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Abstract
We present a family of conditional dual auto-encoders (CoDAEs) for generic and model-
independent new physics searches at colliders. New physics signals, which arise from new types of
particles and interactions, are considered in our study as anomalies causing deviations in data with
respect to expected background events. In this work, we perform a normal-only anomaly
detection, which employs only background samples, to search for manifestations of a dark version
of strong force applying (variational) auto-encoders on raw detector images, which are large and
highly sparse, without leveraging any physics-based pre-processing or strong assumption on the
signals. The proposed CoDAE has a dual-encoder design, which is general and can learn an
auxiliary yet compact latent space through spatial conditioning, showing a neat improvement over
competitive physics-based baselines and related approaches, therefore also reducing the gap with
fully supervised models. It is the first time an unsupervised model is shown to exhibit excellent
discrimination against multiple dark shower models, illustrating the suitability of this method as
an accurate, fast, model-independent algorithm to deploy, e.g. in the real-time event triggering
systems of large hadron collider experiments such as ATLAS and CMS.

1. Introduction

Model-independent searches are becoming a valid alternative to model-dependent searches at colliders,
aiming to discover new physics beyond the standard model (BSM) governed by a vast parameter space6.
Hence, an enormous number of model-dependent analyses would be required to unravel such a vast
parameter space in its entirety because each analysis need to target a specific signal: in this regard,
model-independent searches provide a great, more flexible, alternative. The conventional cut-based analyses
involve physics experts inspecting the distributions of various physical parameters to find discriminating
characteristics. Once identified, the best threshold is determined, above which the events are considered
signal-like. This part can be automatized by training a machine learning (ML) [1] or deep learning (DL)
classifier [2–4] separating simulated background and signal events. Subsequently, a rigorous statistical test
[5] determines the significance of the classified signal events: if above a certain threshold, the signal is
declared to exist; if too low, the signal can be confidently excluded to exist at all.

Both the cut- and supervised ML-based search techniques aremodel-dependent, i.e. they assume a
particular scenario for new physics, thus being signal-specific. For the ML-based approach, the classifier

6 A search aims to discard as many background events as possible while preserving the most signal: the background represents what is
already well known to exist, i.e. standard model (SM) processes or detector effects. The signal, which may or may not exist in Nature, is
the object of the search. The scope of analysis is to determine how plausible the existence of a specific signal is.
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inherently adapts its learned parameters to be sensitive to specific signal features. However, it does not
necessarily generalize towards unknown signals. Moreover, a supervised approach requires accurate signal
and background simulation and robustness against systematic uncertainties. To mitigate such limitations, we
propose a data-driven model-independent search strategy powered by conditional dual (Variational)
auto-encoders (CoDAEs) and normal-only anomaly detection (AD) [6], demonstrating generalization over
multiple signals despite not being trained on them.

In this article, we focus on two important and highly challenging manifestations of hidden valley (HV)
models [7], more specifically, of dark quantum chromodynamics (QCDs), namely soft unclustered energy
patterns (SUEPs) [8] and semi-visible jets (SVJs) [9–11]. The HV models are a type of BSM physics
describing the existence of a new sector of particles and forces with new gauge groups and a mediator to the
SM, which the large hadron collider (LHC) [12] can produce. The HV models have been mainly developed
to address the origin of dark matter [13], whose experimental signatures often feature non-isolated objects
with high-multiplicity and/or low-energy final states, representing a challenging target for existing analyses
at the LHC [14].

Our proposed models can detect both SUEP and SVJ signals in highly sparse raw detector image data,
constructed from the trigger system information, within the time budget of the high-level trigger (HLT) step
[15]7, being trained only on the simulated QCD events: the class of data considered as not anomalous.
Without making strong assumptions about the signals we avoid problem-specific pre-processing, on which
discrimination performance can be highly dependent [16], and further reduce the dependency on the
physics model. Our novel architecture can learn a two-dimensional (2D) auxiliary latent space through
conditioning [17], capturing intrinsic information of the input that can be visualized, interpreted, and, in
principle, employed for AD. Our contributions can be summarized as follows:

• We frame the new physics search problem as a normal-only AD task, making minimal assumptions on the
nature of the signals. We only assume: 1) to have access to normal (i.e. not anomalous) data samples, and 2)
that the signals can be revealed through tracking information.

• We propose a novel architecture that combines two encoders through spatial conditioning, in order to learn
additional criteria for discriminating between signal and background.

• We perform a comprehensive comparison of anomaly scores, evaluating both scores derived from recon-
structed images and the latent spaces.

• We ultimately show that our novel auto-encoder can reconstruct the target images with a much higher
quality than compared approaches, which can also help human experts when visually inspecting anomalies.

Compared to both weakly-supervised (e.g. [18]) and classification methods (e.g. [2, 3]), which require
partial or full knowledge of the signal(s), our approach assumes only the knowledge about the background
events. Therefore, potentially enabling generic physics searches for unknown signals. In the following two
sections we provide some further physics background relevant to understand our work.

1.1. The new physics search scenario: HVmodels
The HV models can produce dark quarks in proton-proton collisions at the LHC, leading to a dark shower
and the production of a large number of dark hadrons (ϕD), analogous to QCD jets [7, 8]. Depending on the
details of the theory, the dark showers can follow large-angle emission and dark hadrons do not form narrow
QCD-like jets. The decay of dark hadrons results in dark photons (ZD), which further decay to low-energy
SM particles with transverse energy (ET) ofO(102)MeV, whose final experimental signature being
high-multiplicity spherically-symmetric SUEPs [8]. Through their decay to SM particles via some portal
state, like a dark photon, these processes become visible and in principle detectable in 4π-detectors at the
LHC such as a toroidal LHC apparatus (ATLAS) [19] and compact muon solenoid (CMS) [20]. We focus on
a well-motivated scenario where SUEP is produced in exotic Higgs (H) boson decays via gluon–gluon fusion
and all dark hadrons decay promptly and exclusively to pions and leptons, an experimental nightmare
scenario because of an overwhelming multi-jet QCD background.

Another manifestation of HVs can be SVJs [9, 11], a phenomenon in which energetic particles are emitted
in a spray of stable invisible dark matter along with unstable states that decay back to SM. These showers are
partially detectable, with the visible components looking like QCD showers [9]. This partial visibility makes
it challenging to identify and study these particles thoroughly, having a low acceptance with current methods.

7 We considered the compact muon solenoid (CMS) experiment, a general-purpose detector at the LHC [12], as the reference experiment
for this study. The CMS trigger system is a two-tiered event selection system. The electronics-based first level (L1) uses information from
the calorimeters and muon detectors and reduces the event rate from 40MHz to around 100 kHz within a time interval of 4 microsec.
The second level, known as the HLT, runs a version of the full event reconstruction software optimized for fast processing on a farm of
processors. The HLT reduces the event rate to about 1 kHz within O(102)ms, and the selected events are transferred to storage.
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Figure 1. The CMS coordinate system, which explains the particle’s motion within the cylindrical detector. Figure adapted
from https://tikz.net/axis3d_cms/.

1.2. The CMS detector and simulated samples
The CMS experiment [20] is designed to explore the physics of proton-proton collisions through a system of
different sub-detectors, each designed to measure different aspects of the particles produced in a collision.
Given its cylindrical design, as we can see in figure 1, it is often convenient to adopt a polar coordinate system
(θ,ϕ) where: 0⩽ θ ⩽ π is the polar angle, and 0⩽ ϕ⩽ 2π is the azimuthal angle. From these coordinates, it
is possible to explain the particle’s kinematic as (pT,y,ϕ,m): wherem is the invariant mass, pT the transverse
momentum, and y the rapidity. A quantity related to the rapidity is the pseudo-rapidity η, which is a measure
of the angle of the particle’s motion relative to the beam line. The images employed in our study are
represented in the η-ϕ plane, therefore considering the pseudo-rapidity and azimuth.

The CMS detector consists of several layers that are used to measure various properties of particles
produced in high-energy collisions. The ones [21] relevant to our work are the:

• Inner tracking system, which measures the momentum of particles by their curvature radius through the
magnetic field. The tracker can monitor the paths of charged particles. This sub-detector covers a pseudo-
rapidity region of up to |η|< 2.5, being made of 66M silicon pixel detectors (100× 150µm2 in size) for
accurate measurement of the particle’s trajectory.

• Calorimeters, consisting of an electromagnetic calorimeter (ECAL), and a hadron calorimeter (HCAL).
The calorimeters can measure the direction and energy of both charged and neutral particles. The two sub-
detectors have different granularity: for the ECAL, the granularity of 0.0174× 0.0174rad2 results in 286η×
360ϕ bins for the size of the images, whereas the HCAL is 25 times less granular, i.e. 0.087× 0.087rad2.
Therefore, each HCAL image is up-sampled by a factor of 25 in the preprocessing step, giving 1/25th of the
energy to each pixel.

We employ the Delphes v.3.4.3pre1 fast detector simulation [22] with the CMS Run-2 detector model to
obtain the tracker, ECAL, and HCAL images. Samples of SM multijet events as well as for SVJ and SUEP
signal processes have been generated with the Pythia v8.244 event generator [23].

2. Related work

In this section we review the relevant literature about AD in high-energy physics (HEP). AD [24] is the task
of determining which samples violate some notion of normal behavior: once identified, these samples will be
referred to as outliers or anomalies. We assume a normal-only setting, in which the training is performed only
on background data representing the already known (i.e. not anomalous) behavior, being a good
approximation to what occurs in practice, i.e. having the background contaminated with a little fraction of
unknown signals. (Variational) auto-encoders (V/AEs) [25–27] are a popular mean to perform AD: the
model is trained to minimize the reconstruction error of the normal samples, which is then used to score the
novel data. Anomalies are found by thresholding such error. A general challenge is about designing anomaly
scores that best separate the normal data from the anomalies [28]; to this end, V/AEs allow conceiving two
main classes of anomaly scores, as described in the next two sections.
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2.1. Reconstruction-based AD
Reconstruction-based anomaly scores are obtained by comparing the reconstructions, x̂, with the inputs, x,
of the V/AE. Different scores can be determined according to the distance or similarity function used to
compare images. Heimel et al [6] introduce the benchmark dataset of QCD vs top jets. Their approach
heavily relies on a specific particle-based processing of the raw collisions, which greatly simplifies the
problem. Their LoLa AE, which is based on jet-level kinematics features, is able to beat an image-based AE by
a large margin even with a smaller latent space, although at the cost of introducing an even larger
dependency on the jet mass. Finke et al [29] discuss the limitations of using AEs on the same kind of data.
The authors propose the kernel-MSE loss function, which is less sensitive than MSE, encouraging the
network to learn dim pixels even in presence of sparsity. Recently, Dillon et al [30] propose to use a
normalized auto-encoder (NAE) [31] to identify anomalous jets symmetrically. The NAE maximize the
likelihood of the data through the minimization of an energy function. Under this probabilistic formulation,
the NAE is forced to inhibit the reconstruction of an outlier, since it has to maximize the likelihood of the
normal data, guaranteeing a low reconstruction error only for them. Although, NAEs are well-suited for AD,
avoiding their training instabilities is still a practical challenge.

2.2. Latent-based AD
Latent-based anomaly scores are defined from the latent space captured by the encoder network: directly
using the learned latent representation to flag anomalies can be difficult due its high-dimensionality,
therefore combining the information carried by each latent component may require explicit supervision [32,
33]. Dillon et al [18] proposed to use a Dirichlet VAE [34] to learn a bi-modal, one-dimensional latent space
that naturally encodes the two classes: signal and background. The authors show that the Dirichlet prior on
the latent space naturally leads to mode separation, something that was not observed for both the regular
VAE [25] and the Gaussian-mixture VAE [35], without enforcing any additional loss term. The proposed
Dirichlet VAE reaches high class separation performance although weak-supervision is still required.
Bortolato et al [36] propose to use the Kullback–Leibler divergence (KLD) between the learned and prior
Gaussian distributions as an anomaly score to detect anomalous jets. Dillon et al [37] compared the
effectiveness of using low-dimensional latent space representations instead of the event space features to
perform model-agnostic AD. They trained a transformer encoder [38] to optimize the JetCLR’s contrastive
objective [39], where symmetry augmentations were employed to define positive and negative pairs for the
contrastive learning. Through a binary classification test, the authors discovered that a sufficiently large
latent space (e.g. of size 512) is required to encode the physical symmetries of jets. Finally, the CWoLa [32]
method was used to perform model-agnostic AD, showing that still a significant fraction of signal events is
required to achieve meaningful class separation. Govorkova et al [40] demonstrate a real-world deployment
of a VAE on FPGA hardware for real-time AD at the LHC [12]. The authors compared the performance of
both reconstruction- and KL-based anomaly scores, for both AE and VAE models. They concluded that with
a minor loss in performance, the scores based on the KL divergence allowed them to only deploy the VAE’s
encoder on the FPGA, thus saving both hardware resources and latency costs. Recently, Cheng et al [41]
enhanced a VAE with a technique known as outlier exposure (OE) [33], which makes use of an auxiliary set
of out-of-distribution (OOD) data to improve the sensitivity to anomalies. An auxiliary loss term is
computed from OOD predictions, which ensured a good compromise between high separation of anomalies
and jet mass decorrelation. Although the promising results, it is not yet clear if data from the same physics
domain is enough to be considered as OOD.

2.3. Related HEP analyses
The analyses conducted in [42] and [43] are related to ours, since it is assumed a similar signal setting. In
particular, Barron et al [42] target the same SUEPs scenario in which the signal decays to exotic Higgs, and all
the dark hadrons to SM hadrons. The authors identify three observables: charged particle multiplicity, event
isotropy, and inter-particle distance. These are used to build the input features for their unsupervised
fully-connected auto-encoder. Canelli et al [43], instead, study the SVJs signature by training a
fully-connected auto-encoder on jet-level and jet substructure variables, minimizing the mean absolute
error. Compared to these two studies, we neither rely on high-level nor engineered particle-based features
but, instead, learn from raw detector images. Moreover, our models are evaluated against both signals,
demonstrating anomaly scores that can identify both.

3. Simulated dataset of particle collisions

The dataset employed for our study contains simulated images of size 360× 286× 3, for a total of about 615k
samples, divided in: 442k QCD, 67k SUEPs, and 106k SVJs. The image channels represent 2D ET (energy)
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Algorithm 1. Image Pre-processing.

Input: a batch of images I ∈ RB×H×W×C, kernel size K

Output: pre-processed images ItrkM ∈ RB×⌈H/K⌉×⌈WK−1⌉×1

/* Depth-wise convolution to down-sample each channel by a factor of K */
1 kernel= tf.ones((K,K,C,1))
2 I′ = tf.nn.depthwise_conv2d(I, filter= kernel, strides= (1,K,K,1), padding= ‘SAME’)
/* Consider only the tracker channel, discarding the other two */
3 Itrk = I′[. . . , 0, tf.newaxis]
/* Compute the mask image */
4 ItrkM = tf.cast(Itrk > 0, dtype= float)
5 return ItrkM

deposits in the η-ϕ plane, which are measured by the Inner tracker (Trk), ECAL, and HCAL sub-detectors
[21] of CMS [20], respectively. Moreover, each image is annotated with a:

• Class label. There are three of them in total: the label 0 indicates the QCD background, the label 1 is asso-
ciated to SUEP signal samples, and the label 2 refers to the second SVJ signal.

• Mass label. Signal samples only are identified by the mediator masses mH [8] and mZ′ [43] at which these
were generated. In particular, SUEPs were generated at mH = {125,200,300,400,700,1000}GeV and SVJs
at mZ′ = {2.1,3.1,4.1}TeV. For the rest of the paper, we refer to a particular signal sample by its mediator
mass, such as SUEP(mH GeV) and SVJ(mZ′ TeV).

• Number of tracks. This is a model-independent quantity that best approximates the number of decay
products, obtained by the particle-flow reconstruction algorithm [21]. We refer to this variable as nTracks.
It should be noticed that computing this quantity is expensive, being not feasible for real-time inference at
the HLT.

Since the images are very sparse, having about 99.4% of zero pixels, and also moderately large, we employ a
simple pre-processing (as described by algorithm 1) that down-scales the images, thus reducing sparsity while
also preserving their total energy. The down-scaling is performed by convolving a 5× 5 kernel with all ones
on the input images along the channel dimension (i.e. in a depth-wise fashion), in a non-overlapping manner
with a stride equal to the kernel size, yielding a 25× reduction in spatial resolution while preserving the sum
of the energy deposits: the sparsity is also reduced to 96%; zero-padding is also applied to let the output size
be divisible by the kernel size. The last step of the pre-processing is to discard the HCAL and ECAL channels,
considering only the tracker one, resulting in images of size 72× 58× 1: smaller images are faster to process
by the network and require less storage, allowing to save up parameters, memory, computation and time.

4. Method

In this section we detail our CoDAE architecture and training procedure, the physics-inspired image
augmentations applied to the pre-processed input images, and also define a variety of reconstruction- and
latent-based anomaly scores.

4.1. Image feature-engineering
Both the energy deposits and the nTracks variable can be seen as physics-motivated discriminators.
Moreover, the number of tracks is much more sensitive to the searched signals than the energy, as stated in
[8] and confirmed by our prior experiments, representing a better input for our models. Therefore, we
devised a simple way to approximate the nTracks information by ‘feature-engineering’ the energy images, I,
where each pixel depicts an ET deposit, without running track reconstruction algorithms. The resultingmask
image, Im, is obtained by determining whether a pixel depicts a non-zero energy value: Im = 1[I> 0], where
1[·] is an indicator function applied to each pixel of I. Each pixel in Im represents whether or not a single track
has occurred, so its value can be at most one: a comparison of both kinds of images is shown in figure 2.

A mask image, if summed, denotes the number of non-zero deposits associated with sensors in the
detector that measured some energy. This quantity is similar to the nTracks variable, but not equivalent
since, depending on the granularity used to yield the images, two or more tracks can fall in the same bin
(pixel) thus being not distinguished when counting non-zero pixels. In particular, we consider the mask
image computed from the energy deposits of the tracker channel only, as the calorimeter information turned
to be not enough informative: this fact was validated by our prior experiments, in which one possible
explanation provided by [8] is that at the calorimeter level the SUEP resembles the pile-up since lacking hard
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Figure 2. Energy, I, (left) and mask, Im, (right) images of a single sample. Tracks information turned to be more discriminative
than energy deposits, so we train on Im instead of I.

and isolated objects, therefore, being more noisy than informative. Moreover, pixels in Im have the additional
benefit of being either zero or one, avoiding the need of normalizing ET deposits which are often large in
range and skewed towards small values.

4.2. Image augmentations
Since our data have physical properties like total energy, and the ET deposits are arranged according to the
design of the detector (other than being the result of a physics phenomenon), we cannot simply apply the
usual off-the-shelf image augmentations like random crop, cutout, rotation, and jittering [44] that would
reorganize the image’ pixels without following the underlying physics and also without preserving both the
individual and overall value of energy deposits. For this reason, we design novel data augmentations that
preserve the physical meaning of the images by working on the η-ϕ plane, hence, also respecting the
geometry of the detector.

In particular, one kind of image augmentation involves a flipping in η, while the other is a rotation in ϕ:
considering the figure 1 as a visual reference, the former can be interpreted as considering particles moving
in the opposite direction with respect to the beam line (i.e. along the detector’s z-axis), whereas the latter
as rotating clockwise or anticlockwise the whole collision event on the detector’s x-axis. The η-flip
augmentation is simply implemented by mirroring the x-axis from left to right, where the ϕ-rotation is a
little more complex. Rotation in ϕ (i.e. along the image’s y-axis8) can occur both upward (i.e. anticlockwise)
and downward (clockwise), in which a portion of the image moves up (or down) and the part in excess (the
one that would fall off vertically from the image boundaries) is then attached to the bottom (or top). From a
practical perspective, the ϕ-rotation is done in chunks of∆ rows, in which the chunk size is uniformly
sampled for each image that should be rotated from the set,∆ ∈ {8,16, . . . ,56}, whose values are only
multiples of eight: a hyper-parameter value found to work well experimentally.

By combining these two kinds of image augmentations, flipping and rotation, it is possible to yield a total
of five combinations of augmentations: 1) upward rotation, 2) downward rotation, 3) flipping, 4) flipping
and upward rotation, and lastly 5) flipping with downward rotation. The image augmentations presented in
figure 3 can be applied to raw images of particle collisions, regardless the specific kind of signal and
background processes. Moreover, these are also designed to encourage the model to be invariant with respect
the detector geometry: learning the properties of the detector’s coordinate space is useful not only for AD but
also for classification and regression problems.

4.3. The dual encoders
Capturing a latent space that is both discriminative for AD, and high-capacity for accurate pixel-level
reconstructions can be challenging due to a trade-off between the size of the latent space and the
reconstruction quality. Large latent spaces yield accurate reconstructions but cannot be used directly as AD
scores unless summarized in some way. Conversely, small latent spaces can encode discriminative features
but at the cost of poor reconstructions due to the low-dimensionality that does not retain pixel-level details:

8 We refer to Cartesian x and y axes in the context of images, rather than x and y (i.e. rapidity) as detector coordinates.
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Figure 3. Example of five kinds of data augmentations, demonstrated on a random QCD sample considering energy deposits,
whose value scale is depicted by the colored bar.

this fact can stop the training prematurely, resulting in sub-optimal anomaly scores that may not even
discriminate the anomalies. Since the model is trained to maximize the reconstruction fidelity, ensuring a
good convergence of the loss can indirectly improve the anomaly scores too since these are, even if not
optimized directly, defined from the reconstructions: reaching a better optimum entails a lower
reconstruction loss on the normal examples, which, in the context of AEs, means obtaining a better
(i.e. more structured, rich) latent space and a more accurate decoder.

As we want to capture both the detail and discriminative features, we define two encoders, fR and fm,
trying to disentangle these two notions without any additional supervision. The encoder fR is a residual
network [45] that embeds the input images in a large convolutional latent space, Z= fR(Im), of size
|Z|= 5× 4× 64: given its large capacity, the latent components are expected to retain enough information to
let the decoder yield high-quality reconstructions. The mask encoder fm, instead, is a shallower convolutional
network aimed at learning a compact and discriminative auxiliary latent space, Zm = fm(Im) where |Zm|= 2,
such that its components can be directly used as anomaly scores. Both encoders receive the same mask image,
Im, as input. Furthermore, the two networks have different architectures to induce a bias during training,
established with prior experiments: fR is high capacity and its skip connections can propagate information
deeply in the layers’ hierarchy helping to retain pixel-level details, whereas the max pooling layers in fm are
meant to consider only the most important activations to enhance the discrimination power of Zm. For
clarity, we also refer to Z as the convolutional latents, and Zm as the auxiliary or compact latents.

4.4. The conditional decoder
The conditional decoder D is a residual network [45] whose main input is the convolutional latent space, Z
(i.e. the output of the residual encoder, fR), from which it tries to reconstruct the input mask images, Im. The
latent space, Z, is sufficiently large to provide enough information to the decoder to enable high-quality
reconstructions; but the question is about how to enable the mask encoder, fm, to learn a compact latent
space, Zm. The answer is provided by conditioning [17, 46], which establishes a dependency between the
decoder, D, and the auxiliary latent space, Zm, allowing the gradients of the loss to flow through fm without
any direct supervision. We call the whole auto-encoder architecture a Conditional Dual Auto-Encoder (or
CoDAE): described in figure 4.

During training, the conditioning mechanism propagates the reconstruction error also to the mask
encoder, without any additional loss term or extra supervision, providing feedback to learn Zm such as to
maximize the reconstruction quality. Turns out that Zm alone is not enough for pixel-accurate
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Figure 4. The architecture of both CoDAE and CoDVAE: convolutional and up-sampling blocks in yellow and orange,
respectively, gray dashed arrows and a⊕ symbol depict a skip (or residual) connection [45], lastly blue solid arrows and the⊚
symbol denote spatial conditioning of Zm on Z. Each block uses 3× 3 convolutions followed by instance normalization [47] and
Leaky-ReLU [48]. Down-sampling in the encoder is performed by strided convolutions instead of pooling.

Algorithm 2. Spatial multiplicative conditioning.

Input: latents Zm ∈ R2, tensor hi ∈ RHi×Wi×Ci , kernel size K
Output: spatially conditioned representation ri ∈ RHi×Wi×Ci

/∗ See algorithm 1 in [49] ∗/
1 z = SpatialBroadcast(Zm,Wi,Hi)
/∗ Expand channels of z to match hi, through a linear convolution ∗/
2 z = Conv2D(filters= Ci, kernel_size= K, padding= ‘same’)(z)
/∗Multiplicative conditioning: Hadamard product z⊙ hi ∗/
3 ri = tf.multiply(z, hi)
4 return ri

reconstructions9, and so we also need to learn the high-capacity latent space, Z. Intuitively, we write
Îm = D(Z | Zm) to highlight that the compact latents, Zm, must influence the reconstructions, Îm, in order to
represent meaningful and not just random encoded features. For such reason, the conditioning should be
strong enough to prevent D from completely relying only on the convolutional latents: in its base form, Z is
modulated by conditional scaling [17] (i.e. a conditioning mechanism that establish a dependency through
multiplications), which occurs at multiple levels of the decoder hierarchy.

In particular, our form of conditioning combines spatial broadcast [49] with a feature-wise
transformation [17]: element-wise multiplication or scaling. We will refer to this operation as spatial
conditioning: described by equation (1) and algorithm 2. The spatial broadcast (SB) operation provides an
inductive bias to the convolutional encoder, fm, for learning disentangled latent factors in Zm (which should
encourage to capture independent features over the latent components) while, at the same time, modulating
Z and the subsequent hidden feature maps. Spatial conditioning is performed at multiple spatial resolutions
of the decoder’s hierarchy of layers. Initially, at stage i= 0, the conditioning is performed on the
convolutional latents (i.e. h0 = Z) which are then fed to the first layers of the decoder. Subsequently (i> 0)
the hidden feature maps (output of the previous residual block in stage i− 1), hi, are conditioned on the
same Zm. In this way, the auxiliary latent space effectively modulates the decoder at different spatial
resolutions. The operation performed on a generic tensor hi, of size Hi ×Wi ×Ci, can be written as:

ri = Conv(SB(Zm))⊙ hi, (1)

where SB (see algorithm 1 in [49]) replicates and expands Zm to match the shape of Hi ×Wi, the subsequent
convolution (Conv) linearly expands the channels of the intermediate result to Ci, to finally perform the
Hadamard product (denoted by⊙) with hi, yielding the conditioned representation ri at stage i.

In general, our spatial conditioning operation is not limited to only multiplicative interactions. Other
simple conditioning mechanisms applied on feature maps are possible, like addition (also called biasing),
concatenation, or even an affine-like operation that combines both multiplication (also known as scaling)
and biasing. In principle, it is also possible to exploit the domain knowledge of the problem and data to

9 Even with a high-capacity residual encoder, reconstructing from only the two components of Zm results in reconstructions that look like
just average images, thus without pixel-level details.
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devise an application-specific conditioning mechanisms that utilizes such knowledge: for example, we may
think of conditioning on a relevant physics observable.

4.5. Categorical CoDVAE
The described CoDAE architecture can be easily extended to variational auto-encoders [25] (VAE). In
particular, we explored the Categorical VAE [50, 51] in which the convolutional latents, Z, are sampled from
a Gumbel-Softmax (or Concrete) distribution: Z∼ Cat(αR, τR), where αR, τR = fR(Im) are the learned logits
and temperature. The motivation is that the Categorical VAE can learn discrete features, like counts, whereas
the regular (i.e. Gaussian) VAE captures continuous quantities which are not completely related to the
nTracks variable. We call this model the Categorical Conditional Dual Variational Auto-Encoder, or CoDVAE
in short. Likewise, in previous approaches [52, 53], we let the residual encoder also output a temperature τR,
which can be difficult to tune properly, defining the degree of relaxation of the Categorical distribution
(approximated by the Gumbel-Softmax) parameterized by αR. Basically, we add a second point-wise
convolution with a softplus activation, to ensure positive values, on the last residual block of
figure 4(diagram section about fR). Then, a base temperature, τ 0, which is a hyper-parameter set to 1, is
added to τR to avoid gradient instabilities due to small numbers as τR → 0 recovers the true Categorical
distribution: conversely, if τR →∞ the distribution approaches a Uniform one. Since we learn the
temperature, we define a more complex prior p(Z) as a uniform mixture of N Gumbel-Softmax with
different temperatures sampled uniformly in [0.1,1], to provide more flexibility to the latent space:

p(Z) =
1

N

N∑
i

Cat(log1/C, τi) , τi ∼ U(0.1,1) . (2)

We then approximate the KL divergence (DKL) between the prior and the learned distribution,
q= Cat(αR, τR), with a Monte–Carlo estimate (M= 10), as follows:

DKL (q ∥ p)≈
1

M

M∑
z∼q(x)

logq(z | x)− logp(z) . (3)

To enable sharp reconstructions of mask images, we opt for learning a probabilistic decoder in which each
output pixel is independently governed by a Bernoulli distribution, which is able to represent pixel values
that are either zero or one, as in Im. A single Bernoulli distribution can be denoted as Bern(pθ) where pθ is
learned and specific for a single pixel. For sharp predictions we take themode of such distribution since it is 1
if pθ >

1
2 and 0 otherwise: its mean, instead, is suitable to represent smooth values in [0,1] like normalized

energy deposits.

4.6. Anomaly scores
Auto-encoders provide the opportunity to define a variety of scores to perform AD. Our CoDAE architecture
learns an auxiliary low-dimensional latent space, allowing each component to be an anomaly score: in our
case |Zm|= 2, so we have two discriminators10. In addition to this, VAEs provide a natural way to
discriminate on the latent space through the KLD [36, 40] between the learned posterior and the prior
distribution, i.e. DKL

(
q(z | x)∥ p(z)

)
. Yet another option is provided by the fact that the KLD is not

symmetrical: DKL(q ∥ p) and DKL(p ∥ q) have two different meanings. The former promotes mode-seeking
behavior (called the reverse KL) and the latter encourages coverage of probability mass (known as forward
KL.) We exploit these two additional scores (denoted as KL-R and KL-F) with our Categorical CoDVAE
model. Let be x an input image and x̂ its reconstruction. To ease the notation, we denote the set of pixel
indexes P= {i, j,k | i = 0, . . . ,H− 1, j = 0, . . . ,W− 1,k= 0, . . . ,C− 1} for images of size H×W×C, and
define our reconstruction-based scores on that as follows:

• BCE(x, x̂) =−
∑

p∈P xp log x̂p +(1− xp) log1− x̂p. It denotes the sum of the binary-cross entropy between
the true and predicted pixels. Since the pixel values in each mask image are either zero or one, this measure
is well-defined, without any normalization.

• SSE(x, x̂) =
∑

p∈P(xp − x̂p)2. It represents the sum of squared errors between the true and reconstructed
pixels.

10 In principle, the latent space Zm could have an arbitrary number of dimensions but there is a trade-off: learning either too numerous
or too few (e.g. one) latent components may result in individual scores with a weak discriminatory power.
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• SAE(x, x̂) =
∑

p∈P |xp − x̂p|. It depicts the sum of absolute errors, which is the absolute difference between
true and predicted pixels. It is worth noticing that if the Categorical CoDVAE model is evaluated on mask
images, this metric is equal to the SSE since both squared and absolute differences can be either zero or one
(according to whether the pixel is correctly predicted or not): this is a direct consequence of taking themode
of the learned Bernoulli decoder, whose output pixels are binary values. Thus, in such cases, we omit the
results of the SAE scores. Moreover, we can define SAE on mask images too: SAE-mask(x, x̂) =

∑
p

∣∣1[xp >
0]− 1[x̂p > 0]

∣∣.
• Dice(x, x̂) =

∑
p∈P x

2
p+

∑
p∈P x̂

2
p

2
∑

p∈P xp ·̂xp
. This score is defined as the inverse of the Dice coefficient [54], to provide a

measure of dissimilarity between two sets of pixels: x and x̂.
• PixelSum(x, x̂) =

∑
p∈P x̂p. It is just defined as the sum of each predicted pixel value. This score can be inter-

preted as predicted total energy if themodel is trained to reconstruct I (energy image), or as an approximation
of the nTracks if reconstructing Im (mask image), instead. We also investigated the total number of pre-
dicted non-zero pixels, i.e.

∑
p 1[xp > 0], but we did not report results about it because its discriminatory

capability is quite weak.

Both categories of anomaly scores have their pros and cons. Reconstruction scores are in general easier to
define, for example from either common loss functions or metrics, but are slower to compute them since it is
required to forward the full model (encoder and decoder) to reconstruct the samples. Instead, latent-based
scores involve only the encoder predictions which are more suited for inference, although possibly more
difficult to define (e.g. analytical or empirical KL) and visualize (e.g. dimensionality reduction on
high-dimensional latent space.)

4.7. Training procedure andmodel acceleration
During training, we make use of the set of augmentation functions, T , defined in section 4.2. At each
mini-batch of mask images Im a random augmentation is sampled t∼ T and applied to it. The augmented
images, Ĩ= t(Im), are then fed to both residual and mask encoders; the decoder is then trained to reconstruct
Ĩ. The data augmentations enable the CoDAE models to learn invariances related to the coordinates η and ϕ
of the detector, which can be also seen as an implicit way to impart some physics notions to the model. In
addition, we perform model selection according to the value of the structural similarity (SSIM) [55] metric
between the true and reconstructed images, which provides a more human-aligned measure of image quality,
computed on a validation set of only background samples.

The whole CoDAE models are learned end-to-end using the AdamW optimizer [56], whose learning rule
decouples the weight decay regularization term from the main objective [57] making it easier to tune,
minimizing the binary cross-entropy loss11. The optimizer is left with default parameters and learning rate,
except for the weight decay coefficient set to 10−4. Furthermore, to improve training stability, we limit the
l2-norm of each gradient to be at most one. Lastly, all the weights are initialized by following the
he_uniform [58] scheme with zeros biases except for the decoder, whose biases are initialized to−1 to
provide a better starting point for the initial reconstructions.

We use TensorFlow lite [59] for both model compression and acceleration of our CoDAE models. In
particular, we employ a very light float16 weight and activation quantization that resulted in a 5.7×
reduction in model size and lower inference time, without any reduction in both AD and reconstruction
performance. In this way we are able to achieve inference latency on a single consumer CPU hardware of
about: 3ms (i.e. 6− 8× faster) for the mask encoder, and 40ms (i.e. 3.2− 4.1× faster) for a full forward pass
on the whole model; therefore well under the 100ms time-limit of the HLT. This also demonstrates that our
model architecture is very easy to optimize for deployment.

5. Results

In this section we present our evaluation protocol, and show the obtained results of our experiments
comparing physics-motivated baselines, prior approaches, and our models.

5.1. Evaluationmetrics
For the evaluation of both baselines (defined in the following section) and our proposed models, we treat the
anomalies (the two signals) as the positive class and employ two popular metrics in OOD detection [33]: the
area under the receiving operating characteristic curve (AUROC), and the false positive rate at N% of the
true positive rate (FPRN). The AUROC summarizes the performance of the discriminator across multiple

11 The loss is summed over spatial dimensions (height, width, and channels), and averaged over the batch size.
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thresholds while the FPRN evaluates the performance at one specific threshold value: such threshold is often
specific for the application and domain requirement. In our case, we choose N%= 40% which targets a
signal efficiency of 40%. Consequently, the metric is named FPR40.

The AUROC can be considered as the probability that a signal sample is assigned a higher AD score than
a background example. Thus, higher AUROC values are better, depicting a higher retention of the signal at a
lower background efficiency (and so at a higher rejection rate of the background.) The FPRN metric, instead,
is more suited to compare strong models: interpreted as the probability that a normal (background) sample
is flagged as an anomaly (so as a signal) when the 40% of signals are correctly detected. Since we want to
decrease such false alarm probability, lower FPR40 values indicate a better model.

Moreover, since the performance of deep neural networks are dependent on many stochastic factors (e.g.
sampling of the data, random weight initialization, dropout, etc) and specific (architecture and
optimization) hyper-parameters, making difficult to conclude which model is actually better than another
according to few (average) scores, especially when these show counter-intuitive results: e.g. one score is the
best on a signal, and the worst on the other. Hence, we employ the Almost Stochastic Order (ASO) test [60,
61] as implemented by [62] which provides a statistically significant result from which it can be decided the
best performing algorithm. The ASO test is specifically designed for neural networks, building on the
concept of stochastic order in which one distribution of scores (e.g. AUROC) is said to stochastically
dominate another one if the cumulative distribution of the former is lower than the latter for every point.
Since the stochastic dominance is too strict to be practical, the almost stochastic dominance is used instead,
which quantifies the extent to which stochastic order is violated. Therefore, the ASO test returns an upper
bound, called ϵmin , expressing the amount of violation: if ϵmin < τ (where τ is the rejection threshold usually
set to 0.5 or less, like 0.2 for a more confident result), then the former algorithm is superior than the latter.
The value ϵmin can be interpreted as a confidence score: the lower it is, the more sure we can be about the
dominance of one model over another. Experimentally, we follow the best practice suggested in [62] by fixing
one set of hyper-parameters and comparing multiple runs of the same model where possible. Moreover, for
each benchmark mass we build an empirical distribution of the AUROC by computing this metric on a
thousand of random, class-balanced subsets (with 2k samples each) of the data.

5.2. Baseline discriminators
For a fair comparison and assessment of our method, we determined various baseline discriminators: two
physics-motivated ones, a fully supervised classifier, a convolutional auto-encoder (CAE), and two AD
models. The two physics discriminators are respectively based on the total energy (i.e. the sum of energy
deposits, ET, in each image channel), and the nTracks variable. Specifically, the nTracks is a
model-independent classical variable corresponding to the total number of tracks per event [19, 20]. Such
quantity is related to the number of decay products providing the best approximation of such to discern the
signal particles, being also independent of the binning used to discretize the detector resolution. In
particular, we define the total energy baseline as follows:

s(k) (c) =
H∑
i

W∑
j

x(k)i,j,c, c ∈ {0,1,2} (4)

where s(k)(c) is the score value for channel c (which denotes, respectively, the Trk, ECAL, and HCAL) of the
kth image x(k) with height H and widthW. Discrimination will be then performed according to the obtained
scores, s, per channel.

Furthermore, we also consider the performance of a supervised classifier, therefore assuming an ideal
setting in which we would have perfect knowledge of the data. Such a supervised baseline will provide a good
approximation regarding upper-bound discrimination performance that our unsupervised model may
achieve at its best. In particular, we consider a robust model, a Compact Convolutional Transformer (CCT)
[63] that already outperformed a simpler convolutional network in our prior experiments.

The next baseline is a CAE derived from our CoDAE: it has the same architecture and hyper-parameters,
lacking only the second (smaller) encoder network and the spatial conditioning mechanism in the decoder
since there is no additional input (i.e. CoDAE’s the auxiliary latent space) to perform conditioning on. This
CAE model is trained in exactly the same way our models are.

The last baselines are two popular AD models: an unsupervised AE inspired12 by [6], and the Dirichlet
VAE from [18]. In particular, the AE model has a total of 600k parameters, a latent space of size 32, and was

12 To the best of our knowledge, the authors provide only a figure outlining their model architecture and not a comprehensive description;
we did our best to mimic their approach.
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Table 1. Comparison of anomaly detection baselines and models on test-set, best scores only. AUROC metric, higher is better: mAUC
denotes the AUROC averaged over all the mediator masses for a given signal. Entries associated to an (∗) were averaged over three
random seeds: 42, 51, and 73. Top three best results in boldface.

Model

SUEP (GeV) SVJ (TeV)

125 200 300 400 700 1000 mAUC 2.1 3.1 4.1 mAUC

Total energy (Trk) 45.18 48.4 54.13 58.51 67.39 70.89 57.42 55.86 72.13 81.46 69.82
nTracks 78.68 92.39 98.31 99.6 99.94 99.93 94.81 82.05 89.32 92.92 88.1
Supervised CCT [63] 89.72 96.58 98.88 99.42 99.87 99.93 97.4 96.05 98.17 98.76 97.66

∗CoDAE (Z2) 79.77 93 98.28 99.45 99.54 99.23 94.88 83.2 88.3 90.83 87.44
∗CoDAE (BCE) 88.74 97.54 99.61 99.93 99.99 99.99 97.63 85.98 90.39 92.62 89.66

Cat. CoDVAE (Z1) 77.54 91.5 97.71 99.21 99.42 99.19 94.1 81.36 86.4 88.9 85.55
Cat. CoDVAE (KL-F) 69.32 83.92 93.18 96.38 98.04 98.18 89.84 79.69 84.08 86.11 83.3
Cat. CoDVAE (SSE) 86.93 97.01 99.51 99.9 99.98 99.98 97.22 85.29 89.78 92.04 89.04

∗CAE (BCE) 89.42 97.84 99.7 99.95 99.99 99.99 97.81 85.96 90.45 92.72 89.71
AE [6]-like (PixelSum) 83.89 94.6 98.69 99.68 99.95 99.94 96.13 83.26 88.72 91.44 87.81
Dirichlet VAE [18] (Z2) 51.93 54.99 59.58 63.17 71.16 74.51 62.55 63.52 67.37 69.26 66.72

Table 2. Comparison of anomaly detection baselines and models on test-set, best scores only. FPR40 metric, lower is better: mFPR
denotes the FPR40 averaged over all the mediator masses for a given signal. Entries associated with an (∗) were averaged over three
random seeds. Top three best results in boldface.

Model

SUEP (GeV) SVJ (TeV)

125 200 300 400 700 1000 mFPR 2.1 3.1 4.1 mFPR

Total energy (Trk) 50.63 48.11 41.81 37.71 29.3 25.11 38.78 33.84 17.46 9.155 20.15
nTracks 11.84 2.849 0.277 0.028 ∼0 ∼0 2.5 5.45 1.599 0.539 2.53
Supervised CCT [63] 0.242 0.016 0.002 ∼0 ∼0 ∼0 0.04 0.121 0.021 0.005 0.05

∗CoDAE (Z2) 11.44 2.68 0.35 0.107 0.237 0.434 2.54 4.65 2.006 1.17 2.61
∗CoDAE (BCE) 5.832 0.806 0.057 0.004 ∼0 ∼0 1.12 2.829 1.027 0.523 1.46

Cat. CoDVAE (Z1) 12.91 3.329 0.575 0.219 0.227 0.341 2.93 5.9 2.866 1.85 3.54
Cat. CoDVAE (KL-F) 19.08 7.498 2.635 1.452 0.739 0.677 5.35 7.425 4.913 4.085 5.47
Cat. CoDVAE (SSE) 6.652 0.944 0.071 0.007 ∼0 ∼0 1.28 3.065 1.176 0.588 1.61

∗CAE (BCE) 5.175 0.654 0.04 0.002 ∼0 ∼0 0.98 2.694 0.943 0.464 1.37
AE [6]-like (PixelSum) 8.22 1.904 0.211 0.035 ∼0 ∼0 1.73 4.346 1.74 0.863 2.32
Dirichlet VAE [18] (Z2) 26.06 17.38 10.15 6.66 2.572 1.42 10.71 21.42 14.89 10.92 15.74

trained to minimize a mean squared loss: compared to our CoDAE, it lacks the second encoder and skip
connections, and embeds its inputs to dense vectors while the images are reconstructed by transposed
convolutions. Instead, the Dirichlet VAE is a weakly-supervised approach that, therefore, also requires a
fraction of the signals for training: we assume a realistic setting in which the background is contaminated
with 0.01% of the signals. This model has a three dimensional latent space, whose prior distribution is the
Dirichlet [34] instead of the Gaussian, resulting in 2M parameters: during training we normalize the images
to sum to one, and use the same hyper-parameters as in [18]. For both AD models, we apply the data
augmentations defined in section 4.2. We trained both AE and Dirichlet VAE for 50 epochs (the latter
converged earlier in training), the CoDAE for 30 epochs, and the Categorical CoDVAE for 100 of them since
we observed slower convergence compared to the CoDAE. Lastly, the batch size is 128 for all models, and the
weights are optimized by AdamW [56, 57].

5.3. AD
In this section we compared our two models (the CoDAE and Categorical CoDVAE) against the baselines
defined in the previous section. For all the models and baselines we computed the anomaly scores defined in
section 4.6, where possible (e.g. it is not possible to compute the KL for the AE), and evaluated their
respective AUROC and FPR40. In particular, in tables 1 and 2 we provide the results for the best scores on
average, i.e. the anomaly scores that achieve the best performance on both signals by considering the average
over the mass points, while the full evaluation is available in the supplementary material.

Discussing about the physics baselines, for the SUEPs we can see that the sum of ET deposits of the signal
is actually lower than the one of the QCD background, resulting in shifted distributions of scores that yield
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Figure 5. The CoDAE’s (left) and CoDVAE’s (right) auxiliary latent space, Zm, along with kernel density estimates of its
components: the best components are, respectively, Z2 and Z1. As we can see in the density plots, the QCD (blue) and SUEPs
(orange) look well separated, instead the SVJs (green) span in between the two classes.

an AUROC below 50%. This total energy baseline indicates that one signal (the SUEPs) is less complex than
the background. Instead, such issue does not occur for the nTracks baseline, which already provides a pretty
good separation performance for both signals on both evaluation metrics, especially for the SUEPs at high
mass; as stated in [8]: counting the number of tracks is particularly sensitive to high multiplicity soft particles
like SUEPs, making them easier to identify. Compared to the AUROC, the FPR40 metric helps us better
understand the shape of the ROC curve around our target signal efficiency of 40%, showing a very high
(almost ideal) background rejection rate for the supervised classifier in all the benchmark scenarios.

Compared to the nTracks baseline, which requires counting the track multiplicity possible only if fully
reconstructing the event as in an off-line analysis, our models are already able to get competitive
performance in the latent space (showed in figure 5) and even improve by a neat margin when using
reconstruction-based scores such as the BCE or SSE. We can notice that for some benchmark points, like
SUEP(400GeV), SUEP(700GeV) and SUEP(1000GeV), the AUROC easily saturates (table 1) attaining an
almost perfect background rejection (table 2), therefore the improvement brought by a data-driven approach
is negligible. Indeed, these are easier to detect since they are expected to deviate significantly from the QCD
background. Instead, in the most challenging scenarios our best model achieves an AUC improvement of at
most+10.1% for SUEPs and+3.9% for SVJs, as well as a reduction of FPR of at most 6% for SUEPs and
2.6% for SVJs, at the predefined signal efficiency compared to the nTracks baseline. Our models are able to
reduce the gap with the supervised classifier despite being trained on the background class only. Next, the AE
underperform our models, and the Dirichlet VAE is only competitive against the total energy baseline
attaining a too low background rejection rate. The CAE, then, performs slightly better than both the CoDAE
and CoDVAE: this is expected since optimizing the model is easier, in fact, it can be seen as a simplified
CoDAE as it lacks the spatial conditioning mechanisms.

Lastly, in table 3 we summarize the results about the ASO test between our models against the baselines,
considering the AUROC metric as score distribution for the statistical test which is performed between two
distributions at a time. As we can see, our models (in particular, when using the BCE and SSE scores) can
beat most of the baselines and for the SUEP signal also the supervised classifier, except for the
SUEP(125 GeV) benchmark point. Furthermore, this test confirms the superiority of the CAE model over
the CoDVAE but not against the CoDAE: the violation ratio fluctuates around 0.5, making difficult to decide
which model is the best. This also implies that the CAE is a valid alternative to our dual-encoder models,
especially in settings in which the auxiliary latent space has a low discriminatory power.

5.4. Reconstruction quality
To assess the reconstruction quality of the compared models, we evaluate two metrics: the mean squared
error (MSE), and the SSIM index [55]. In particular, the popular MSE metric is useful for determining the
texture quality of the reconstructions, since it penalizes pixel-level differences. Instead, the SSIM is a
perceptual quality metric designed to better match the perceived visual quality of humans. These two metrics
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Table 3. Pairwise comparisons of models and baselines, performing the ASO test based on the AUROC with a 95% confidence level: the
headings are our models, which are compared to the baselines (the entries). Models and baselines denoted with a (∗) were run on three
random seeds. The smaller the value, the best the model compares against the respective baseline. Note: the listed values are the result of
an approximate calculation, therefore there may be either false positives or negatives.

∗CoDAE (Z2)

Baseline

SUEP (GeV) SVJ (TeV)

125 200 300 400 700 1000 2.1 3.1 4.1

∗CAE (BCE) 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99
AE (PixelSum) 0.99 0.99 0.99 0.34 0.99 0.57 0.7 0.99 0.99
nTracks 0.66 0.65 0.99 0.99 0.99 0.99 0.33 0.99 0.99
Supervised CCT 0.99 0.99 0.99 0.45 0.69 1 0.99 0.99 0.99

∗CoDAE (BCE)

∗CAE (BCE) 0.55 0.55 0.55 0.55 0.53 0.65 0.43 0.54 0.39
AE (PixelSum) 0 0 0 0 0 0 0 0 ∼0
nTracks 0 0 0 0 0 0 0 ∼0 0.99
Supervised CCT 0 0 0 0 0 0 0.99 0.99 0.99

CoDVAE (Z1)

∗CAE (BCE) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
AE (PixelSum) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
nTracks 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Supervised CCT 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

CoDVAE (KL-F)

∗CAE (BCE) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
AE (PixelSum) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
nTracks 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Supervised CCT 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

CoDVAE (SSE)

∗CAE (BCE) 0.99 0.99 0.99 1 0.99 0.99 1 1 1
AE (PixelSum) 0 0 0 0 0 0 0 0 0
nTracks 0 0 0 0 0 0 0 0 0.99
Supervised CCT 0.99 0 0 0 0 0 0.99 0.99 0.99

Table 4. Evaluation of reconstruction quality: QCD test images. Lower values of MSE as well higher SSIM ones are better. Each entry
denotes the average metric value as well as its standard deviation (in parenthesis.) By design the Dirichlet VAE outputs images that sum
to one, so we undo the normalization before computing the metrics in order to have pixel values on the same scale. Best results are
shown in boldface.

Metric CoDAE CAE CoDVAE AE [6] Dirichlet VAE [18]

MSE 5.5 (±5.6) 9.4 (±7.4) 17.7 (±13) 70.9 (±24.7) 79.3 (±26)
SSIM 0.99 (±0.01) 0.98 (±0.02) 0.95 (±0.04) 0.36 (±0.12) 0.17 (±0.11)

are complementary since the MSE looks at fine details while the SSIM at the global appearance of the images,
providing a more comprehensive assessment of the quality of the reconstructed samples.

Reconstruction performance is summarized in table 4 as well visually in figure 6. From both we can
deduce that our two models achieve the lowest MSE and highest structural similarity, attaining accurate
single-sample reconstructions resulting in good predictions on average. As we can notice from table 4, all
models show some variance in the reconstructed background, indicating that some QCD samples deviate
from the ideal background event. Moreover, AE-based models show softer and smoother pixel predictions
whereas the categorical CoDVAE, thanks to its Bernoulli decoder, is capable of sharp reconstructions by
taking the mode of each learned distribution, one per output pixel. Furthermore, in figure 6 we can observe
how the Dirichlet VAE, which is designed to capture a multi-modal latent space distribution, only captures
the ‘QCD mode’ since each sample, regardless of being background or signal, is predicted as a sort of average
of QCD images: this is confirmed by the low reconstruction metrics. We noticed a similar behavior in our
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Figure 6. Comparison of per-sample (a) and average (b) reconstructions. In order: ground-truth, CoDAE, CAE, Categorical
CoDAE, AE [6], and Dirichlet VAE [18]. As we can see our models are capable of pixel-accurate single-sample reconstructions,
whereas the AE only captures the prominent pixels, and the Dirichlet VAE learns to predict a sort of average image instead. The
CAE is also very accurate, as expected, since sharing the same encoder and decoder architecture of the CoDAE.

prior experiments when training regular AEs with a small latent space (e.g. 2), even with a high-capacity
residual encoder.

We want to highlight the importance of accurate (or at least coherent) reconstructions. Since AD scores
can be defined from such predictions, it is necessary to avoid the model learning to predict some spurious
pattern or artifact instead of the inputs, otherwise, it would be difficult to understand for a human expert why
a new sample deviates from the training data. Moreover, since an auto-encoder is trained to maximize the
reconstruction quality which, in turn, mostly affects the reconstruction-based anomaly scores, it is equally
important to avoid premature convergence of the model since this can lead to sub-optimal AD performance:
employing a large latent space paired with powerful encoder and decoder networks can mitigate such issue,
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as seen for our CoDAE and CoDVAE. This is essential to obtain coherent AD predictions, high
discrimination performance, to have a trustworthy model, and even to debug the model itself once deployed.

5.5. Discussion
Throughout our study we showed how auto-encoders can be employed as an effective means to implement
AD in HEP analyses. In particular, our models achieve higher background rejection rates meaning that the
classified signal is less contaminated with false positives, which, in turn, boosts the statistical significance of
actually finding a newly theorized physics signal when analyzing the real data collected during the LHC’s
runs: for the SUEPs, we can even equal the supervised classifier even if this model still achieves largely
superior rejection rates at the target signal efficiency. In addition, our dual encoder architecture, which also
learns a smaller network fm, is particularly suitable for fast AD: the fm model can predict in just 3ms, enabling
more than real-time applications at the HLT, however at the cost of sacrificing accuracy; in principle, such a
model can be further optimized to match even tighter latency requirements, for example running on a FPGA
hardware like in [40, 64]. Moreover, our models just learn from raw detector images of particle collisions,
requiring less or no effort to compute high-level variables (like counting the number of tracks) and objects
(e.g. by a particle-based pre-processing), potentially simplifying the whole analysis setup. Lastly, our CAE
model can be employed in scenarios in which the auxiliary latent space is not helpful and the latency
requirements allow for a forward pass of the full model.

6. Conclusions

We demonstrate the first successful application of (variational) auto-encoders to deploy in the real-time
event-triggering stages of experiments like ATLAS [19] and CMS [20] to search for two dark showers models:
SUEPs and SVJs. Their discovery can potentially shed new light on the existence of dark matter and novel
hidden sectors, which are currently uncovered and undercover at the LHC.

Unlike the common trend in many related works [6, 18, 29, 30, 41], we do not employ a specific
particle-based pre-processing of our data, nor low- or high-level features, but instead learn directly from raw
images of particle signatures obtained by discretization of the detector response, thus reducing the
dependency on the physics model by only assuming tracking information to be relevant for the considered
signals: although we discard the calorimeter information, we believe the ECAL and HCAL to be still useful in
general, e.g. for searching long-lived particles.

Our models are evaluated against both signals, demonstrating anomaly scores that can identify both. Our
CoDAE models aim to adapt to the background samples, potentially allowing us to generalize on whatever
novel signal that is diverse from what the model learned about the QCD background. Ideally, it would be
possible to train a single model to reject one or more background processes, filtering only the events that
resemble a potential new physics signal. Our approach can potentially enable generic physics searches for
unknown, new signals from raw images only and with little-to-no assumptions about the physics model.
Further research and benchmark datasets would be required to fully accomplish such an important goal.
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