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Abstract

We present a family of conditional dual auto-encoders (CoDAEs) for generic and model-independent new
physics searches at colliders. New physics signals, which arise from new types of particles and interactions,
are considered in our study as anomalies causing deviations in data with respect to expected background
events. In this work, we perform a normal-only anomaly detection, which employs only background
samples, to search for manifestations of a dark version of strong force applying (variational) auto-encoders
on raw detector images, which are large and highly sparse, without leveraging any physics-based pre-
processing or strong assumption on the signals. The proposed CoDAE has a dual-encoder design, which is
general and can learn an auxiliary yet compact latent space through spatial conditioning, showing a neat
improvement over competitive physics-based baselines and related approaches, therefore also reducing the
gap with fully supervised models. It is the first time an unsupervised model is shown to exhibit excellent
discrimination against multiple dark shower models, illustrating the suitability of this method as an
accurate, fast, model-independent algorithm to deploy, e.g., in the real-time event triggering systems of
Large Hadron Collider experiments such as ATLAS and CMS.

1 Introduction

Model-independent searches are becoming a valid alternative to model-dependent searches at colliders, aiming
to discover new physics Beyond the Standard Model (BSM) governed by a vast parameter space 1. Hence,
an enormous number of model-dependent analyses would be required to unravel such a vast parameter space
in its entirety because each analysis need to target a specific signal: in this regard, model-independent
searches provide a great, more flexible, alternative. The conventional cut-based analyses involve physics
experts inspecting the distributions of various physical parameters to find discriminating characteristics.
Once identified, the best threshold is determined, above which the events are considered signal-like. This
part can be automatized by training a Machine Learning (ML) [1] or Deep Learning (DL) classifier [2, 3, 4]
separating simulated background and signal events. Subsequently, a rigorous statistical test [5] determines
the significance of the classified signal events: if above a certain threshold, the signal is declared to exist; if
too low, the signal can be confidently excluded to exist at all.

1A search aims to discard as many background events as possible while preserving the most signal: the background represents
what is already well known to exist, i.e., Standard Model (SM) processes or detector effects. The signal, which may or may
not exist in Nature, is the object of the search. The scope of analysis is to determine how plausible the existence of a specific
signal is.
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Both the cut- and supervised ML-based search techniques are model-dependent, i.e., they assume a
particular scenario for new physics, thus being signal-specific. For the ML-based approach, the classifier
inherently adapts its learned parameters to be sensitive to specific signal features. However, it does not
necessarily generalize towards unknown signals. Moreover, a supervised approach requires accurate signal
and background simulation and robustness against systematic uncertainties. To mitigate such limitations,
we propose a data-driven model-independent search strategy powered by Conditional Dual (Variational)
Auto-Encoders (CoDAEs) and normal-only Anomaly Detection (AD) [6], demonstrating generalization over
multiple signals despite not being trained on them.
In this article, we focus on two important and highly challenging manifestations of Hidden Valley (HV)
models [7], more specifically, of dark quantum chromodynamics (QCD), namely Soft Unclustered Energy
Patterns (SUEPs) [8] and Semi-Visible Jets (SVJs) [9, 10, 11]. The HV models are a type of BSM physics
describing the existence of a new sector of particles and forces with new gauge groups and a mediator to the
SM, which the Large Hadron Collider (LHC) [12] can produce. The HV models have been mainly developed
to address the origin of dark matter [13], whose experimental signatures often feature non-isolated objects
with high-multiplicity and/or low-energy final states, representing a challenging target for existing analyses
at the LHC [14].

Our proposed models can detect both SUEP and SVJ signals in highly sparse raw detector image data,
constructed from the trigger system information, within the time budget of the High-Level Trigger (HLT)
step [15] 2, being trained only on the simulated QCD events: the class of data considered as not anomalous.
Without making strong assumptions about the signals we avoid problem-specific pre-processing, on which
discrimination performance can be highly dependent [16], and further reduce the dependency on the physics
model. Our novel architecture can learn a two-dimensional (2D) auxiliary latent space through conditioning
[17], capturing intrinsic information of the input that can be visualized, interpreted, and, in principle,
employed for AD. Our contributions can be summarized as follows:

• We frame the new physics search problem as a normal-only anomaly detection task, making minimal
assumptions on the nature of the signals. We only assume: 1) to have access to normal (i.e., not
anomalous) data samples, and 2) that the signals can be revealed through tracking information.

• We propose a novel architecture that combines two encoders through spatial conditioning, in order to
learn additional criteria for discriminating between signal and background.

• We perform a comprehensive comparison of anomaly scores, evaluating both scores derived from re-
constructed images and the latent spaces.

• We ultimately show that our novel auto-encoder can reconstruct the target images with a much higher
quality than compared approaches, which can also help human experts when visually inspecting anoma-
lies.

Compared to both weakly-supervised (e.g., [18]) and classification methods (e.g., [2, 3]), which require partial
or full knowledge of the signal(s), our approach assumes only the knowledge about the background events.
Therefore, potentially enabling generic physics searches for unknown signals. In the following two sections
we provide some further physics background relevant to understand our work.

1.1 The New Physics Search Scenario: Hidden valley models

The Hidden valley models can produce dark quarks in proton-proton collisions at the LHC, leading to a dark
shower and the production of a large number of dark hadrons (ϕD), analogous to QCD jets [7, 8]. Depending

2We considered the Compact Muon Solenoid (CMS) experiment, a general-purpose detector at the LHC [12], as the reference
experiment for this study. The CMS trigger system is a two-tiered event selection system. The electronics-based first level
(L1) uses information from the calorimeters and muon detectors and reduces the event rate from 40 MHz to around 100 kHz
within a time interval of 4 microsec. The second level, known as the High-Level Trigger (HLT), runs a version of the full event
reconstruction software optimized for fast processing on a farm of processors. The HLT reduces the event rate to about 1 kHz
within O(102) ms, and the selected events are transferred to storage.
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on the details of the theory, the dark showers can follow large-angle emission and dark hadrons do not form
narrow QCD-like jets. The decay of dark hadrons results in dark photons (ZD), which further decay to
low-energy SM particles with transverse energy (ET ) of O(102)MeV, whose final experimental signature
being high-multiplicity spherically-symmetric soft unclustered energy patterns [8]. Through their decay to
SM particles via some portal state, like a dark photon, these processes become visible and in principle
detectable in 4π-detectors at the LHC such as ATLAS [19] and CMS [20]. We focus on a well-motivated
scenario where SUEP is produced in exotic Higgs (H) boson decays via gluon-gluon fusion and all dark
hadrons decay promptly and exclusively to pions and leptons, an experimental nightmare scenario because
of an overwhelming multi-jet QCD background.

Another manifestation of hidden valleys can be semi-visible jets [11, 9], a phenomenon in which energetic
particles are emitted in a spray of stable invisible dark matter along with unstable states that decay back
to SM. These showers are partially detectable, with the visible components looking like QCD showers [9].
This partial visibility makes it challenging to identify and study these particles thoroughly, having a low
acceptance with current methods.

1.2 The CMS Detector and simulated samples

The CMS experiment [20] is designed to explore the physics of proton-proton collisions through a system of
different sub-detectors, each designed to measure different aspects of the particles produced in a collision.
Given its cylindrical design, as we can see in figure 1, it is often convenient to adopt a polar coordinate
system (θ, ϕ) where: 0 ≤ θ ≤ π is the polar angle, and 0 ≤ ϕ ≤ 2π is the azimuthal angle. From these
coordinates, it is possible to explain the particle’s kinematic as (pT , y, ϕ,m): where m is the invariant mass,
pT the transverse momentum, and y the rapidity. A quantity related to the rapidity is the pseudo-rapidity
η, which is a measure of the angle of the particle’s motion relative to the beam line. The images employed
in our study are represented in the η-ϕ plane, therefore considering the pseudo-rapidity and azimuth.

Figure 1: The CMS coordinate system, which explains the particle’s motion within the cylindrical detector.
Figure adapted from https://tikz.net/axis3d_cms/.

The CMS detector consists of several layers that are used to measure various properties of particles produced
in high-energy collisions. The ones [21] relevant to our work are the:

• Inner tracking system, which measures the momentum of particles by their curvature radius through
the magnetic field. The tracker can monitor the paths of charged particles. This sub-detector covers a
pseudo-rapidity region of up to |η| < 2.5, being made of 66M silicon pixel detectors (100× 150µm2 in
size) for accurate measurement of the particle’s trajectory.
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• Calorimeters, consisting of an Electromagnetic calorimeter (ECAL), and a Hadron calorimeter (HCAL).
The calorimeters can measure the direction and energy of both charged and neutral particles. The
two sub-detectors have different granularity: for the ECAL, the granularity of 0.0174 × 0.0174 rad2

results in 286η× 360ϕ bins for the size of the images, whereas the HCAL is 25 times less granular, i.e.,
0.087 × 0.087 rad2. Therefore, each HCAL image is upsampled by a factor of 25 in the preprocessing
step, giving 1/25th of the energy to each pixel.

We employ the Delphes v.3.4.3pre1 fast detector simulation [22] with the CMS Run-2 detector model to
obtain the tracker, ECAL, and HCAL images. Samples of SM multijet events as well as for SVJ and SUEP
signal processes have been generated with the Pythia v8.244 event generator [23].

2 Related Work

In this section we review the relevant literature about anomaly detection in high-energy physics (HEP).
AD [24] is the task of determining which samples violate some notion of normal behavior: once identified,
these samples will be referred to as outliers or anomalies. We assume a normal-only setting, in which
the training is performed only on background data representing the already known (i.e., not anomalous)
behavior, being a good approximation to what occurs in practice, i.e., having the background contaminated
with a little fraction of unknown signals. (Variational) Auto-Encoders (V/AEs) [25, 26, 27] are a popular
mean to perform AD: the model is trained to minimize the reconstruction error of the normal samples, which
is then used to score the novel data. Anomalies are found by thresholding such error. A general challenge
is about designing anomaly scores that best separate the normal data from the anomalies [28]; to this end,
V/AEs allow conceiving two main classes of anomaly scores, as described in the next two sections.

2.1 Reconstruction-based Anomaly Detection

Reconstruction-based anomaly scores are obtained by comparing the reconstructions, x̂, with the inputs, x,
of the V/AE. Different scores can be determined according to the distance or similarity function used to
compare images. Heimel et al. [6] introduce the benchmark dataset of QCD vs top jets. Their approach
heavily relies on a specific particle-based processing of the raw collisions, which greatly simplifies the problem.
Their LoLa AE, which is based on jet-level kinematics features, is able to beat an image-based AE by a large
margin even with a smaller latent space, although at the cost of introducing an even larger dependency on
the jet mass. Finke et al. [29] discuss the limitations of using AEs on the same kind of data. The authors
propose the kernel-MSE loss function, which is less sensitive than MSE, encouraging the network to learn
dim pixels even in presence of sparsity. Recently, Dillon et al. [30] propose to use a normalized auto-encoder
(NAE) [31] to identify anomalous jets symmetrically. The NAE maximize the likelihood of the data through
the minimization of an energy function. Under this probabilistic formulation, the NAE is forced to inhibit
the reconstruction of an outlier, since it has to maximize the likelihood of the normal data, guaranteeing
a low reconstruction error only for them. Although, NAEs are well-suited for anomaly detection, avoiding
their training instabilities is still a practical challenge.

2.2 Latent-based Anomaly Detection

Latent-based anomaly scores are defined from the latent space captured by the encoder network: directly
using the learned latent representation to flag anomalies can be difficult due its high-dimensionality, therefore
combining the information carried by each latent component may require explicit supervision [32, 33]. Dillon
et al. [18] proposed to use a Dirichlet VAE [34] to learn a bi-modal, one-dimensional latent space that
naturally encodes the two classes: signal and background. The authors show that the Dirichlet prior on the
latent space naturally leads to mode separation, something that was not observed for both the regular VAE
[25] and the Gaussian-mixture VAE [35], without enforcing any additional loss term. The proposed Dirichlet
VAE reaches high class separation performance although weak-supervision is still required. Bortolato et
al. [36] propose to use the Kullback-Leibler divergence (KLD) between the learned and prior Gaussian
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distributions as an anomaly score to detect anomalous jets. Dillon et al. [37] compared the effectiveness
of using low-dimensional latent space representations instead of the event space features to perform model-
agnostic anomaly detection. They trained a transformer encoder [38] to optimize the JetCLR’s contrastive
objective [39], where symmetry augmentations were employed to define positive and negative pairs for the
contrastive learning. Through a binary classification test, the authors discovered that a sufficiently large
latent space (e.g., of size 512) is required to encode the physical symmetries of jets. Finally, the CWoLa [32]
method was used to perform model-agnostic anomaly detection, showing that still a significant fraction of
signal events is required to achieve meaningful class separation. Govorkova et al. [40] demonstrate a real-
world deployment of a VAE on FPGA hardware for real-time AD at the LHC [12]. The authors compared
the performance of both reconstruction- and KL-based anomaly scores, for both AE and VAE models. They
concluded that with a minor loss in performance, the scores based on the KL divergence allowed them to only
deploy the VAE’s encoder on the FPGA, thus saving both hardware resources and latency costs. Recently,
Cheng et al. [41] enhanced a VAE with a technique known as Outlier Exposure (OE) [33], which makes use
of an auxiliary set of out-of-distribution (OOD) data to improve the sensitivity to anomalies. An auxiliary
loss term is computed from OOD predictions, which ensured a good compromise between high separation
of anomalies and jet mass decorrelation. Although the promising results, it is not yet clear if data from the
same physics domain is enough to be considered as OOD.

2.3 Related High-Energy Physics Analyses

The analyses conducted in [42] and [43] are related to ours, since it is assumed a similar signal setting.
In particular, Barron et al. [42] target the same SUEPs scenario in which the signal decays to exotic
Higgs, and all the dark hadrons to SM hadrons. The authors identify three observables: charged particle
multiplicity, event isotropy, and interparticle distance. These are used to build the input features for their
unsupervised fully-connected auto-encoder. Canelli et al. [43], instead, study the SVJs signature by training
a fully-connected auto-encoder on jet-level and jet substructure variables, minimizing the mean absolute
error. Compared to these two studies, we neither rely on high-level nor engineered particle-based features
but, instead, learn from raw detector images. Moreover, our models are evaluated against both signals,
demonstrating anomaly scores that can identify both.

3 Simulated Dataset of particle collisions

The dataset employed for our study contains simulated images of size 360×286×3, for a total of about 615k
samples, divided in: 442k QCD, 67k SUEPs, and 106k SVJs. The image channels represent two-dimensional
ET (energy) deposits in the η-ϕ plane, which are measured by the Inner tracker (Trk), ECAL, and HCAL
sub-detectors [21] of CMS [20], respectively. Moreover, each image is annotated with a:

• Class label. There are three of them in total: the label 0 indicates the QCD background, the label 1
is associated to SUEP signal samples, and the label 2 refers to the second SVJ signal.

• Mass label. Signal samples only are identified by the mediator masses mH [8] and mZ′ [43] at which
these were generated. In particular, SUEPs were generated atmH = {125, 200, 300, 400, 700, 1000}GeV
and SVJs at mZ′ = {2.1, 3.1, 4.1}TeV. For the rest of the paper, we refer to a particular signal sample
by its mediator mass, such as SUEP(mH GeV) and SVJ(mZ′ TeV).

• Number of tracks. This is a model-independent quantity that best approximates the number of
decay products, obtained by the particle-flow reconstruction algorithm [21]. We refer to this variable
as nTracks. It should be noticed that computing this quantity is expensive, being not feasible for
real-time inference at the HLT.

Since the images are very sparse, having about 99.4% of zero pixels, and also moderately large, we employ a
simple pre-processing (as described by algorithm 1) that down-scales the images, thus reducing sparsity while
also preserving their total energy. The down-scaling is performed by convolving a 5× 5 kernel with all ones

5



on the input images along the channel dimension (i.e., in a depth-wise fashion), in a non-overlapping manner
with a stride equal to the kernel size, yielding a 25× reduction in spatial resolution while preserving the sum
of the energy deposits: the sparsity is also reduced to 96%; zero-padding is also applied to let the output
size be divisible by the kernel size. The last step of the pre-processing is to discard the HCAL and ECAL
channels, considering only the tracker one, resulting in images of size 72× 58× 1: smaller images are faster
to process by the network and require less storage, allowing to save up parameters, memory, computation
and time.

Algorithm 1: Image Pre-processing

Input: a batch of images I ∈ RB×H×W×C , kernel size K
Output: pre-processed images ItrkM ∈ RB×⌈H/K⌉×⌈W/K⌉×1

/* Depthwise convolution to down-sample each channel by a factor of K */

1 kernel = tf.ones((K,K,C, 1))
2 I ′ = tf.nn.depthwise conv2d(I, filter = kernel, strides = (1,K,K, 1), padding = ”SAME”)

/* Consider only the tracker channel, discarding the other two */

3 Itrk = I ′[. . . , 0, tf.newaxis]
/* Compute the mask image */

4 ItrkM = tf.cast(Itrk > 0, dtype = float)

5 return ItrkM

4 Method

In this section we detail our CoDAE architecture and training procedure, the physics-inspired image augmen-
tations applied to the pre-processed input images, and also define a variety of reconstruction- and latent-based
anomaly scores.

4.1 Image feature-engineering

Both the energy deposits and the nTracks variable can be seen as physics-motivated discriminators. More-
over, the number of tracks is much more sensitive to the searched signals than the energy, as stated in [8]
and confirmed by our prior experiments, representing a better input for our models. Therefore, we devised
a simple way to approximate the nTracks information by ”feature-engineering” the energy images, I, where
each pixel depicts an ET deposit, without running track reconstruction algorithms. The resulting mask im-
age, Im, is obtained by determining whether a pixel depicts a non-zero energy value: Im = 1[I > 0], where
1[·] is an indicator function applied to each pixel of I. Each pixel in Im represents whether or not a single
track has occurred, so its value can be at most one: a comparison of both kinds of images is shown in figure
2.

A mask image, if summed, denotes the number of non-zero deposits associated with sensors in the
detector that measured some energy. This quantity is similar to the nTracks variable, but not equivalent
since, depending on the granularity used to yield the images, two or more tracks can fall in the same bin
(pixel) thus being not distinguished when counting non-zero pixels. In particular, we consider the mask image
computed from the energy deposits of the tracker channel only, as the calorimeter information turned to be
not enough informative: this fact was validated by our prior experiments, in which one possible explanation
provided by [8] is that at the calorimeter level the SUEP resembles the pile-up since lacking hard and isolated
objects, therefore, being more noisy than informative. Moreover, pixels in Im have the additional benefit of
being either zero or one, avoiding the need of normalizing ET deposits which are often large in range and
skewed towards small values.
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Figure 2: Energy, I, (left) and mask, Im, (right) images of a single sample. Tracks information turned to be
more discriminative than energy deposits, so we train on Im instead of I.

4.2 Image Augmentations

Since our data have physical properties like total energy, and the ET deposits are arranged according to
the design of the detector (other than being the result of a physics phenomenon), we cannot simply apply
the usual off-the-shelf image augmentations like random crop, cutout, rotation, and jittering [44] that would
reorganize the image’ pixels without following the underlying physics and also without preserving both the
individual and overall value of energy deposits. For this reason, we design novel data augmentations that
preserve the physical meaning of the images by working on the η-ϕ plane, hence, also respecting the geometry
of the detector.

In particular, one kind of image augmentation involves a flipping in η, while the other is a rotation
in ϕ: considering the figure 1 as a visual reference, the former can be interpreted as considering particles
moving in the opposite direction with respect to the beam line (i.e., along the detector’s z-axis), whereas
the latter as rotating clockwise or anticlockwise the whole collision event on the detector’s x-axis. The η-flip
augmentation is simply implemented by mirroring the x-axis from left to right, where the ϕ-rotation is a little
more complex. Rotation in ϕ (i.e., along the image’s y-axis3) can occur both upward (i.e., anticlockwise)
and downward (clockwise), in which a portion of the image moves up (or down) and the part in excess (the
one that would fall off vertically from the image boundaries) is then attached to the bottom (or top). From
a practical perspective, the ϕ-rotation is done in chunks of ∆ rows, in which the chunk size is uniformly
sampled for each image that should be rotated from the set, ∆ ∈ {8, 16, . . . , 56}, whose values are only
multiples of eight: a hyperparameter value found to work well experimentally.
By combining these two kinds of image augmentations, flipping and rotation, it is possible to yield a total of
five combinations of augmentations: 1) upward rotation, 2) downward rotation, 3) flipping, 4) flipping and
upward rotation, and lastly 5) flipping with downward rotation. The image augmentations presented in figure
3 can be applied to raw images of particle collisions, regardless the specific kind of signal and background
processes. Moreover, these are also designed to encourage the model to be invariant with respect the detector
geometry: learning the properties of the detector’s coordinate space is useful not only for anomaly detection
but also for classification and regression problems.

3We refer to Cartesian x and y axes in the context of images, rather than x and y (i.e., rapidity) as detector coordinates.
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(a) No augmentation (b) Upward rotation in ϕ (∆ = 16) (c) Downward rotation in ϕ (∆ = 24)

(d) Flip in η (e) Flip and upward rotation (f) Flip and downward rotation

Figure 3: Example of five kinds of data augmentations, demonstrated on a random QCD sample considering
energy deposits, whose value scale is depicted by the colored bar.

4.3 The Dual Encoders

Capturing a latent space that is both discriminative for anomaly detection, and high-capacity for accurate
pixel-level reconstructions can be challenging due to a trade-off between the size of the latent space and
the reconstruction quality. Large latent spaces yield accurate reconstructions but cannot be used directly
as AD scores unless summarized in some way. Conversely, small latent spaces can encode discriminative
features but at the cost of poor reconstructions due to the low-dimensionality that does not retain pixel-level
details: this fact can stop the training prematurely, resulting in sub-optimal anomaly scores that may not
even discriminate the anomalies. Since the model is trained to maximize the reconstruction fidelity, ensuring
a good convergence of the loss can indirectly improve the anomaly scores too since these are, even if not
optimized directly, defined from the reconstructions: reaching a better optimum entails a lower reconstruction
loss on the normal examples, which, in the context of AEs, means obtaining a better (i.e., more structured,
rich) latent space and a more accurate decoder.

As we want to capture both the detail and discriminative features, we define two encoders, fR and fm,
trying to disentangle these two notions without any additional supervision. The encoder fR is a residual
network [45] that embeds the input images in a large convolutional latent space, Z = fR(Im), of size
|Z| = 5×4×64: given its large capacity, the latent components are expected to retain enough information to
let the decoder yield high-quality reconstructions. The mask encoder fm, instead, is a shallower convolutional
network aimed at learning a compact and discriminative auxiliary latent space, Zm = fm(Im) where |Zm| = 2,
such that its components can be directly used as anomaly scores. Both encoders receive the same mask image,
Im, as input. Furthermore, the two networks have different architectures to induce a bias during training,
established with prior experiments: fR is high capacity and its skip connections can propagate information
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Figure 4: The architecture of both CoDAE and CoDVAE: convolutional and upsampling blocks in yellow
and orange, respectively, gray dashed arrows and a ⊕ symbol depict a skip (or residual) connection [45],
lastly blue solid arrows and the ⊚ symbol denote spatial conditioning of Zm on Z. Each block uses 3 × 3
convolutions followed by instance normalization [47] and Leaky-ReLU [48]. Down-sampling in the encoder
is performed by strided convolutions instead of pooling.

deeply in the layers’ hierarchy helping to retain pixel-level details, whereas the max pooling layers in fm
are meant to consider only the most important activations to enhance the discrimination power of Zm. For
clarity, we also refer to Z as the convolutional latents, and Zm as the auxiliary or compact latents.

4.4 The Conditional Decoder

The conditional decoder D is a residual network [45] whose main input is the convolutional latent space, Z
(i.e., the output of the residual encoder, fR), from which it tries to reconstruct the input mask images, Im.
The latent space, Z, is sufficiently large to provide enough information to the decoder to enable high-quality
reconstructions; but the question is about how to enable the mask encoder, fm, to learn a compact latent
space, Zm. The answer is provided by conditioning [17, 46], which establishes a dependency between the
decoder, D, and the auxiliary latent space, Zm, allowing the gradients of the loss to flow through fm without
any direct supervision. We call the whole auto-encoder architecture a Conditional Dual Auto-Encoder (or
CoDAE): described in figure 4.

During training, the conditioning mechanism propagates the reconstruction error also to the mask en-
coder, without any additional loss term or extra supervision, providing feedback to learn Zm such as to
maximize the reconstruction quality. Turns out that Zm alone is not enough for pixel-accurate reconstruc-
tions4, and so we also need to learn the high-capacity latent space, Z. Intuitively, we write Îm = D(Z | Zm)
to highlight that the compact latents, Zm, must influence the reconstructions, Îm, in order to represent mean-
ingful and not just random encoded features. For such reason, the conditioning should be strong enough to
prevent D from completely relying only on the convolutional latents: in its base form, Z is modulated by
conditional scaling [17] (i.e., a conditioning mechanism that establish a dependency through multiplications),
which occurs at multiple levels of the decoder hierarchy.

In particular, our form of conditioning combines spatial broadcast [49] with a feature-wise transformation
[17]: element-wise multiplication or scaling. We will refer to this operation as spatial conditioning : described
by equation 1 and algorithm 2. The spatial broadcast (SB) operation provides an inductive bias to the
convolutional encoder, fm, for learning disentangled latent factors in Zm (which should encourage to capture
independent features over the latent components) while, at the same time, modulating Z and the subsequent
hidden feature maps. Spatial conditioning is performed at multiple spatial resolutions of the decoder’s
hierarchy of layers. Initially, at stage i = 0, the conditioning is performed on the convolutional latents (i.e.,

4Even with a high-capacity residual encoder, reconstructing from only the two components of Zm results in reconstructions
that look like just average images, thus without pixel-level details.
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h0 = Z) which are then fed to the first layers of the decoder. Subsequently (i > 0) the hidden feature maps
(output of the previous residual block in stage i − 1), hi, are conditioned on the same Zm. In this way,
the auxiliary latent space effectively modulates the decoder at different spatial resolutions. The operation
performed on a generic tensor hi, of size Hi ×Wi × Ci, can be written as:

ri = Conv
(
SB(Zm)

)
⊙ hi, (1)

where SB (see algorithm 1 in [49]) replicates and expands Zm to match the shape of Hi×Wi, the subsequent
convolution (Conv) linearly expands the channels of the intermediate result to Ci, to finally perform the
Hadamard product (denoted by ⊙) with hi, yielding the conditioned representation ri at stage i.

Algorithm 2: Spatial Multiplicative Conditioning

Input: latents Zm ∈ R2, tensor hi ∈ RHi×Wi×Ci , kernel size K
Output: spatially conditioned representation ri ∈ RHi×Wi×Ci

/* See algorithm 1 in [49] */

1 z = SpatialBroadcast(Zm, Wi, Hi)
/* Expand channels of z to match hi, through a linear convolution */

2 z = Conv2D(filters = Ci, kernel size = K, padding = ’same’)(z)
/* Multiplicative conditioning: Hadamard product z ⊙ hi */

3 ri = tf.multiply(z, hi)

4 return ri

In general, our spatial conditioning operation is not limited to only multiplicative interactions. Other
simple conditioning mechanisms applied on feature maps are possible, like addition (also called biasing),
concatenation, or even an affine-like operation that combines both multiplication (also known as scaling)
and biasing. In principle, it is also possible to exploit the domain knowledge of the problem and data to
devise an application-specific conditioning mechanisms that utilizes such knowledge: for example, we may
think of conditioning on a relevant physics observable.

4.5 Categorical CoDVAE

The described CoDAE architecture can be easily extended to Variational Auto-Encoders [25] (VAE). In
particular, we explored the Categorical VAE [50, 51] in which the convolutional latents, Z, are sampled from
a Gumbel-Softmax (or Concrete) distribution: Z ∼ Cat(αR, τR), where αR, τR = fR(Im) are the learned
logits and temperature. The motivation is that the Categorical VAE can learn discrete features, like counts,
whereas the regular (i.e., Gaussian) VAE captures continuous quantities which are not completely related
to the nTracks variable. We call this model the Categorical Conditional Dual Variational Auto-Encoder,
or CoDVAE in short. Likewise, in previous approaches [52, 53], we let the residual encoder also output a
temperature τR, which can be difficult to tune properly, defining the degree of relaxation of the Categorical
distribution (approximated by the Gumbel-Softmax) parameterized by αR. Basically, we add a second point-
wise convolution with a softplus activation, to ensure positive values, on the last residual block of figure 4
(diagram section about fR). Then, a base temperature, τ0, which is a hyperparameter set to 1, is added to
τR to avoid gradient instabilities due to small numbers as τR → 0 recovers the true Categorical distribution:
conversely, if τR → ∞ the distribution approaches a Uniform one. Since we learn the temperature, we define
a more complex prior p(Z) as a uniform mixture of N Gumbel-Softmax with different temperatures sampled
uniformly in [0.1, 1], to provide more flexibility to the latent space:

p(Z) =
1

N

N∑
i

Cat(log 1/C, τi), τi ∼ U(0.1, 1). (2)
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We then approximate the KL divergence (DKL) between the prior and the learned distribution, q =
Cat(αR, τR), with a Monte-Carlo estimate (M = 10), as follows:

DKL(q ∥ p) ≈ 1

M

M∑
z∼q(x)

log q(z | x)− log p(z). (3)

To enable sharp reconstructions of mask images, we opt for learning a probabilistic decoder in which each
output pixel is independently governed by a Bernoulli distribution, which is able to represent pixel values
that are either zero or one, as in Im. A single Bernoulli distribution can be denoted as Bern(pθ) where pθ is
learned and specific for a single pixel. For sharp predictions we take the mode of such distribution since it is
1 if pθ > 1

2 and 0 otherwise: its mean, instead, is suitable to represent smooth values in [0, 1] like normalized
energy deposits.

4.6 Anomaly Scores

Auto-encoders provide the opportunity to define a variety of scores to perform anomaly detection. Our
CoDAE architecture learns an auxiliary low-dimensional latent space, allowing each component to be an
anomaly score: in our case |Zm| = 2, so we have two discriminators5. In addition to this, VAEs provide
a natural way to discriminate on the latent space through the KLD [36, 40] between the learned posterior
and the prior distribution, i.e., DKL

(
q(z | x)∥ p(z)

)
. Yet another option is provided by the fact that the

KLD is not symmetrical : DKL(q ∥ p) and DKL(p ∥ q) have two different meanings. The former promotes
mode-seeking behavior (called the reverse KL) and the latter encourages coverage of probability mass (known
as forward KL.) We exploit these two additional scores (denoted as KL-R and KL-F) with our Categorical
CoDVAE model. Let be x an input image and x̂ its reconstruction. To ease the notation, we denote the
set of pixel indices P = {i, j, k | i = 0, . . . ,H − 1, j = 0, . . . ,W − 1, k = 0, . . . , C − 1} for images of size
H ×W × C, and define our reconstruction-based scores on that as follows:

• BCE(x, x̂) = −
∑

p∈P xp log x̂p + (1 − xp) log 1 − x̂p. It denotes the sum of the binary-cross entropy
between the true and predicted pixels. Since the pixel values in each mask image are either zero or
one, this measure is well-defined, without any normalization.

• SSE(x, x̂) =
∑

p∈P (xp − x̂p)
2. It represents the sum of squared errors between the true and recon-

structed pixels.

• SAE(x, x̂) =
∑

p∈P |xp − x̂p|. It depicts the sum of absolute errors, which is the absolute difference
between true and predicted pixels. It is worth noticing that if the Categorical CoDVAE model is
evaluated on mask images, this metric is equal to the SSE since both squared and absolute differences
can be either zero or one (according to whether the pixel is correctly predicted or not): this is a direct
consequence of taking the mode of the learned Bernoulli decoder, whose output pixels are binary values.
Thus, in such cases, we omit the results of the SAE scores. Moreover, we can define SAE on mask
images too: SAE-mask(x, x̂) =

∑
p

∣∣1[xp > 0]− 1[x̂p > 0]
∣∣.

• Dice(x, x̂) =
∑

p∈P x2
p+

∑
p∈P x̂2

p

2
∑

p∈P xp·x̂p
. This score is defined as the inverse of the Dice coefficient [54], to

provide a measure of dissimilarity between two sets of pixels: x and x̂.

• PixelSum(x, x̂) =
∑

p∈P x̂p. It is just defined as the sum of each predicted pixel value. This score can
be interpreted as predicted total energy if the model is trained to reconstruct I (energy image), or as
an approximation of the nTracks if reconstructing Im (mask image), instead. We also investigated the
total number of predicted non-zero pixels, i.e.,

∑
p 1[xp > 0], but we did not report results about it

because its discriminatory capability is quite weak.

5In principle, the latent space Zm could have an arbitrary number of dimensions but there is a trade-off: learning either too
numerous or too few (e.g., one) latent components may result in individual scores with a weak discriminatory power.
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Both categories of anomaly scores have their pros and cons. Reconstruction scores are in general easier to
define, for example from either common loss functions or metrics, but are slower to compute them since
it is required to forward the full model (encoder and decoder) to reconstruct the samples. Instead, latent-
based scores involve only the encoder predictions which are more suited for inference, although possibly
more difficult to define (e.g., analytical or empirical KL) and visualize (e.g., dimensionality reduction on
high-dimensional latent space.)

4.7 Training Procedure and Model Acceleration

During training, we make use of the set of augmentation functions, T , defined in section 4.2. At each mini-
batch of mask images Im a random augmentation is sampled t ∼ T and applied to it. The augmented images,
Ĩ = t(Im), are then fed to both residual and mask encoders; the decoder is then trained to reconstruct Ĩ.
The data augmentations enable the CoDAE models to learn invariances related to the coordinates η and ϕ
of the detector, which can be also seen as an implicit way to impart some physics notions to the model. In
addition, we perform model selection according to the value of the structural similarity (SSIM) [55] metric
between the true and reconstructed images, which provides a more human-aligned measure of image quality,
computed on a validation set of only background samples.

The whole CoDAE models are learned end-to-end using the AdamW optimizer [56], whose learning rule
decouples the weight decay regularization term from the main objective [57] making it easier to tune, min-
imizing the binary cross-entropy loss6. The optimizer is left with default parameters and learning rate,
except for the weight decay coefficient set to 10−4. Furthermore, to improve training stability, we limit the
l2-norm of each gradient to be at most one. Lastly, all the weights are initialized by following the he uniform

[58] scheme with zeros biases except for the decoder, whose biases are initialized to −1 to provide a better
starting point for the initial reconstructions.

We use TensorFlow lite [59] for both model compression and acceleration of our CoDAE models. In
particular, we employ a very light float16 weight and activation quantization that resulted in a 5.7×
reduction in model size and lower inference time, without any reduction in both anomaly detection and
reconstruction performance. In this way we are able to achieve inference latency on a single consumer CPU
hardware of about: 3ms (i.e., 6 − 8× faster) for the mask encoder, and 40ms (i.e., 3.2 − 4.1× faster) for
a full forward pass on the whole model; therefore well under the 100ms time-limit of the HLT. This also
demonstrates that our model architecture is very easy to optimize for deployment.

5 Results

In this section we present our evaluation protocol, and show the obtained results of our experiments com-
paring physics-motivated baselines, prior approaches, and our models.

5.1 Evaluation Metrics

For the evaluation of both baselines (defined in the following section) and our proposed models, we treat
the anomalies (the two signals) as the positive class and employ two popular metrics in out-of-distribution
detection [33]: the area under the receiving operating characteristic curve (AUROC), and the false positive
rate at N% of the true positive rate (FPRN). The AUROC summarizes the performance of the discriminator
across multiple thresholds while the FPRN evaluates the performance at one specific threshold value: such
threshold is often specific for the application and domain requirement. In our case, we choose N% = 40%
which targets a signal efficiency of 40%. Consequently, the metric is named FPR40.

The AUROC can be considered as the probability that a signal sample is assigned a higher AD score than
a background example. Thus, higher AUROC values are better, depicting a higher retention of the signal
at a lower background efficiency (and so at a higher rejection rate of the background.) The FPRN metric,
instead, is more suited to compare strong models: interpreted as the probability that a normal (background)

6The loss is summed over spatial dimensions (height, width, and channels), and averaged over the batch size.
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sample is flagged as an anomaly (so as a signal) when the 40% of signals are correctly detected. Since we
want to decrease such false alarm probability, lower FPR40 values indicate a better model.

Moreover, since the performance of deep neural networks are dependent on many stochastic factors (e.g.,
sampling of the data, random weight initialization, dropout, etc) and specific (architecture and optimization)
hyper-parameters, making difficult to conclude which model is actually better than another according to
few (average) scores, especially when these show counter-intuitive results: e.g., one score is the best on a
signal, and the worst on the other. Hence, we employ the Almost Stochastic Order (ASO) test [60, 61] as
implemented by [62] which provides a statistically significant result from which it can be decided the best
performing algorithm. The ASO test is specifically designed for neural networks, building on the concept of
stochastic order in which one distribution of scores (e.g., AUROC) is said to stochastically dominate another
one if the cumulative distribution of the former is lower than the latter for every point. Since the stochastic
dominance is too strict to be practical, the almost stochastic dominance is used instead, which quantifies
the extent to which stochastic order is violated. Therefore, the ASO test returns an upper bound, called
ϵmin , expressing the amount of violation: if ϵmin< τ (where τ is the rejection threshold usually set to 0.5 or
less, like 0.2 for a more confident result), then the former algorithm is superior than the latter. The value
ϵmin can be interpreted as a confidence score: the lower it is, the more sure we can be about the dominance
of one model over another. Experimentally, we follow the best practice suggested in [62] by fixing one set
of hyperparameters and comparing multiple runs of the same model where possible. Moreover, for each
benchmark mass we build an empirical distribution of the AUROC by computing this metric on a thousand
of random, class-balanced subsets (with 2k samples each) of the data.

5.2 Baseline Discriminators

For a fair comparison and assessment of our method, we determined various baseline discriminators: two
physics-motivated ones, a fully supervised classifier, a convolutional auto-encoder (CAE), and two anomaly
detection models. The two physics discriminators are respectively based on the total energy (i.e., the sum
of energy deposits, ET , in each image channel), and the nTracks variable. Specifically, the nTracks is a
model-independent classical variable corresponding to the total number of tracks per event [19, 20]. Such
quantity is related to the number of decay products providing the best approximation of such to discern
the signal particles, being also independent of the binning used to discretize the detector resolution. In
particular, we define the total energy baseline as follows:

s(k)(c) =

H∑
i

W∑
j

x
(k)
i,j,c, c ∈ {0, 1, 2} (4)

where s(k)(c) is the score value for channel c (which denotes, respectively, the Trk, ECAL, and HCAL) of
the k-th image x(k) with height H and width W . Discrimination will be then performed according to the
obtained scores, s, per channel.

Furthermore, we also consider the performance of a supervised classifier, therefore assuming an ideal
setting in which we would have perfect knowledge of the data. Such a supervised baseline will provide a
good approximation regarding upper-bound discrimination performance that our unsupervised model may
achieve at its best. In particular, we consider a robust model, a Compact Convolutional Transformer (CCT)
[63] that already outperformed a simpler convolutional network in our prior experiments.

The next baseline is a convolutional auto-encoder derived from our CoDAE: it has the same architecture
and hyperparameters, lacking only the second (smaller) encoder network and the spatial conditioning mech-
anism in the decoder since there is no additional input (i.e., CoDAE’s the auxiliary latent space) to perform
conditioning on. This CAE model is trained in exactly the same way our models are.

The last baselines are two popular anomaly detection models: an unsupervised AE inspired7by [6], and
the Dirichlet VAE from [18]. In particular, the AE model has a total of 600k parameters, a latent space
of size 32, and was trained to minimize a mean squared loss: compared to our CoDAE, it lacks the second

7To the best of our knowledge, the authors provide only a figure outlining their model architecture and not a comprehensive
description; we did our best to mimic their approach.

13



encoder and skip connections, and embeds its inputs to dense vectors while the images are reconstructed
by transposed convolutions. Instead, the Dirichlet VAE is a weakly-supervised approach that, therefore,
also requires a fraction of the signals for training: we assume a realistic setting in which the background
is contaminated with 0.01% of the signals. This model has a three dimensional latent space, whose prior
distribution is the Dirichlet [64] instead of the Gaussian, resulting in 2M parameters: during training we
normalize the images to sum to one, and use the same hyperparameters as in [18]. For both AD models, we
apply the data augmentations defined in section 4.2. We trained both AE and Dirichlet VAE for 50 epochs
(the latter converged earlier in training), the CoDAE for 30 epochs, and the Categorical CoDVAE for 100
of them since we observed slower convergence compared to the CoDAE. Lastly, the batch size is 128 for all
models, and the weights are optimized by AdamW [56, 57].

5.3 Anomaly Detection

In this section we compared our two models (the CoDAE and Categorical CoDVAE) against the baselines
defined in the previous section. For all the models and baselines we computed the anomaly scores defined
in section 4.6, where possible (e.g., it is not possible to compute the KL for the AE), and evaluated their
respective AUROC and FPR40. In particular, in tables 1 and 2 we provide the results for the best scores
on average, i.e., the anomaly scores that achieve the best performance on both signals by considering the
average over the mass points, while the full evaluation is available in the supplementary material.

Model SUEP (GeV) SVJ (TeV)

125 200 300 400 700 1000 mAUC 2.1 3.1 4.1 mAUC

Total energy (Trk) 45.18 48.4 54.13 58.51 67.39 70.89 57.42 55.86 72.13 81.46 69.82

nTracks 78.68 92.39 98.31 99.6 99.94 99.93 94.81 82.05 89.32 92.92 88.1

Supervised CCT [63] 89.72 96.58 98.88 99.42 99.87 99.93 97.4 96.05 98.17 98.76 97.66

*CoDAE (Z2) 79.77 93 98.28 99.45 99.54 99.23 94.88 83.2 88.3 90.83 87.44

*CoDAE (BCE) 88.74 97.54 99.61 99.93 99.99 99.99 97.63 85.98 90.39 92.62 89.66

Cat. CoDVAE (Z1) 77.54 91.5 97.71 99.21 99.42 99.19 94.1 81.36 86.4 88.9 85.55

Cat. CoDVAE (KL-F) 69.32 83.92 93.18 96.38 98.04 98.18 89.84 79.69 84.08 86.11 83.3

Cat. CoDVAE (SSE) 86.93 97.01 99.51 99.9 99.98 99.98 97.22 85.29 89.78 92.04 89.04

*CAE (BCE) 89.42 97.84 99.7 99.95 99.99 99.99 97.81 85.96 90.45 92.72 89.71

AE [6]-like (PixelSum) 83.89 94.6 98.69 99.68 99.95 99.94 96.13 83.26 88.72 91.44 87.81

Dirichlet VAE [18] (Z2) 51.93 54.99 59.58 63.17 71.16 74.51 62.55 63.52 67.37 69.26 66.72

Table 1: Comparison of anomaly detection baselines and models on test-set, best scores only. AUROC
metric, higher is better: mAUC denotes the AUROC averaged over all the mediator masses for a given
signal. Entries associated to an (*) were averaged over three random seeds: 42, 51, and 73. Top three best
results in boldface.

Discussing about the physics baselines, for the SUEPs we can see that the sum of ET deposits of the
signal is actually lower than the one of the QCD background, resulting in shifted distributions of scores that
yield an AUROC below 50%. This total energy baseline indicates that one signal (the SUEPs) is less complex
than the background. Instead, such issue does not occur for the nTracks baseline, which already provides a
pretty good separation performance for both signals on both evaluation metrics, especially for the SUEPs at
high mass; as stated in [8]: counting the number of tracks is particularly sensitive to high multiplicity soft
particles like SUEPs, making them easier to identify. Compared to the AUROC, the FPR40 metric helps us
better understand the shape of the ROC curve around our target signal efficiency of 40%, showing a very
high (almost ideal) background rejection rate for the supervised classifier in all the benchmark scenarios.
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Model SUEP (GeV) SVJ (TeV)

125 200 300 400 700 1000 mFPR 2.1 3.1 4.1 mFPR

Total energy (Trk) 50.63 48.11 41.81 37.71 29.3 25.11 38.78 33.84 17.46 9.155 20.15

nTracks 11.84 2.849 0.277 0.028 ∼ 0 ∼ 0 2.5 5.45 1.599 0.539 2.53

Supervised CCT [63] 0.242 0.016 0.002 ∼ 0 ∼ 0 ∼ 0 0.04 0.121 0.021 0.005 0.05

*CoDAE (Z2) 11.44 2.68 0.35 0.107 0.237 0.434 2.54 4.65 2.006 1.17 2.61

*CoDAE (BCE) 5.832 0.806 0.057 0.004 ∼ 0 ∼ 0 1.12 2.829 1.027 0.523 1.46

Cat. CoDVAE (Z1) 12.91 3.329 0.575 0.219 0.227 0.341 2.93 5.9 2.866 1.85 3.54

Cat. CoDVAE (KL-F) 19.08 7.498 2.635 1.452 0.739 0.677 5.35 7.425 4.913 4.085 5.47

Cat. CoDVAE (SSE) 6.652 0.944 0.071 0.007 ∼ 0 ∼ 0 1.28 3.065 1.176 0.588 1.61

*CAE (BCE) 5.175 0.654 0.04 0.002 ∼ 0 ∼ 0 0.98 2.694 0.943 0.464 1.37

AE [6]-like (PixelSum) 8.22 1.904 0.211 0.035 ∼ 0 ∼ 0 1.73 4.346 1.74 0.863 2.32

Dirichlet VAE [18] (Z2) 26.06 17.38 10.15 6.66 2.572 1.42 10.71 21.42 14.89 10.92 15.74

Table 2: Comparison of anomaly detection baselines and models on test-set, best scores only. FPR40 metric,
lower is better: mFPR denotes the FPR40 averaged over all the mediator masses for a given signal. Entries
associated with an (*) were averaged over three random seeds. Top three best results in boldface.

Compared to the nTracks baseline, which requires counting the track multiplicity possible only if fully
reconstructing the event as in an off-line analysis, our models are already able to get competitive performance
in the latent space (showed in figure 5) and even improve by a neat margin when using reconstruction-
based scores such as the BCE or SSE. We can notice that for some benchmark points, like SUEP(400GeV),
SUEP(700GeV) and SUEP(1000GeV), the AUROC easily saturates (table 1) attaining an almost perfect
background rejection (table 2), therefore the improvement brought by a data-driven approach is negligible.
Indeed, these are easier to detect since they are expected to deviate significantly from the QCD background.
Instead, in the most challenging scenarios our best model achieves an AUC improvement of at most +10.1%
for SUEPs and +3.9% for SVJs, as well as a reduction of FPR of at most 6% for SUEPs and 2.6% for SVJs,
at the predefined signal efficiency compared to the nTracks baseline. Our models are able to reduce the gap
with the supervised classifier despite being trained on the background class only. Next, the AE underperforms
our models, and the Dirichlet VAE is only competitive against the total energy baseline attaining a too low
background rejection rate. The CAE, then, performs slightly better than both the CoDAE and CoDVAE:
this is expected since optimizing the model is easier, in fact, it can be seen as a simplified CoDAE as it lacks
the spatial conditioning mechanisms.

Lastly, in table 3 we summarize the results about the ASO test between our models against the baselines,
considering the AUROC metric as score distribution for the statistical test which is performed between two
distributions at a time. As we can see, our models (in particular, when using the BCE and SSE scores) can beat
most of the baselines and for the SUEP signal also the supervised classifier, except for the SUEP(125GeV)
benchmark point. Furthermore, this test confirms the superiority of the CAE model over the CoDVAE but
not against the CoDAE: the violation ratio fluctuates around 0.5, making difficult to decide which model
is the best. This also implies that the CAE is a valid alternative to our dual-encoder models, especially in
settings in which the auxiliary latent space has a low discriminatory power.

5.4 Reconstruction Quality

To assess the reconstruction quality of the compared models, we evaluate two metrics: the mean squared
error (MSE), and the SSIM index [55]. In particular, the popular MSE metric is useful for determining
the texture quality of the reconstructions, since it penalizes pixel-level differences. Instead, the SSIM is
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Figure 5: The CoDAE’s (left) and CoDVAE’s (right) auxiliary latent space, Zm, along with kernel density
estimates of its components: the best components are, respectively, Z2 and Z1. As we can see in the density
plots, the QCD (blue) and SUEPs (orange) look well separated, instead the SVJs (green) span in between
the two classes.

a perceptual quality metric designed to better match the perceived visual quality of humans. These two
metrics are complementary since the MSE looks at fine details while the SSIM at the global appearance of
the images, providing a more comprehensive assessment of the quality of the reconstructed samples.
Reconstruction performance is summarized in table 4 as well visually in figure 6. From both we can deduce
that our two models achieve the lowest MSE and highest structural similarity, attaining accurate single-
sample reconstructions resulting in good predictions on average. As we can notice from table 4, all models
show some variance in the reconstructed background, indicating that some QCD samples deviate from the
ideal background event. Moreover, AE-based models show softer and smoother pixel predictions whereas
the Categorical CoDVAE, thanks to its Bernoulli decoder, is capable of sharp reconstructions by taking
the mode of each learned distribution, one per output pixel. Furthermore, in figure 6 we can observe how
the Dirichlet VAE, which is designed to capture a multi-modal latent space distribution, only captures the
“QCD mode” since each sample, regardless of being background or signal, is predicted as a sort of average
of QCD images: this is confirmed by the low reconstruction metrics. We noticed a similar behavior in our
prior experiments when training regular AEs with a small latent space (e.g., 2), even with a high-capacity
residual encoder.
We want to highlight the importance of accurate (or at least coherent) reconstructions. Since anomaly
detection scores can be defined from such predictions, it is necessary to avoid the model learning to predict
some spurious pattern or artifact instead of the inputs, otherwise, it would be difficult to understand for a
human expert why a new sample deviates from the training data. Moreover, since an auto-encoder is trained
to maximize the reconstruction quality which, in turn, mostly affects the reconstruction-based anomaly
scores, it is equally important to avoid premature convergence of the model since this can lead to sub-
optimal anomaly detection performance: employing a large latent space paired with powerful encoder and
decoder networks can mitigate such issue, as seen for our CoDAE and CoDVAE. This is essential to obtain
coherent anomaly detection predictions, high discrimination performance, to have a trustworthy model, and
even to debug the model itself once deployed.
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(a) Reconstructions of five random QCD samples.

(b) Reconstructions of the QCD test-set.

Figure 6: Comparison of per-sample (a) and average (b) reconstructions. In order: ground-truth, CoDAE,
CAE, Categorical CoDAE, AE [6], and Dirichlet VAE [18]. As we can see our models are capable of pixel-
accurate single-sample reconstructions, whereas the AE only captures the prominent pixels, and the Dirichlet
VAE learns to predict a sort of average image instead. The CAE is also very accurate, as expected, since
sharing the same encoder and decoder architecture of the CoDAE.
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5.5 Discussion

Throughout our study we showed how auto-encoders can be employed as an effective means to implement
anomaly detection in HEP analyses. In particular, our models achieve higher background rejection rates
meaning that the classified signal is less contaminated with false positives, which, in turn, boosts the statis-
tical significance of actually finding a newly theorized physics signal when analyzing the real data collected
during the LHC’s runs: for the SUEPs, we can even equal the supervised classifier even if this model still
achieves largely superior rejection rates at the target signal efficiency. In addition, our dual encoder architec-
ture, which also learns a smaller network fm, is particularly suitable for fast AD: the fm model can predict in
just 3ms, enabling more than real-time applications at the HLT, however at the cost of sacrificing accuracy;
in principle, such a model can be further optimized to match even tighter latency requirements, for example
running on a FPGA hardware like in [40, 65]. Moreover, our models just learn from raw detector images
of particle collisions, requiring less or no effort to compute high-level variables (like counting the number
of tracks) and objects (e.g., by a particle-based pre-processing), potentially simplifying the whole analysis
setup. Lastly, our CAE model can be employed in scenarios in which the auxiliary latent space is not helpful
and the latency requirements allow for a forward pass of the full model.

6 Conclusions

We demonstrate the first successful application of (variational) auto-encoders to deploy in the real-time
event-triggering stages of experiments like ATLAS [19] and CMS [20] to search for two dark showers models:
SUEPs and SVJs. Their discovery can potentially shed new light on the existence of dark matter and novel
hidden sectors, which are currently uncovered and undercover at the LHC.

Unlike the common trend in many related works [6, 41, 18, 29, 30], we do not employ a specific particle-
based pre-processing of our data, nor low- or high-level features, but instead learn directly from raw images
of particle signatures obtained by discretizing the detector response, thus reducing the dependency on the
physics model by only assuming tracking information to be relevant for the considered signals: although we
discard the calorimeter information, we believe the ECAL and HCAL to be still useful in general, e.g., for
searching long-lived particles.

Our models are evaluated against both signals, demonstrating anomaly scores that can identify both. Our
CoDAE models aim to adapt to the background samples, potentially allowing us to generalize on whatever
novel signal that is diverse from what the model learned about the QCD background. Ideally, it would be
possible to train a single model to reject one or more background processes, filtering only the events that
resemble a potential new physics signal. Our approach can potentially enable generic physics searches for
unknown, new signals from raw images only and with little-to-no assumptions about the physics model.
Further research and benchmark datasets would be required to fully accomplish such an important goal.
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*CoDAE (Z2)

Baseline SUEP (GeV) SVJ (TeV)

125 200 300 400 700 1000 2.1 3.1 4.1

*CAE (BCE) 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99

AE (PixelSum) 0.99 0.99 0.99 0.34 0.99 0.57 0.7 0.99 0.99

nTracks 0.66 0.65 0.99 0.99 0.99 0.99 0.33 0.99 0.99

Supervised CCT 0.99 0.99 0.99 0.45 0.69 1 0.99 0.99 0.99

*CoDAE (BCE)

*CAE (BCE) 0.55 0.55 0.55 0.55 0.53 0.65 0.43 0.54 0.39

AE (PixelSum) 0 0 0 0 0 0 0 0 ∼ 0

nTracks 0 0 0 0 0 0 0 ∼ 0 0.99

Supervised CCT 0 0 0 0 0 0 0.99 0.99 0.99

CoDVAE (Z1)

*CAE (BCE) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

AE (PixelSum) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

nTracks 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Supervised CCT 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

CoDVAE (KL-F)

*CAE (BCE) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

AE (PixelSum) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

nTracks 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Supervised CCT 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

CoDVAE (SSE)

*CAE (BCE) 0.99 0.99 0.99 1 0.99 0.99 1 1 1

AE (PixelSum) 0 0 0 0 0 0 0 0 0

nTracks 0 0 0 0 0 0 0 0 0.99

Supervised CCT 0.99 0 0 0 0 0 0.99 0.99 0.99

Table 3: Pairwise comparisons of models and baselines, performing the ASO test based on the AUROC with
a 95% confidence level: the headings are our models, which are compared to the baselines (the entries).
Models and baselines denoted with a (*) were run on three random seeds. The smaller the value, the best
the model compares against the respective baseline. Note: the listed values are the result of an approximate
calculation, therefore there may be either false positives or negatives.
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Metric CoDAE CAE CoDVAE AE [6] Dirichlet VAE [18]

MSE 5.5 (± 5.6) 9.4 (± 7.4) 17.7 (± 13) 70.9 (± 24.7) 79.3 (± 26)

SSIM 0.99 (± 0.01) 0.98 (± 0.02) 0.95 (± 0.04) 0.36 (± 0.12) 0.17 (± 0.11)

Table 4: Evaluation of reconstruction quality: QCD test images. Lower values of MSE as well higher
SSIM ones are better. Each entry denotes the average metric value as well as its standard deviation (in
parenthesis.) By design the Dirichlet VAE outputs images that sum to one, so we undo the normalization
before computing the metrics in order to have pixel values on the same scale. Best results are shown in
boldface.
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