we can obtain the series expansion
at large Rh, small Rh, or large spin ℓ (Rh being the BH horizon).

We use the approach based on the NS functions in the context of four-dimensional dS
Schwarzschild black holes. In this setup, the NS functions allow us to compute the large ℓ expan-
sion of QNMs systematically. We find that, up to non-perturbative effects in ℓ, the QNMs are
(negative) imaginary numbers that are even functions of Rh. To include non-perturbative effects
in the spin, switching to the polylog approach is convenient. Once non-perturbative effects are
included, QNMs are no longer even in Rh. But we still find a branch of purely imaginary modes,
thereby providing analytical confirmation of the results obtained through numerical studies in
[66–68, 117]. Exploring the interplay between the NS and polylog approaches would be interest-
ing. In particular, the appearance of multiple polylogarithms and multiple zeta values may be
related to the behavior of the NS functions close to their singular points, see e.g. [118–120].

We extend the polylog method to study conformally coupled scalar, electromagnetic, and
vector-type gravitational perturbations in asymptotically AdS4 Schwarzschild black holes. The
NS functions are less effective for these perturbations because the point at spatial infinity is not a
singular point of the equation.18 Hence, we switch to the polylog method for Dirichlet and Robin
boundary conditions. As an application, we use this technique to study the low-lying modes of
the scalar sector of gravitational perturbations and compute several orders in the 1/Rh expansion.
Even in the hydrodynamic expansion, this allowed us to go beyond the results presently available
in the literature. From the point of view of holography, the polylog method presents finite spin
predictions for the dual 3d CFT. It would be interesting to explore this further in higher spacetime

17We would like to thank S. Grozdanov for useful discussions on this point and for providing us with approximate
numerical values against which we could check our results.

18If we consider massive scalar perturbation instead, the underlying equation has five regular singular points
and spatial infinity is mapped to one of them. In this case, one can use the NS functions for an SU(2) × SU(2)
linear quiver [121]. In addition, for generic mass, the leading order solution does not reduce to a rational function;
hence the polylog approach presented can not be applied straightforwardly.
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dimensions and make contact with past and recent developments in the study of holographic CFTs
[23, 90–98, 106–108, 112, 122].

The technical result we obtained about the perturbation theory of second-order linear differ-
ential equations with Fuchsian (or irregular19) singularities points to the existence of a recursive
structure for their solution involving multiple polylogarithms. It raises the question of whether
there exists a deeper algebraic structure beyond this that could improve the algorithm. This
should allow us to have a higher level of analytic control over the problem at hand. For instance,
it would be interesting to quantify the precise analytic properties of QNM frequencies as functions
of the BH radius and/or other relevant parameters to understand their physical meaning better.
For example, this would allow to detect phase transitions and/or (in)stabilities. These considera-
tions become especially interesting when considering rotating and/or charged black holes. Indeed,
these exhibit a richer structure with intriguing (in)stability features. It would be interesting to
revisit these problems within the approaches presented in this paper.

Let us remark that the polylog method we developed shares similarities with the techniques
used to compute Feynman integrals in Quantum Chromo-Dynamics, see e.g. [80–85] and references
therein.20 Similar techniques also recently appeared in studying higher curvature corrections
to the effective low-energy gravitational theory arising from string scattering diagrams [124–
130]. Although these results are directly related to hyperbolic trajectories, one can use the data
extracted from the amplitudes to determine the parameters of the effective one-body potential of
[131] to be used to describe the gravitational bound states. From the computational viewpoint, the
resulting polylog expansion in such approximation is naturally obtained by computing the relevant
Feynman multiloop integrals in the proper kinematic regime. On the contrary, in the QNMs
regime, the appearance of multiple polylogarithms does not seem to have a direct interpretation
in terms of Feynman multiloop integrals. Moreover, different types of special functions arise
for other gravitational backgrounds and/or other perturbations. For example, when considering
asymptotically flat black holes, there is the appearance of multiple polyexponential functions as
well [86]. It would be interesting to understand this better.

Finally, one of the most challenging and exciting questions would be to go beyond linear
perturbation theory. The NS and polylog methods allow for the computation of the eigenfunctions
and the Green functions, which are essential inputs to go beyond the linear theory.

A NS functions

This appendix reports the notations and conventions used in Sec. 3.1, where the gauge theory
approach is applied to the Heun connection problem. The relevant theory is N = 2 SU(2) gauge
theory with Nf = 4 fundamental hypermultiplets.

If Y is a Young diagram, we denote with (Y1 ≥ Y2 ≥ . . . ) the heights of its columns and with
(Y ′

1 ≥ Y ′
2 , . . . ) the lengths of its rows. For every Young diagram Y and for every box s = (i, j),

we denote the arm length and the leg length of s with respect to the diagram Y as

AY (i, j) = Yj − i, LY (i, j) = Y ′
i − j. (A.1)

Note that we do not require s to be in Y : if this is the case, the arm length and the leg length
are non-negative quantities, but this is not true in general.

19A detailed analysis of the case with irregular singularities, which is relevant for asymptotically flat black holes,
will appear in [86].

20During the writing of this paper, we were informed that Saso Grozdanov is also exploring similar ideas in the
context of AdS5 black holes (particularly the hydrodynamic limit)[123].
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We now introduce the main contributions coming into play for the definition of the instanton
partition function of N = 2 SU(2) gauge theory with fundamental matter. Let us denote with Y⃗ =
(Y1, Y2) a pair of Young diagrams and with |Y⃗ | = |Y1|+ |Y2| the total number of boxes. We denote
with a⃗ = (a1, a2) the v.e.v. of the scalar in the vector multiplet and with ϵ1, ϵ2 the parameters
characterizing the Ω-background. We define the hypermultiplet and vector contribution as [132,
133]

zhyp

(
a⃗, Y⃗ ,m

)
=
∏

k=1,2

∏
(i,j)∈Yk

[
ak +m+ ϵ1

(
i− 1

2

)
+ ϵ2

(
j − 1

2

)]
,

zvec

(
a⃗, Y⃗

)
=

2∏
i,j=1

∏
s∈Yi

1

ai − aj − ϵ1LYj
(s) + ϵ2(AYi

(s) + 1)

∏
t∈Yj

1

−aj + ai + ϵ1(LYi
(t) + 1)− ϵ2AYj

(s)
.

(A.2)
We will always take ϵ1 = 1 and a⃗ = (a,−a). Let us denote with m1,m2,m3,m4 the masses of
the four hypermultiplets and let us introduce the gauge parameters a0, at, a1, a∞ satisfying

m1 = −at − a0,

m2 = −at + a0,

m3 = a∞ + a1,

m4 = −a∞ + a1.

(A.3)

Moreover, we denote with t the instanton counting parameter t = e2πiτ , where τ is related to the
gauge coupling by

τ =
θ

2π
+ i

4π

g2YM

. (A.4)

In the Mathematica programs available at https://github.com/GlebAminov/BH_PolyLog, we
also use the redefined masses Mi, which are related to mi via

mi =Mi +
t

2 (1− t)

4∑
j=0

Mj . (A.5)

The instanton part of the NS free energy is then given as a power series in t by

F (t) = lim
ϵ2→0

ϵ2 log

[
(1− t)−2ϵ−1

2 ( 1
2
+a1)( 1

2
+at)

∑
Y⃗

t|Y⃗ |zvec

(
a⃗, Y⃗

) 4∏
i=1

zhyp

(
a⃗, Y⃗ ,mi

)]
. (A.6)

In the text, we will also refer to the full NS free energy, which contains not only the instanton
part but also the classical and one-loop contributions. This is explicitly given by

Ffull(t) = F (t)− a2 log(t)−
4∑

i=1

ψ(−2)

(
1

2
− a−mi

)
−

4∑
i=1

ψ(−2)

(
1

2
+ a−mi

)
+

+ψ(−2) (1 + 2a) + ψ(−2) (1− 2a) ,

(A.7)

where
ψ(−2)(z) =

∫ z

0
dt log [Γ(t)] . (A.8)
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The gauge parameter a is expressed in a series expansion in the instanton counting parameter
t, obtained by inverting the Matone relation [134, 135]

u(0) = −1

4
− a2 + a2t + a20 + t∂tF (t), (A.9)

where the parameter u(0) is the complex moduli parametrizing the corresponding SW curve.
Explicitly, the expansion reads as follows

a = ±

{√
−1

4
− u(0) + a2t + a20 +

(
1
2 + u(0) − a2t − a20 − a21 + a2∞

)(
1
2 + u(0) − 2a2t

)
2(1 + 2u(0) − 2a2t − 2a20)

√
−1

4 − u(0) + a2t + a20

t+O(t2)

}
.

(A.10)

B Useful facts about multiple polylogarithms in a single variable

There are many identities between polylogarithms and multiple polylogarithms. Below is the
list of identities that are relevant in our case. First, for multiple polylogarithms of the form
Li1,s2,...,sk (z), we have:

Li{1}n (z) =
(−1)n

n!
log (1− z)n . (B.1)

Taking derivatives and using (3.37) and (3.38), it is easy to show by induction that

n ≥ 1 :
n−1∑
k=1

Lik,n−k+1 (z) + 2Lin,1 (z) + log (1− z)Lin (z) = 0, (B.2)

{
m ≥ 1,

n ≥ 1
:

m−1∑
k=1

Lik,m−k+1,n (z) +
n−1∑
k=1

Lim,k,n−k+1 (z) + Lim,1,n (z) + 2Lim,n,1 (z)+

+ log (1− z)Lim,n (z) = 0. (B.3)

Generalizing the last two identities to an arbitrary level, one gets the following identity, which
we use to express Li1,s1,...,sn (z) in terms of multiple polylogarithms Lir1,...,rn+1 (z) with r1 ≥ 2:

n∑
i=1

si−1∑
k=1

Lis1,...,si−1,k,s′i,si+1,...,sn (z) +

n−1∑
i=1

Lis1,...,si,1,si+1,...,sn (z) + 2Lis1,...,sn,1 (z)+

+ log (1− z)Lis1,...,sn (z) = 0, (B.4)

where in the first double sum, we insert index k in the position of si and then move si to the next
position while modifying it as

s′i = si − k + 1. (B.5)

Up to weight 4, all multiple polylogarithms in a single variable can be expressed as ordinary
polylogarithms by combining the above identities and the following ones [136, 137]:

Li2,1 (z) + Li3 (1− z)− log (1− z)Li2 (1− z)− 1

2
log (z) log (1− z)2 − ζ (3) = 0, (B.6)
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Li3,1 (z)− Li4 (z) + Li4 (1− z)− Li4
(

z

z − 1

)
+ log (1− z)Li3 (z) =

1

24
log (1− z)4

−1

6
log (z) log (1− z)3 +

π2

12
log (1− z)2 + ζ (3) log (1− z) +

π4

90
,

(B.7)

Li2,1,1 (z) + Li4 (1− z)− log (1− z)Li3 (1− z) +
1

2
log (1− z)2 Li2 (1− z) =

=
π4

90
− 1

6
log (z) log (1− z)3 ,

(B.8)

4Li3,1 (z) + 2Li2,2 (z)− Li2 (z)2 = 0. (B.9)

There are identities for weight higher than 4, but not enough to express all multiple polylogarithms
as ordinary polylogarithms. For example, we have for weight 5:

Li2,1,1,1 (z) + Li5 (1− z)− log (1− z)Li4 (1− z) +
1

2
log (1− z)2 Li3 (1− z) =

1

6
log (1− z)3 Li2 (1− z) +

1

24
log (z) log (1− z)4 + ζ (5) .

(B.10)

The latter can be checked by taking a derivative and using identity B.1. Throughout the paper,
we choose not to use the powers of polylogarithms in any basis, which reduces the number of
relevant identities.

Multiple zeta values (MZVs) and Euler sums arise when evaluating the quasinormal mode
frequencies:

Lis1,...,sk (1) ≡ ζ (s1, . . . , sk) , Lis1,...,sk (−1) ≡ ζ (−s1, s2, . . . , sk) . (B.11)

Some of these values can be computed using the known relations [138–141] of the form:

a, b > 1 : ζ (a, b) + ζ (b, a) = ζ (a) ζ (b)− ζ (a+ b) , (B.12)

ζ (−2n, 1) =
1

2
ζ (2n+ 1)− 2n− 1

2
η (2n+ 1) +

n−1∑
k=1

η (2 k) ζ (2n+ 1− 2 k) , (B.13)

where
η (x) =

(
1− 21−x

)
ζ (x) . (B.14)

In particular, the following MZVs and Euler sums of weight 5 can be written in terms of Riemann
ζ-functions [141]:

ζ (2, 3) =
9

2
ζ (5)− π2

3
ζ (3) , ζ (3, 2) =

π2

2
ζ (3)− 11

2
ζ (5) , ζ (4, 1) = 2 ζ (5)− π2

6
ζ (3) , (B.15)

ζ (−2, 3) =
51

32
ζ (5)−π

2

8
ζ (3) , ζ (−3, 2) =

41

32
ζ (5)−5π2

48
ζ (3) , ζ (−4, 1) =

π2

12
ζ (3)−29

32
ζ (5) .

(B.16)
Lastly, we need expansions of multiple polylogarithms around z = 1. Such an expansion for

the polylogarithm Lin (z) with n ≥ 1 is given by [142, 143]

Lin (eµ) =
µn−1

(n− 1)!
[Hn−1 − log (−µ)] +

∞∑
k=0

k ̸=n−1

ζ (n− k)
µk

k!
, (B.17)
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whereHn is the n-th harmonic number and |µ| < 2π. To derive the same for Li1,n (z), we integrate
both sides of the following equation:

d
dµ

Li1,n (eµ) =
eµ

1− eµ
Lin (eµ) , (B.18)

where
eµ

1− eµ
= −1

2
− 1

µ
−

∞∑
j=1

B2j
µ2j−1

(2j)!
. (B.19)

Up to a constant of integration c1,n we get:

n ≥ 2 : Li1,n (eµ) = c1,n − ζ (n) log (−µ)− 1

2
Lin+1 (eµ)−

∞∑
k=1

k ̸=n−1

ζ (n− k)
µk

k! k

− 1

(n− 1)!

∞∑
j=0

B2j

(2j)!

µ2j+n−1

2j + n− 1

[
Hn−1 +

1

2j + n− 1
− log (−µ)

]
(B.20)

−
∞∑
j=1

∞∑
k=2j

k ̸=2j+n−1

B2j

(2j)!

ζ (2j + n− k)

(k − 2j)!

µk

k
.

Using (B.11) and the above polylogarithm identities, one obtains the first few coefficients c1,n.
For example, from (B.2) and (B.6)–(B.9), we get

c1,2 = −3

2
ζ (3) , c1,3 = − π4

120
. (B.21)

Now, we can get the expansion for Lim,n (eµ) by consecutively integrating (B.20):

m ≥ 1, n ≥ 2 : Lim,n (eµ) =
m−1∑
k=0

cm−k,n
µk

k!
+ ζ (n)

µm−1

(m− 1)!
[Hm−1 − log (−µ)]− 1

2
Lim+n (eµ)

−
∞∑
k=1

k ̸=n−1

ζ (n− k)
µk+m−1

k (k +m− 1)!
−

∞∑
j=1

∞∑
k=2j

k ̸=2j+n−1

B2j

(2j)!

ζ (2j + n− k)

(k − 2j)!

(k − 1)!

(k +m− 1)!
µk+m−1

− µn+m

(n− 1)!

∞∑
j=0

B2j

(2j)!

(2j + n− 2)!µ2j−2

(2j + n+m− 2)!
[H2j+n+m−2 +Hn−1 −H2j+n−2 − log (−µ)] .

Again, the integration constants cm,n can be computed with the help of the known identities:

c2,2 =
π4

72
, c1,4 =

π2

6
ζ (3)− 5

2
ζ (5) , c2,3 = −π

2

3
ζ (3) + 5 ζ (5) , c3,2 =

π2

2
ζ (3)− 5 ζ (5) .

In the same way, one can derive the expansion for Lim,1 by consecutively integrating Li1,1:

m ≥ 1 : Lim,1 (eµ) =
m−2∑
k=0

ζ (m− k, 1)
µk

k!
−

∞∑
k=1

ζ (1− k)
µk+m−1

(k +m− 1)!
[log (−µ) +Hk −Hk+m−1]

+
µm−1

(m− 1)!

[
1

2
log (−µ)2 −Hm−1 log (−µ) +Hm−1,2 +

m−1∑
k=1

Hk−1

k

]

+
1

2

∞∑
j=1

∞∑
k=j+1

ζ (1− j) ζ (j − k + 1)
k!

(k +m− 1)!

µk+m−1

j! (k − j)!
,

(B.22)
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where Hm,2 is the generalized harmonic number of the form

Hm,2 =

m∑
k=1

1

k2
. (B.23)

C Solving integral recurrence relations

In sections 3.2.2 and 4.2, we claimed that the wave functions ψL (z) at order tK (or, equivalently,
RK

h ) are described in terms of multiple polylogarithms of weight K and lower. In this section, we
will prove this claim, but first, let us clarify the terminology. The notion of weight is related to
the power of a logarithm function, as seen in the following identity:

Li{1}n (z) =
(−1)n

n!
log (1− z)n . (C.1)

Thus, we will ascribe weight to the ordinary logarithm functions as follows. For any product of
two logarithms

m,n ≥ 0 : log (z)m log (z − 1)n , (C.2)

the weight equals n+m ≥ 0. For the product of a logarithm and a multiple polylogarithm

k ≥ 1, n ≥ 0 : log (z − 1)n Lis1,...,sk (1− z) , (C.3)

the weight is n + s1 + · · · + sk > 0. Here we do not consider the other possible product
log (z)m Lis1,...,sk (1− z) because, due to the identities of the form (B.4), this product can al-
ways be rewritten as a linear combination of multiple polylogarithms. Some simple examples
are:

log (z) Li2 (1− z) = −Li1,2 (1− z)− 2Li2,1 (1− z) , (C.4)

1

2
log (z)2 Li2 (1− z) = Li1,1,2 (1− z) + 2Li1,2,1 (1− z) + 3Li2,1,1 (1− z) . (C.5)

In general, multiple polylogarithm functions can not be rewritten as powers of ordinary logarithm
functions. We will use both logarithms and multiple polylogarithms of a certain weight to build a
linear basis in which the wave function can be expanded at a certain order in t. In what follows,
all powers of logarithms are non-negative integers.

We are going to prove our claim by induction. In the first order in t, the integrands in the
recurrence relations are just rational functions of the form∑r0

m=0 αm z
m

zi0 (z − 1)j0
(C.6)

with non-negative integers r0, i0, j0 that depend on the quantum numbers of the scalar, electro-
magnetic, or gravitational perturbations. These rational functions can be broken up into a sum
of monomials in z and poles at z = 0, 1 with the help of the identities

n,m ≥ 0 :
zn

(z − 1)m
=

n∑
k=0

(n
k

)
(z − 1)k−m , (C.7)

1

zn (1− z)m
=

n∑
k=1

(
n+m− k − 1

m− 1

)
1

zk
+

m∑
j=1

(
n+m− j − 1

n− 1

)
1

(1− z)j
, (C.8)

– 41 –



where in the last identity n,m ≥ 1. Thus, the wave function ψL (z) ar order t is described in
terms of rational functions and logarithms of weight 1: log (z) and log (z − 1). Next, we assume
that the integrands in the recurrence relations at order tK+1 are linear combinations of functions
with maximum weight K : ∑r1

m=0 αm z
m

zi1 (z − 1)j1
log (z − 1)p1 log (z)p2 ,

∑r2
m=0 βm z

m

zi2 (z − 1)j2
log (z − 1)p3 Lis1,...,sk (1− z) . (C.9)

After breaking up rational functions with the help of (C.8), we will consider all possible integrals
case by case and show that the maximum weight after the integration is K+1. Splitting this last
part of the proof into three steps is helpful. In each step, we will deal with the following integrals:

1. Integrals that increase the maximum weight by one.

2. Integrals that do not increase the maximum weight and involve only one logarithm or
multiple polylogarithm: log (z)m, log (z − 1)n, or Lis1,...,sk (1− z).

3. Integrals that do not increase the maximum weight and involve the following products of
logarithms: log (z)m log (z − 1)n and log (z − 1)n Lis1,...,sk (1− z).

Step 1. Four types of integrals increase the maximum weight. In each case the integrand has
a factor of z−1 or (z − 1)−1. For the product of two logarithms of weight n +m, n,m ≥ 0 we
have:∫

log (z)m log (z − 1)n

z
dz = (−1)m+n+1 m!n!

n∑
j=0

(−1)j

j!
log (z − 1)j Lin−j+1,{1}m (1− z) ,

(C.10)∫
log (z)m log (z − 1)n

z − 1
dz = (−1)m+n m!n!

n∑
j=0

(−1)j

j!
log (z − 1)j Lin−j+2,{1}m−1

(1− z) ,

(C.11)
where in the last integral m ≥ 1 and Lin,{1}0 ≡ Lin. The resulting weight after the integration
is 1 + n +m. In the more general case of integrals involving multiple polylogarithms, we have
(n ≥ 0):∫

log (z − 1)n

z
Lis1,...,sk (1− z) dz = (−1)n+1 n!

n∑
j=0

(−1)j

j!
log (z − 1)j Lin−j+1,s1,...,sk (1− z) ,

(C.12)∫
log (z − 1)n

z − 1
Lis1,...,sk (1− z) dz = (−1)n n!

n∑
j=0

(−1)j

j!
log (z − 1)j Lis1+n−j+1,s2,...,sk (1− z) .

(C.13)
Again, after the integration, the weight was increased by 1 from n+s1+· · ·+sk to 1+n+s1+· · ·+sk.
The above identities were obtained by repeated integrations by parts.

Step 2. The integrands in this step are products of one logarithm or multiple polylogarithm
with zn or (z − 1)n, with n ̸= −1. Moreover, it is enough to consider only the negative powers
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of (z − 1) since all positive powers can be reduced to monomials in z. We start with integrals
involving the log (z) function:

n ̸= −1 :

∫
zn log (z)m dz = (−1)m m!

zn+1

(n+ 1)m+1

m∑
j=0

(−1)j

j!
(n+ 1)j log (z)j , (C.14)

n ≥ 2 :

∫
log (z)

(z − 1)n
dz =

1

1− n

(
(−1)n +

1

(z − 1)n−1

)
log (z)−

−(−1)n

1− n
log (z − 1) +

(−1)n

1− n

n−2∑
j=1

1

j (z − 1)j
, (C.15)

m ≥ 2 :

∫
log (z)m

(z − 1)2
dz =

z

1− z
log (z)m − (−1)m m!Li2,{1}m−2

(1− z) ,

n,m ≥ 2 :

∫
log (z)m

(z − 1)n
dz =

1

1− n

(
(−1)n +

1

(z − 1)n−1

)
log (z)m+

+(−1)m+n m!

1− n
Li2,{1}m−2

(1− z) +
m

1− n

n−1∑
k=2

(−1)k+n
∫

log (z)m−1

(z − 1)k
dz, (C.16)

where the last equation allows us to take the corresponding integral recursively. In principle, the
integrals with the other logarithm log (z − 1) can be obtained from (C.15)–(C.16) by shifting the
variable z → 1 − z. This, however, would change the argument of multiple polylogarithms from
(1− z) to z. Since we want our multiple polylogarithms to converge in the disk |1− z| < 1 (or
|1− z| ≤ 1 when s1 ≥ 2), we rewrite (C.15)–(C.16) using the function log (z − 1):

n ≥ 2 :

∫
log (z − 1)

zn
dz =

z1−n − 1

1− n
log (z − 1) +

log (z)

1− n
+

1

n− 1

n−2∑
j=1

1

j zj
,

m ≥ 0 :

∫
log (z − 1)m

z2
dz =

z − 1

z
log (z − 1)m−

− (−1)mm!
m−1∑
j=0

(−1)j

j!
log (z − 1)j Lim−j (1− z) ,

n ≥ 2,

m ≥ 0
:

∫
log (z − 1)m

zn
dz =

z1−n − 1

1− n
log (z − 1)m+

+(−1)m
m!

1− n

m−1∑
j=0

(−1)j

j!
log (z − 1)j Lim−j (1− z)+

+
m

1− n

n−1∑
k=2

∫
log (z − 1)m−1

zk
dz. (C.17)

In all the integrals taken so far in step 2, we can explicitly see that the maximum weights before
and after integration are the same.
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For the integrals that involve multiple polylogarithms Lis1,...,sk (1− z), we consider the two
cases s1 = 1 and s1 ≥ 2 separately. First, we look at the integrals with non-negative powers of z:{

k ≥ 2,

n ≥ 0
:

∫
zn Li1,s2,...,sk (1− z) dz =

zn+1

n+ 1
Li1,s2,...,sk (1− z)+

+
1

n+ 1

∫
zn Lis2,...,sk (1− z) dz, (C.18){

s1 ≥ 2,

n ≥ 0
:

∫
zn Lis1,...,sk (1− z) dz =

zn+1 − 1

n+ 1
Lis1,...,sk (1− z)−

− 1

n+ 1

n∑
m=0

∫
zm Lis1−1,s2,...,sk (1− z) dz. (C.19)

The above integrals can be taken recursively until one gets integrals of the form (C.14) and the
maximum weight of the final result is equal to K. Similarly, we have for the integrals with
negative powers of z (except for 1/z):{

k ≥ 2,

n ≥ 2
:

∫
1

zn
Li1,s2,...,sk (1− z) dz =

z1−n

1− n
Li1,s2,...,sk (1− z)+

+
1

1− n

∫
1

zn
Lis2,...,sk (1− z) dz, (C.20){

s1 ≥ 2,

n ≥ 2
:

∫
1

zn
Lis1,...,sk (1− z) dz =

z1−n − 1

1− n
Lis1,...,sk (1− z) +

Li1,s1−1,s2,...,sk (1− z)

n− 1
+

+
1

1− n

n−1∑
m=2

∫
1

zm
Lis1−1,s2,...,sk (1− z) dz. (C.21)

Finally, we consider the integrals with multiple polylogarithms divided by (z − 1)n, n ≥ 2:{
k ≥ 2,

n ≥ 2
:

∫
1

(z − 1)n
Li1,s2,...,sk (1− z) dz =

(−1)n + (z − 1)1−n

1− n
Li1,s2,...,sk (1− z)

+
(−1)n

1− n
Lis2+1,...,sk (1− z) +

(−1)n

n− 1

n−1∑
m=2

∫
(−1)m

(z − 1)m
Lis2,...,sk (1− z) dz, (C.22)

{
s1 ≥ 2,

n ≥ 2
:

∫
1

(z − 1)n
Lis1,...,sk (1− z) dz =

(z − 1)1−n

1− n
Lis1,...,sk (1− z)

+
1

n− 1

∫
1

(z − 1)n
Lis1−1,s2,...,sk (1− z) dz. (C.23)

Step 3. Here we have to deal with four types of integrals:{
k ̸= −1

n,m ≥ 1
:

∫
zk log (z)m log (z − 1)n dz, (C.24)

{
k ≥ 2

n,m ≥ 1
:

∫
log (z)m log (z − 1)n

(z − 1)k
dz, (C.25)
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{
m ̸= −1

n ≥ 1
:

∫
zm log (z − 1)n Lis1,...,sk (1− z) dz, (C.26){

m ≥ 2

n ≥ 1
:

∫
log (z − 1)n

(z − 1)m
Lis1,...,sk (1− z) dz. (C.27)

In each case, we can use integration by parts to reduce the weight of one of the logarithms by
1. Applying integration by parts recursively allows us to reduce all integrals of the form (C.24)–
(C.27) to one of the integrals from step 2 or 1. For example, in the case of (C.24), we have∫

zk log (z)m log (z − 1)n dz = (−1)m m!
zk+1

(k + 1)m+1

m∑
j=0

(−1)j

j!
(k + 1)j log (z)j log (z − 1)n

− (−1)m
m!n

(k + 1)m+1

m∑
j=0

(−1)j

j!
(k + 1)j

∫
zk+1

z − 1
log (z)j log (z − 1)n−1 dz. (C.28)

We simplify the integral in the rhs of (C.28) by breaking up the rational function zk+1/ (z − 1)
into a sum of monomials in z and poles at z = 0, 1:

k ≥ 0 :
zk+1

z − 1
=

1

z − 1
+

k∑
j=0

zj , (C.29)

k ≤ −2 :
zk+1

z − 1
=

1

z − 1
−

−k−1∑
j=1

z−j . (C.30)

Almost all the resulting integrals are of the first type (C.24) with the power of log (z − 1) reduced
by 1. The remaining two integrals∫

log (z)j log (z − 1)n−1

z
dz and

∫
log (z)j log (z − 1)n−1

z − 1
dz (C.31)

were already taken in step 1, and the maximum weight is n+m = K. Recursively applying this
procedure, one can either express (C.24) in terms of integrals like (C.31) or reduce it to (C.14).
In the same way, (C.25) can be essentially reduced to (C.14) with z replaced by (z − 1). Finally,
the last two types of integrals, (C.26) and (C.27), are reducible to a combination of integrals from
(C.18)–(C.23).

To summarize, we have shown by induction that the wave function ψL (z) at any order tK is
a linear combination of certain functions of weight K or lower. The only special functions needed
are multiple polylogarithms with argument (1− z) (another possible argument would be z, but
it would not be consistent with the boundary condition at the AdS boundary in the SAdS case).
The same can be done for the wave function in the right region, ψR (z).

D Multiple polylogarithms for hydrodynamic QNMs

For the computations of gravitational QNMs in the scalar sector (Sec. 5), we introduced an expan-
sion of the solution using the multiple polylogarithms in several variables (5.33). An alternative
definition could be given in terms of one-forms21 [144]

Lis1,...,sk (z1, . . . , zk) =
∫ 1

0
ωs1−1
0 ωz1ω

s2−1
0 ωz1z2 . . . ω

sk−1
0 ωz1...zk , (D.1)

21For ωz1 , . . . , ωzp differential one-forms, with ωzi = fzi(t)dt for some function fzi , we define inductively∫ x

0
ωz1 . . . ωzp =

∫ x

0
fz1(t)dt

∫ t

0
ωz2 . . . ωzp .
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where

ωz =


zdt

1− zt
, z ̸= 0,

dt

t
, z = 0.

(D.2)

All the integrals in Section 5 do not include ω0 after the simplification, which means that s1 =
s2 = · · · = sk = 1. We define the relevant multiple polylogarithms as

Li{1}k(z1z, z2, . . . , zk) =
∫ z

0
ωz1ωz1z2 . . . ωz1...zk , (D.3)

where zi ∈ {1, u1, u2} for every i = 1, . . . , k and u1, u2 are the third roots of unity (5.36). We
consider the following products of ordinary logarithm functions and multiple polylogarithms to
describe the wave function:

log (1− z)p1 log (1− u1 z)
p2 log (1− u2 z)

p3

log (1− z)p4 log (1− u1 z)
p5 log (1− u2 z)

p6 Li{1}k (z1z, z2, . . . , zk) .
(D.4)

At order αK , only functions with maximum weight K appear, so that 0 ≤ p1 + p2 + p3 ≤ K and
0 ≤ p4 + p5 + p6 + k ≤ K. However, at a fixed weight, some identities make the functions listed
in (D.4) linearly dependent. For example, at level k = 2, we have the following identities:

Li1,1(z, u1) = log(1− u1 z) log(1− z)− Li1,1(u1 z, u2),

Li1,1(z, u2) = log(1− u2 z) log(1− z)− Li1,1(u2 z, u1),

Li1,1(u2 z, u2) = log(1− u1 z) log(1− u2 z)− Li1,1(u1 z, u1),

(D.5)

including the ones that reduce to the single variable case:

Li1,1(z, 1) =
1

2
log (1− z)2 . (D.6)

Thus, out of 9 possible functions Li1,1(z1z, z2) at level k = 2, we only need 3:

Li1,1 (u1z, u2) , Li1,1 (u1z, u1) , Li1,1 (u2z, u1) . (D.7)

In the rest of the appendix, we will try to classify the identities arising at a given level k and find
what multiple polylogarithms are needed to form a linear basis in (D.4).

According to (D.3), there is a one-to-one correspondence between multiple polylogarithms
and ordered multisets of one-forms {ωz1 , ωz1z2 , . . . , ωz1...zk}. If two multiple polylogarithms are
related by the permutation of the one-forms in the corresponding ordered multisets, then an
identity exists between these two. However, this identity could be reducible in the sense that it
can be split into smaller ones. To show this, we integrate by parts the right-hand side of (D.3):∫ z

0
ωz1ωz1z2 . . . ωz1...zk =

∫ z

0

d

dt
Li1(z1t)dt ωz1z2 . . . ωz1...zk =

= Li1(z1z)
∫ z

0
ωz1z2 . . . ωz1...zk −

∫ z

0
dtLi1(z1t)

z1z2
1− z1z2t

ωz1z2z3 . . . ωz1...zk ,

(D.8)

where Li1 (z1t) is the ordinary logarithm function:

Li1 (z1t) = − log (1− z1t) (D.9)
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and
Li1(z1z)

∫ z

0
ωz1z2 . . . ωz1...zk = − log (1− z1z)Li{1}k−1

(z1z2z, z3, . . . , zk). (D.10)

Continuing the integration by parts, we obtain∫ z

0
ωz1ωz1z2 . . . ωz1...zk ⊃

∫ z

0
dtLi1(z1t)Li1(z1z2t) . . .Li1(z1 . . . zk−1t)

z1 . . . zk
1− z1 . . . zkt

=

=

∫ z

0
dtLi1(y1t)Li1(y2t) . . .Li1(yk−1t)

yk
1− ykt

,

(D.11)

where yj = z1 · · · zj for j = 1, . . . , k. From this last integral, one can reconstruct by the reverse
process any other multiple polylogarithm for which the representation in (D.3) involves the inte-
grals of the same one-forms in a different order. In the intermediate steps of this procedure, there
appear products of the form

Li{1}m1
(z

(1)
1 z, . . . , z(1)m1

) · . . . · Li{1}mr
(z

(r)
1 z, . . . , z(r)mr

), with m1 + · · ·+mr = k. (D.12)

It is possible to rewrite these in terms of products in (D.4) using shuffle relations (see for example
Eq. (5.4) in [145]). The result is an identity involving two multiple polylogarithms that are related
by the permutation of the corresponding one-forms.

Let us describe with a concrete identity at level 4 how this works. We prove that

Li1,1,1,1(z, u1, 1, u2) = −2Li1,1,1,1(u1 z, 1, u2, 1)− Li1,1,1,1(u1 z, u2, u1, u2)− Li1,1,1(u1 z, 1, u2) log(1− z).
(D.13)

By definition, the lhs is

Li1,1,1,1(z, u1, 1, u2) =
∫ z

0
ω1ωu1ωu1ω1 = −Li1,1,1(u1 z, 1, u2) log(1− z)−

∫ z

0
Li1(t)

u1 dt

1− u1 z
ωu1ω1,

(D.14)
where in the last equality we integrated by parts. Therefore, we reduce to proving that∫ z

0
Li1(t)

u1 dt

1− u1 z
ωu1ω1 = 2Li1,1,1,1(u1 z, 1, u2, 1) + Li1,1,1,1(u1 z, u2, u1, u2). (D.15)

We have ∫ z

0
Li1(t)

u1 dt

1− u1 z
ωu1ω1 =

∫ z

0

d

dt
Li1,1(u1 t, u2)ωu1ω1 =

Li1,1(u1 z, u2)Li1,1(u1 z, u2)−
∫ z

0
Li1,1(u1 t, u2)

u1 dt

1− u1 t
ω1.

(D.16)

Moreover,∫ z

0

Li1,1(u1 t, u2)
u1 dt

1− u1 t
ω1 =

∫ z

0

d

dt
Li1,1,1(u1 t, 1, u2)ω1 =

Li1,1,1(u1 z, 1, u2)Li1(z)−
∫ z

0

Li1,1,1(u1 t, 1, u2)
dt

1− t
= Li1,1,1(u1 z, 1, u2)Li1(z)− Li1,1,1,1(z, u1, 1, u2).

(D.17)
Putting together (D.15)-(D.16)-(D.17), it remains to prove that

Li1,1(u1 z, u2)Li1,1(u1 z, u2)− Li1,1,1(u1 z, 1, u2)Li1(z) + Li1,1,1,1(z, u1, 1, u2) =

2Li1,1,1,1(u1 z, 1, u2, 1) + Li1,1,1,1(u1 z, u2, u1, u2).
(D.18)
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Applying the shuffle relation to the first two terms in lhs, we have

Li1,1(u1 z, u2)Li1,1(u1 z, u2) = 4Li1,1,1,1(u1 z, 1, u2, 1) + 2Li1,1,1,1(u1 z, u2, u1, u2),

Li1,1,1(u1 z, 1, u2)Li1(z) = 2Li1,1,1,1(u1 z, 1, u2, 1) + Li1,1,1,1(u1 z, u2, u1, u2) + Li1,1,1,1(z, u1, 1, u2).
(D.19)

Therefore, as we wanted, the lhs of (D.18) becomes

4Li1,1,1,1(u1 z, 1, u2, 1) + 2Li1,1,1,1(u1 z, u2, u1, u2)− [2Li1,1,1,1(u1 z, 1, u2, 1) + Li1,1,1,1(u1 z, u2, u1, u2)+

+ Li1,1,1,1(z, u1, 1, u2)] + Li1,1,1,1(z, u1, 1, u2) = 2Li1,1,1,1(u1 z, 1, u2, 1) + Li1,1,1,1(u1 z, u2, u1, u2).
(D.20)

Let us remark that with the previous procedure, one can find several identities at a fixed level
involving the same multiple polylogarithm. To choose which elements to add to the basis, we
followed the criterium that we omit the multiple polylogarithms with the first argument z. This
criterium comes from the regularity condition on the wave function at z = 1. Moreover, when
possible, we tried to include the same number of multiple polylogarithms with the first argument
u1 z and with the first argument u2 z (for example, it is not possible at level k = 2).

For completeness, let us write the elements of level 3 that we add to our basis:

Li1,1,1 (u1 z, 1, u2) , Li1,1,1 (u1 z, 1, u1) , Li1,1,1 (u1 z, u2, 1) , Li1,1,1 (u1 z, u1, u1) ,

Li1,1,1 (u1 z, u1, 1) , Li1,1,1 (u2 z, 1, u1) , Li1,1,1 (u2 z, u1, 1) , Li1,1,1 (u2 z, u2, u2) ,
(D.21)

and the nontrivial identities with the other functions of the same level (other identities are ob-
tained by exchanging u1 with u2):

Li1,1,1(u2 z, u2, 1) = Li1,1,1(u1 z, 1, u1) + Li1,1(u1 z, u1) log(1− u1 z)−
log(1− u1 z)

2 log(1− u2 z)

2
,

Li1,1,1(z, u2, 1) = Li1,1,1(u2 z, 1, u1) + Li1,1(u2 z, u1) log(1− u2 z)−
log(1− u2 z)

2 log(1− z)

2
,

Li1,1,1(z, u1, 1) = Li1,1,1(u1 z, 1, u2) + Li1,1(u1 z, u2) log(1− u1 z)−
log(1− u1 z)

2 log(1− z)

2
,

Li1,1,1(u2 z, u2, u1) = −2Li1,1,1(u1 z, u1, 1)− Li1,1(u1 z, u1) log(1− u2 z),

Li1,1,1(z, u1, u1) = Li1,1,1(u2 z, u2, u2)− Li1,1(u1 z, u1) log(1− z) + Li1,1(u1 z, u2) log(1− u2 z),

Li1,1,1(z, u2, u1) = −2Li1,1,1(u2 z, u1, 1)− Li1,1(u2 z, u1) log(1− z),

Li1,1,1(z, u1, u2) = −2Li1,1,1(u1 z, u2, 1)− Li1,1(u1 z, u2) log(1− z).
(D.22)

Computing all the identities up to level k = 7, we arrive at the following conclusion. The number
of multiple polylogarithms needed to form a basis in (D.4) at level k ≥ 3 is 8 × 3k−3. Even
though this significantly reduces the number of functions used at a certain level k, we still need
to compute the identities for all 3k functions to go to the next level k + 1.

E Connection Formula for SAdS4

In this appendix, we write the connection formula relevant for the Schwarzschild anti-de Sitter
black hole, and we compute from it the first order correction in Rh of the quasinormal mode
frequency ω0,1,1.
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Using the notations introduced in Sec. 2.1 for the Heun solutions and the dictionary in (4.5)-
(4.6) along with

t =
Rh(R+ −R−)

R−(R+ −Rh)
, z∞ = 1− R+

R−
, a0 = s,

a1 =
iωR−

(R− −Rh)(R− −R+)
, at =

iωRh

(Rh −R+)(Rh −R−)
, a∞ =

iωR+

(R+ −Rh)(R+ −R−)
,

u =
(R− −Rh)

2
(Rh −R+) [2ℓ(ℓ+ 1) + 2R+(R+ +Rh)s(s− 1) +R−(R+ − 2sR+ +Rh)] + 4R−R

2
hω

2

2R+(R− −R3
h)(R+ −Rh)

,

(E.1)
the connection formula for the SAdS4 case reads

t−
1
2
+a0+at(1− t)−

1
2
+a1e

1
2
∂atF (t)ψ

(t)
− (z) =(∑

σ=±
M−σ(at, a; a0)M(−σ)−(a, a1; a∞)tσae−

σ
2
∂aF (t)

)
(1− t)−

1
2
+ateiπ(a1+at)e

1
2
∂a1F (t)ψ

(1)
− (z)+

(∑
σ=±

M−σ(at, a; a0)M(−σ)+(a, a1; a∞)tσae−
σ
2
∂aF (t)

)
(1− t)−

1
2
+ateiπ(−a1+at)e−

1
2
∂a1F (t)ψ

(1)
+ (z).

(E.2)
Therefore, the quantization condition for the quasinormal mode frequencies can be written as{[∑

σ=±

Γ(−2σa)Γ(2a1)Γ(1− 2σa)tσae−
σ
2 ∂aF (t)+ 1

2∂a1
F (t)e2iπa1

Γ
(
1
2 − at − σa+ a0

)
Γ
(
1
2 − at − σa− a0

)
Γ
(
1
2 − σa+ a1 + a∞

)
Γ
(
1
2 − σa+ a1 − a∞

)]×
×
(
z − t

1− t

)−α

Heun

(
t, q + α(δ − β), α, δ + γ − β, δ, γ, t

1− z

t− z

)
+

+

[∑
σ=±

Γ(−2σa)Γ(−2a1)Γ(1− 2σa)tσae−
σ
2 ∂aF (t)− 1

2∂a1
F (t)

Γ
(
1
2 − at − σa+ a0

)
Γ
(
1
2 − at − σa− a0

)
Γ
(
1
2 − σa− a1 + a∞

)
Γ
(
1
2 − σa− a1 − a∞

)]×
× (z − 1)1−δ

(
z − t

1− t

)−α−1+δ

×Heun

(
t, q − (δ − 1)γt− (β − 1)(α− δ + 1),−β + γ + 1, α− δ + 1, 2− δ, γ, t

1− z

t− z

)}∣∣∣∣
z=z∞

= 0.

(E.3)
Our goal is to obtain, starting from the connection formula (E.3), the analytic expression

of the first order correction in Rh of the QNM frequency in a concrete case: n = 0, ℓ = s = 1.
Consider the expansion of ω := ω0,1,1 in powers of Rh

ω0,1,1 =
∞∑
j=0

ωjR
j
h, (E.4)

where, from the pure AdS case, we take ω0 = ℓ+2n+2; in our concrete example, ω0 = 3. We start
by expanding at first order in Rh the local solutions for z ∼ 1, using the three-term recurrence
relation for the Heun functions. The first Heun function is

Heun

(
t, q + α(δ − β), α, δ + γ − β, δ, γ, t

1− z

t− z

)
. (E.5)
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The corresponding series expansion is given by

∑
j≥0

cj

(
t
1− z

t− z

)j

, (E.6)

where the coefficients satisfy the three-terms relation

cj+1 =
[Qj + q + α(δ − β)]cj + Pjcj−1

Rj
, (E.7)

with
c0 = 1,

c1 =
q + α(δ − β)

tδ
,

Pj = (j − 1 + α)(j − 1− β + γ + δ),

Qj = j[(j − 1 + δ)(1 + t) + tγ + α− β + 1],

Rj = t(j + 1)(j + δ).

(E.8)

We solve the recurrence relation to find the leading order and first order in Rh of the coefficients,
and then we sum over j to obtain the expansion of the Heun function. The expansion of the first
local solution (including both the Heun function and the prefactor) is given by

1 + z

2z
+

(z − 1)
(
ω1z(z − 1)3 + 2iz((z − 8)z − 2) + 6i

)
+ 12iz(2z − 1) log(z)

8(z − 1)3z2
Rh +O(R2

h). (E.9)

Then, we repeat the same for the second solution, starting from the Heun function

Heun

(
t, q − (δ − 1)γt− (β − 1)(α− δ + 1),−β + γ + 1, α− δ + 1, 2− δ, γ, t

1− z

t− z

)
. (E.10)

The series defining this Heun function is given by

∑
j≥0

dj

(
t
1− z

t− z

)j

, (E.11)

where the coefficients satisfy the three-terms relation

dj+1 =
[Qj + q − (δ − 1)γt− (β − 1)(α− δ + 1)]dj − Pjdj−1

Rj
, (E.12)

with
d0 = 1,

d1 =
q − (δ − 1)γt− (β − 1)(α− δ + 1)

t(2− δ)
,

Pj = (j + α− δ)(j + γ − β),

Qj = j[(j + 1− δ)(1 + t) + tγ + α− β + 1],

Rj = t(j + 1)(j + 2− δ).

(E.13)
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This time the procedure is trickier because one can notice that, for j = 2, the factor j + 2− δ in
Rj starts with the first order in Rh. We solve the recurrence relation for the leading orders and
first orders of dj for j ≥ 3, and then we add the contributions from the previous terms by hand.
In this way, the expansion of the second local solution is given by

6iz3 − 3iz4 + 2zω1 − ω1

z(z − 1)3(3i+ ω1)
− 1

8z2(z − 1)3(3i+ ω1)2

{
(z − 1)[12iω1(3i+ ω1)+

+ iz3(−63 + 174iω1 + 44ω2
1 − 24ω2)− iz2(63 + 14ω1(3i+ 2ω1) + 24ω2)+

+ z4(6ω1 − 8iω2
1 + 3i(−39 + 8ω2)) + z(−2ω1(−75 + 2ω1(12i+ ω1)) + 3i(21 + 8ω2))]+

+ 24z(3i+ ω1)[3z
3(z − 2) + i(z − 1)3(z + 1)ω1] log(1/z)+

+ 8z(3i+ ω1)(3i(z − 2)z3 + ω1 − 2zω1)[(3i+ ω1) log(z − 1)− 6i log(z)]
}
Rh +O(R2

h).

(E.14)

We now expand the connection coefficients to the first order in Rh. Since t is proportional to
Rh and the leading order of a is given by ℓ+ 1

2 = 3
2 , in both coefficients, the parts proportional to

ta start with the terms of higher order with respect to the parts proportional to t−a. So they do
not contribute to the first-order expansion of the quantization condition. Then, we remain with
the coefficients

Γ(2a)Γ(2a1)Γ(1 + 2a)t−ae
1
2
∂aF (t)+ 1

2
∂a1F (t)e2iπa1

Γ
(
1
2 − at + a+ a0

)
Γ
(
1
2 − at + a− a0

)
Γ
(
1
2 + a+ a1 + a∞

)
Γ
(
1
2 + a+ a1 − a∞

) ,
Γ(2a)Γ(−2a1)Γ(1 + 2a)t−ae

1
2
∂aF (t)− 1

2
∂a1F (t)

Γ
(
1
2 − at + a+ a0

)
Γ
(
1
2 − at + a− a0

)
Γ
(
1
2 + a− a1 + a∞

)
Γ
(
1
2 + a− a1 − a∞

) . (E.15)

Simplifying the common terms, we have

Γ(2a1)e
1
2
∂a1F (t)e2iπa1

Γ
(
1
2 + a+ a1 + a∞

)
Γ
(
1
2 + a+ a1 − a∞

) = − ω1

6(ω1 + 3i)
+

+
24iπω3

1 + 20ω3
1 + 126iω2

1 − 144πω2
1 − 216iπω1 − 324ω1 − 72iω2 − 189i

144(ω1 + 3i)2
Rh +O(R2

h),

Γ(−2a1)e
− 1

2
∂a1F (t)

Γ
(
1
2 + a− a1 + a∞

)
Γ
(
1
2 + a− a1 − a∞

) =
1

12
+

1

144
(−7ω1 + 9i)Rh +O(R2

h).

(E.16)

Putting together (E.9), (E.14), and (E.16), one has the series expansion in Rh of the quanti-
zation condition (E.3)

i(4 + πω1)

8
Rh +O(R2

h). (E.17)

We can therefore conclude that
ω1 = − 4

π
(E.18)

matches the result obtained in (4.29) for our choice of quantum numbers.
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