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We present a novel method for simulating the noisy behaviour of quantum computers, which allows
to efficiently incorporate environmental effects in the driven evolution implementing the gates acting
on the qubits. We show how to modify the noiseless gate executed by the computer to include any
Markovian noise, hence resulting in what we will call a noisy gate. We compare our method with
the IBM Qiskit simulator, and show that it follows more closely both the analytical solution of the
Lindblad equation as well as the behaviour of a real quantum computer, where we ran algorithms
involving up to 18 qubits; as such, our protocol offers a more accurate simulator for NISQ devices.
The method is flexible enough to potentially describe any noise, including non-Markovian ones. The
noise simulator based on this work is available as a python package at this link.

I. INTRODUCTION

Quantum computers are on the way; currently they
manage between dozens and hundreds of qubits [1–5],
which does not sound as an impressive number, yet it is
already good enough to perform interesting tasks [6, 7].
As powerful as they promise to be, quantum computers
are far from being ideal: since, as for any quantum sys-
tem, they can hardly be isolated from the surrounding
environment, they are prone to errors, which limit their
capabilities. Like in the classical case, error correcting
schemes have been developed [8–10] and first tests have
been performed [11, 12], but to be implemented they re-
quire to the least thousands qubits, which are not avail-
able; for the time being, we have to cope with errors.

This stage of development is referred to as Noisy
Intermediate-Scale Quantum (NISQ) [6, 13] era; the ma-
jor aim of the research during this near-term period is
to maximize the computational power of current devices
in view of the long-term goal of fault-tolerant quantum
computation [1].

It is clear that NISQ computers require a good under-
standing of how noises affect quantum circuits and, in
order to do so, a proper modeling of the noises is needed.
This requires essentially two major tasks: understanding
the major sources of noise affecting the qubits, and writ-
ing better algorithms for simulating a given noise model
on a classical computer. The present work deals with this
second task.

To date, the simulations of noisy digital gate-based
quantum computers is implemented by adding appropri-
ate quantum operations before and after each ideal gate
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[14–16]: schematically, and working with the density ma-
trix formalism, if an ideal (unitary) gate G is supposed to
be executed, the noises affecting it are modeled by adding
appropriate operations E1 (E2) mimicking the noise, be-
fore (after) the gate:

ρ E1 G E2 ρ′ . (1)

Such a modeling completely decouples the action of the
controlled operation generating the gate G from that of
the environment. This approximation works well if G
acts almost instantaneously with respect to the noise, i.e.
if the gate time tg required to implement the gate is much
smaller than the characteristic time scales of the system-
environment interaction. For instance, in IBM’s super-
conducting devices [17] tg ∼ 10−8s, while typical envi-
ronmental effects such as relaxation and phase damping
have characteristic times of order T1, T2 ∼ 10−4s. This
justifies why this approach has been implemented by the
majority of available noise simulators of NISQ computers
(see appendix H).
Yet this approach has some limitations. By separating

the action of the gate from that of the noise, it does not
represent a faithful description of what happens inside
a computer, where the controlled action on the qubit(s)
generating the gate and the environment act simultane-
ously and potentially affect each other. Therefore it is ex-
pected not to be fully accurate in describing a NISQ com-
puter, especially when the number of gates and qubits is
relatively large, which is actually the regime where sim-
ulations are more interesting.
In this article we propose an alternative approach,

where the noise is integrated into the logical gates, in
the sense that the resulting noisy gate is computed by
solving for the dynamics generating it, with additional
terms describing the noise added to it:

ρ G ρ′ , (2)
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where in general G ≠ E2 ◦ G ◦ E1, and under stan-
dard assumptions (e.g., Markovianity) it gives an ana-
lytic expression for the solution of the Lindblad equa-
tion obtained with perturbative methods. Now G cap-
tures, within the limits of validity of Lindblad’s equation,
the entire physics occurring during the execution of each
gate; not only it offers a more accurate description of the
system and therefore a better protocol for circuit simula-
tions, but also it helps to understand the different noises
acting on the computer, especially in view of possible
mitigation strategies. This new approach does not have
any computational disadvantage with respect to (1).

As a note, Markovianity, which is the main physical
assumption behind the Lindblad equation, and it is a very
convenient working hypothesis, can be released in favour
of more general noises [14, 18–22]; we will not touch on
this possibility here, although the generalization of the
approach here introduced is rather straightforward.

Both approaches (1) and (2) have a drawback if they
are implemented at the density matrix level: the simu-
lation will be slowed down quadratically as a function of
the number of qubits. This drawback can be resolved for
(1) by replacing the superoperations E1,2 acting on the
density matrix with suitable stochastic operations act-
ing on the state vector [23, 24]; in this way, the noisy
algorithm becomes random and each single run of the
simulation can be seen as a single run of the algorithm
on the noisy quantum computer. The same strategy can
be adopted for (2); one writes

|ψ⟩ Gξ |ψ′
ξ⟩ , (3)

where Gξ is a stochastic gate, solution of a stochastic
Schrödinger equation, incorporating both the controlled
action generating the (otherwise ideal) gate G and the
noise. Here ξ denotes a set of stochastic gaussian vari-
ables, and stresses the fact that Gξ, and hence |ψ′

ξ⟩, are
random; we will omit to indicate ξ in the rest of the pa-
per. Physical quantities are obtained by averaging over
the noise.

The general procedure therefore is the following. Given
a noiseless algorithm, the corresponding noisy one is ob-
tained by replacing each ideal gate with a noisy gate.
The resulting noisy algorithm, which is stochastic, is re-
peated for different realizations of the random variables,
as if they were different runs on a physical quantum com-
puter. This produces a statistics of outcomes, to be com-
pared with those of a real computer, or to be used to
predict the behavior of a future NISQ device.

As such, as already mentioned, a first application of
our approach is to predict the behaviour of NISQ de-
vices, their potentialities and limitations. But its use
goes beyond the NISQ-era horizon: by offering a more
accurate modeling of the noise, it allows to better under-
stand the physics underlying the functioning of a quan-
tum computer and to enforce appropriate error mitiga-
tion schemes [25–27].

The rest of the paper details this program. We present
the noisy gates method by designing it on the IBM su-
perconducting computers [17] although the approach is
general and can be used to describe any NISQ quantum
platform, once the native gate set and the proper noise
model are defined.
The paper is organized as follows. In Sec. II we re-

view the main noises affecting superconducting qubits,
and how they are described within the Lindblad’s for-
malism; in Sec. III, IV and V we present the general
derivation of the noisy gates, specializing it to the native
single and two-qubits noisy gates of IBM devices. In Sec.
VI we compare the structure of our algorithm with that
of IBM Qiskit.
In Sec. VII we present the results of the simulations,

which test our algorithm against that of Qiskit in repro-
ducing the solution of the Lindlbad equation, as well as
the outcomes from current IBM quantum computers: the
simulations show that the proposed method is more accu-
rate and precise compared to that of Qiskit in reproduc-
ing the Lindblad equation, with an average improvement
between 50% and 90% and more.
The improvement in simulating the real device fluctu-

ates between 10% and 30%, because the underlying noise
model is not accurate enough, and also because the de-
vices are not really stable; for a large number of qubits
it becomes even lower because the number of runs of the
device, which are necessary to recover a good statistic,
is too high. In both cases, this is not a limitation of
our algorithm, but of the physical model describing the
computer.
We conclude our paper with some general remarks and

an outlook.

II. REVIEW OF THE NOISE MODEL

The noises which are more relevant in the functioning
of superconducting devices have already been character-
ized in literature [15, 16, 28]; in this section we briefly
present them. With good approximation they are de-
scribed by a Lindblad dynamics [29, 30]:

dρs
ds

= − i

ℏ
[
Hs, ρs

]
+D(ρs); (4)

here, Hs is the Hamiltonian of the system which im-
plements the ideal gate, and D(ρ) is a Lindblad term
describing the effect of the environment. For conve-
nience, we will describe the evolution with a time sched-
ule s ∈ [0, 1], defined as s = t/tg, where tg is the duration
of a gate.
Apart from state preparation and measurement

(SPAM) errors, which happen at the very beginning and
very end, during the execution of an algorithm there are
two main sources of noise, namely, depolarization and re-
laxation [28, 31]. The first, which can be ascribed to the
imperfections of the device, tends to bring the state to-
wards the totally mixed one, 1/

√
N , where N = 2n and
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n is the number of qubits; for the single qubit, this can
be modeled by the following Lindblad term [15, 16],

Dd(ρ) = γd

3∑
k=1

[
σkρσk − ρ

]
, (5)

where σ1 = X, σ2 = Y, σ3 = Z are the standard Pauli
matrices and γd ≥ 0 is the rate at which depolarization
occurs.

The second type of noise is due to the interaction of
the physical qubits with the surrounding environment;
in particular, due the thermalization towards an equi-
librium with the environment, energy exchanges occur.
In the scenario of interest, this induces the decay of a
qubit towards the ground state |0⟩, an effect which is also
known as amplitude damping [15, 16]. This damping is
characterized by a relaxation time T1, which identifies
the scales at which the initial state decays towards |0⟩; it
causes also a damping of the off-diagonal elements of the
density matrix in terms of dephasing, which (if only am-
plitude damping is acting) has a characteristic time 2T1.
However, at the same time also a contribution of pure
dephasing must be taken in account, resulting in an ef-
fective dephasing rate 1/T2 ≥ 1/2T1. When also T1 ≥ T2
holds (and this is the case of interest to us), the combined
action of these two effects, that from now on we will refer
to as relaxation or amplitude and phase damping, can be
described by the following Lindblad term,

Dr(ρ) = γ1
[
σ+ρσ− − 1

2

{
P(1), ρ

}]
+ γz

[
ZρZ− ρ

]
, (6)

where we use the convention σ± = (X ± iY)/2 and
P(1) = |1⟩ ⟨1| is the projector onto |1⟩; the coefficients
are related to the characteristic times as γ1 = tgT

−1
1 and

γz = tg(2T1 − T2)/4T1T2.
We will consider both sources of noise together, mean-

ing that the Lindblad term is D(ρ) = Dd(ρ) + DR(ρ),
which can be diagonalized in the canonical Lindblad
form by standard procedures. Eventually one obtains
the Lindblad term

D(ρ) = ϵ2
3∑

k=1

[
LkρL

†
k − 1

2

{
L†
kLk, ρ

}]
, (7)

where the non normalized Lindblad operators are

L1 =

√
λ1
λ
σ−, L2 =

√
λ2
λ
σ+, L3 =

√
λ3
λ
Z; (8)

here, we set λ1 = 2γd, λ2 = 2γd + γ1, λ3 = γd + γz and
λ = λ1 + λ2 + λ3, and we defined the parameter ϵ =

√
λ.

As mentioned in the Introduction, in the case of IBM’s
superconducting devices the typical order of magnitude
of the decoherence times is ∼ 10−4 s; by contrast, the
typical order of magnitude of the time to execute a gate
is tg ∼ 10−8 s, which is small compared to T1,2; in partic-

ular, one has γd, γ1, γz ≪ 1, which leads to ϵ =
√
λ≪ 1.

This justifies the perturbative expansion we will imple-
ment later.
While terms of the form (7) describe the dissipation

occurring at the single qubit level, one straightforward
generalization to the multi-qubit case (the one we will
consider in this work) is obtained via the direct sum

D(ρ) =

n⊕
k=1

D(k)(ρ), (9)

where the upper index (k) indicates that the Lindblad
term (7) acts on the k−th qubit. Such a generalization is
based on the assumption that single qubit noises are dom-
inating, therefore neglecting cross talks and correlated
noises [32]; they can straightforwardly be implemented
in our noisy framework, and they will be the subject of
future research. We stress that through Eq. (9) we al-
ready account for the fact that (for instance, on IBM’s
devices) multiple-qubit operations are more faulty than
single qubit manipulations: when entangling gates are
performed, single qubit noises act together, and errors
therefore amplify.
Before proceeding, one further comment is in order.

Casting the behaviour of a real quantum device in a the-
oretical model is a hard task, and the more accurate the
model, the less general it is. As remarked in the Introduc-
tion, the purpose of this work is not that of finding the
best noise model for a given quantum computer; rather,
given a noise model, we are interested in the best way to
simulate the device. The noise model we are considering
here is therefore ultimately motivated by the fact that it
is accurate enough to already give appreciable results in
the simulations, but on the other hand it is also simple
enough to efficiently enlighten our main points, and gen-
eral enough to be readily extended to different platforms.
It is understood that better results can be achieved only
by specializing more the analysis on physical device to
be considered.

III. GENERAL DERIVATION OF NOISY GATES

Let us consider the situation in which the computer ex-
ecutes a gate Ug on a set of n qubits. This is achieved by
driving the system with an Hamiltonian Hs for s ∈ [0, 1],
which will induce some unitary evolution Us, defined by
iℏdUs/ds = HsUs, and such that Us=1 = Ug. However,
if noises and imperfections are taken in account, this co-
herent evolution is replaced by a partially non coherent
one, which under the assumptions of Markovianity (and
complete positivity) is described by a master equation of
the form (4) discussed in the previous section, with the
Lindblad term given, in our case, by (9) and (7), which
needs to be solved in place of the Schrödinger equation.
We recall here that the coefficient ϵ is small, ϵ≪ 1.
In order to switch from the density matrix formalism to

the state vector formalism, we perform a linear stochastic
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unraveling of the Lindbald equation [19, 33–36]; specifi-
cally we consider the following Itô stochastic differential
equation for the state vector: [37]

d |ψs⟩=
[
− i

ℏ
Hsds+

N2−1∑
k=1

[
iϵdWk,sLk−

ϵ2

2
dsL†

kLk

]]
|ψs⟩ ,

(10)
where dWk,s are differentials of standard independent
Wiener processes, i.e. stochastic infinitesimal increments
such that E

[
dWk,s

]
= 0 and E

[
dWk,sdWk′,s′

]
= δk,k′ds.

Eq. (10) is an unraveling of the Lindblad equation in the
sense that the density matrix obtained by averaging the
pure states |ψs⟩ ⟨ψs| over the noise:

ρs = E
[
|ψs⟩ ⟨ψs|

]
, (11)

is a solution of Eq. (4). In this sense, Eqs. (10) and
(4) have the same physical content; the advantage of
the stochastic unraveling is that it allows to work with
Schrödinger-like equations for the state vector.

One key property of Eq. (10) is that it is linear,
and therefore it allows to write the solution as |ψs=1⟩ =
Ng |ψ0⟩, where Ng can be interpreted as a noisy random
gate acting on the system. Since Eq. (10) in general
does not preserve the norm of the state vector, the as-
sociated gate Ng is not unitary; this is a consequence
of the chosen unraveling: one could have chosen norm-
preserving unravelings [38, 39], which however are not
linear and therefore do not allow for a gate-like formu-
lation. The lack of norm preservation is not a problem
since at the statistical level, i.e. when the average over
the noise is taken as in (11), one recovers the Lindblad
equation, which is trace preserving.

In general, Eq. (10) cannot be solved in a closed form
[37, 40] except for few specific cases, for example when
all operators commute. In Appendix A we show how
an approximate solution to order O(ϵ2) can be derived,
which results in the following expression for the noisy
version of a noiseless gate Ug:

Ng = Uge
ΛeΞ, (12)

where we defined the deterministic operator:

Λ := −ϵ
2

2

∫ 1

0

ds

N2−1∑
k=1

[
L†
k,sLk,s − L2

k,s

]
(13)

and the stochastic one:

Ξ := iϵ

N2−1∑
k=1

∫ 1

0

dWk,sLk,s. (14)

Note that in Eqs. (13) and (14), Lk,s = U†
sLkUs are the

Lindblad operators in the interaction picture, therefore
the noiseless part of the dynamics Us and the noisy one
given by the Lindblad operators Lk do not factorize, as
it might look from a naive understanding of Eq. (12).

As explained in Appendix A, we omitted the additional

term −(ϵ2/2)
∑N2−1

k,l=1

∫ 1

0
dWk,s

∫ s

0
dWl,s′

[
Lk,s,Ll,s′

]
in

Eq. (14), which in principle should contribute to order
ϵ2; this is legitimate because it is a nested Itô integral of
non anticipating functions [37], and hence its stochastic
average is 0. For this reason, it drops from all final aver-
aged quantities, and therefore we can neglect it from the
start.
Let us also point out that, in the cases of interest to

us, the term (13) can always be exponentiated, so that
we will always be able to directly calculate eΛ.
The only stochastic term entering the noisy gate Ng is

Ξ in Eq. (14), which is a function of several random vari-
ables ξ arising from the stochastic processes Wk,s. Let
us call Lkij,s = L+

kij,s + iL−
kij,s the ij-th matrix element

of the jump operator Lk,s in the computational basis, di-
vided in real (+) and imaginary (−) part, respectively.
Then, each entry of the stochastic matrix is of the form

Ξij = iϵ
∑N2−1

k=1

[
ξ+kij + iξ−kij

]
, where we defined the ran-

dom variables

ξ+kij =

∫ 1

0

dWk,sL
+
kij,s, ξ−kij =

∫ 1

0

dWk,sL
−
kij,s, (15)

which, being Itô integrals of deterministic functions, are
all normally distributed with zero mean, E

[
ξ±kij

]
= 0,

and variances E[(ξ±kij)
2] =

∫ 1

0
ds[L±

kij ]
2. Moreover, one

can easily check that they are correlated with each other
as

E
[
ξ±kijξ

±
k′i′j′

]
= δk,k′

∫ 1

0

dsL±
kij,sL

±
ki′j′,s. (16)

The random variables giving Ξ its stochastic charac-
ter may be defined in several other ways, and the best
choice depends on the specific case of interest. In this
section we presented one general strategy for defining
them, but in practice this lead to an over estimation
of the actual number of random variables needed. By
straightforwardly counting, one has at most 2N2(N2−1)
real gaussian random variables for a noisy gate acting on
n = log2N qubits, each random variable being correlated
with at most other 2N2 − 1 ones. In practice, however,
we immediately point out that one shall expect neither
the number of random variables, nor the number of cor-
relations between them to really follow this scaling. This
is mainly due to the fact that real quantum computers
usually perform single and two qubit native gates, and
single qubit noises are dominating. For instance, given
(9), one can upper bound the number of random vari-
ables by∼ 6N2 log2N . In the following sections, as we go
through the construction of the native set of noisy gates
for IBM’s quantum computers, we shall make this claim
more clear. Note that our derivation works for any choice
of the starting Lindblad master equation, meaning that
any Markovian noise model can be treated. In particu-
lar, while in this paper we specialize on the noise model
described in the previous section, one can add device-
motivated modifications (such as correlated noises and
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leakages to upper levels in the case of IBM’s platform);
modifications of this kind are left to future research—as
also the generalization of our derivation to non Marko-
vian situations.

More details on the difference between our perturba-
tive approximation and the one used in the standard ap-
proach (1) can be found in appendix B.

IV. SINGLE QUBIT NOISY GATES

IBM’s superconducting devices implement single
qubits operations with unitaries of the form U(θ, ϕ) =
e−iθRxy(ϕ)/2, where we set Rxy(ϕ) = cos(ϕ)X + sin(ϕ)Y;
such gates are achieved by driving the system with the
Hamiltonian [28, 41]

H(θ, ϕ) =
θℏ
2
Rxy(ϕ) (17)

applied for a time s = 1 [42]. The Hamiltonian is driven
by time-dependent pulses [28], so that in Eq. (17) one

should actually consider θ → ωs, and set
∫ 1

0
dsωs = θ. In

this work we consider constant pulses for simplicity, being
the generalization to general functions rather straightfor-
ward. It should be noted that the functional form of ωs

affects the action of the noises on the system, meaning
that different pulse shapes might lead to smaller noise
effects, i.e. error mitigation; this is a question left for
future research.

The task now is to derive the noisy gates N(θ, ϕ) cor-
responding to the unitaries above, when depolarization
and relaxation errors are both taken in account during
the evolution.

We begin by computing the evolution of the jump op-
erators in the interaction picture, obtaining the expres-
sions:

σ±
s (θ, ϕ) =

e±iϕ

2

[
Rxy(ϕ)± iR(2s̄θ, ϕ̄)

]
, (18)

and

Zs = R(2sθ, ϕ̄), (19)

where we defined R(θ, ϕ) = cos(θ/2)Z + sin(θ/2)Rxy(ϕ)
and for a generic angle α we set ᾱ = α + π/2. Then,
based on Eq. (12), we compute the deterministic, non
unitary term Λ(θ, ϕ). Since in the interaction picture the
evolution is unitary, one sees that the term corresponding
to k = 3 is always vanishing, and one has Λ(θ, ϕ) =

− 1
2

∫ 1

0
ds[ϵ21σ

+
s σ

−
s + ϵ22σ

−
s σ

+
s ], where we set ϵ2k ≡ ϵ2λk/λ.

Hence, we first calculate σ±
s σ

∓
s = U†

sσ
±σ∓Us, and after

integration we get∫ 1

0

dsσ±
s σ

∓
s =

1

2

[
1 ± sin(θ/2)

θ/2
R(θ, ϕ̄)

]
, (20)

where R(θ, ϕ) = cos(θ/2)Z + sin(θ/2)Rxy(ϕ) and ϕ̄ =
ϕ+ π/2, so that one has

Λ(θ, ϕ) = −ϵ
2
1 + ϵ22
4

1 − ϵ21 − ϵ22
4

sin(θ/2)

θ/2
R
(
θ, ϕ̄

)
; (21)

such an expression can be readily exponentiated, leading
to

eΛ(θ,ϕ) = e−
ϵ21+ϵ22

4

[
coshF (θ)− R

(
θ, ϕ̄

)
sinhF (θ)

]
, (22)

where we defined F (θ) =
ϵ21−ϵ22

4
sin(θ/2)

θ/2 .

Next, we turn to investigating the stochastic term,
Ξ(θ, ϕ). Here, it is convenient to define the following
real stochastic variables:

ξk,+=

∫ 1

0

dWk,scos(sθ), ξk,−=

∫ 1

0

dWk,ssin(sθ), (23)

whose variances are:

E
[
ξ2k,±

]
=

1

2

[
1± sin(2θ)

2θ

]
, (24)

while the correlations are:

E
[
ξk,+ξj,−

]
=

1− cos(2θ)

4θ
δkj ; (25)

moreover, we define

ξk,w =

∫ 1

0

dWk,s, (26)

such that E
[
ξ2k,w

]
= 1, E

[
ξk,+ξk,w

]
= sin(θ)/θ and

E
[
ξk,−ξk,w

]
=

[
1− cos(θ)

]
/θ.

Summing all terms and re-arranging them conveniently,
we arrive at the following expression

Ξ(θ, ϕ) = if0Z + if1Rxy(ϕ) + if2Rxy(ϕ̄), (27)

where we defined the following set of complex stochastic
coefficients:

f0 =ϵ3ξ3,+ − i
eiϕϵ2ξ2,− − e−iϕϵ1ξ1,−

2
, (28)

f1 =
eiϕϵ2ξ2,w + e−iϕϵ1ξ1,w

2
, (29)

f2 =ϵ3ξ3,− + i
eiϕϵ2ξ2,+ − e−iϕϵ1ξ1,+

2
. (30)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be efficiently sampled with known al-
gorithms; then, the stochastic matrix (27) can be assem-
bled and numerically exponentiated. Multiplication by
the deterministic term (22) and then by the noiseless gate
U(θ, ϕ) eventually lead to the noisy gate N(θ, ϕ) for the
single qubit, which, as shown only depends on 8 corre-
lated gaussian variables.

V. TWO-QUBIT NOISY GATES

On IBM’s quantum chips, two qubit gates are im-
plemented by a driven cross resonance [28, 41, 43]; la-
beling with an upper index the qubit each operator
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acts on, this consists in the execution of the unitary

U(1,2)(θ, ϕ) = e−iθZ(1)⊗R(2)
xy (ϕ)/2, which can be realised by

driving the composite system with the Hamiltonian

H(1,2)(θ, ϕ) =
ℏθ
2
Z(1) ⊗ R(2)

xy (31)

for a duration s = 1, where, from now on, the tensor
product symbol will be dropped, unless otherwise speci-
fied. In the proposed approach we take in consideration
only noises acting on single qubits, so that the Lindblad
term reads

D(1,2)(ρ) = ϵ2
∑

i∈{1,2}

3∑
k=1

[
L
(i)
k ρL

(i)†
k − 1

2

{
L
(i)†
k L

(i)
k , ρ

}]
,

(32)
where now ρ is the two-qubit statistical operator. The
procedure for calculating the noisy gates is the same as
in the single qubit case.

First, we compute the Lindblad operators on the first
qubit (i = 1) in the interaction picture:

σ±(1)
s = e±isθR(2)

xy (ϕ)σ±(1), (33)

while Z
(1)
s = Z(1) remains constant as it commutes with

the Hamiltonian. For the second qubit (i = 2), one has

σ±(2)
s =

e±iϕ

2

[
R(2)

xy (ϕ)± iZ(1)R(2sθ̄, ϕ̄)
]
, (34)

and Z
(2)
s = R(2sθ, ϕ̄), where we defined for convenience

R(θ, ϕ) = cos(θ/2)Z(2) + sin(θ/2)Z(1)R(2)
xy (ϕ). (35)

The deterministic term Λ(θ, ϕ), see Eq.(13), can be cal-
culated straightforwardly, leading to

Λ(θ, ϕ) = −ϵ
2
1 + ϵ22
2

1 − ϵ21 − ϵ22
4

[
Z(1) +

sin(θ/2)

θ/2
R(θ, ϕ̄)

]
;

(36)
notice that again this term can be exponentiated analyt-
ically as all the terms involved commute; in particular,
one has

eΛ(θ,ϕ)= e−
ϵ21+ϵ22

2

[
cosh

(ϵ21 − ϵ22
4

)
1−Z(1)sinh

(ϵ21 − ϵ22
4

)]
×

×
[
coshF (θ)−R(θ, ϕ̄) sinhF (θ)

]
, (37)

where F (θ) is the same function defined in the single
qubit case.

In order to efficiently write the stochastic term Ξ(θ, ϕ),
it is convenient to define, in analogy with the single qubit
case, the gaussian random variables

ξ
(i)
k,+=

∫ 1

0

dW
(i)
k,scos(sθ), ξ

(i)
k,−=

∫ 1

0

dW
(i)
k,ssin(sθ), (38)

and

ξ
(i)
k,w =

∫ 1

0

dW
(i)
k,s, (39)

whose correlations are straightforward to calculate and
mimic those already seen in Sec. IV. Then, we can sep-
arate Ξ(θ, ϕ) in two parts as Ξ(1)(θ, ϕ) + Ξ(2)(θ, ϕ); the
first is equal to

Ξ(1)(θ, ϕ) = ϵ3ξ
(1)
3,wZ

(1) + ϵ1
[
ξ
(1)
1,+ + iξ

(1)
1,−R

(2)
xy (ϕ)

]
σ−(1)+

+ ϵ2
[
ξ
(1)
2,+ + iξ

(1)
2,−R

(2)
xy (ϕ)

]
σ+(1), (40)

while the second part reads

Ξ(2)(θ, ϕ) = ifwR
(2)
xy (ϕ)− f−Z

(1)Z(2) + f+Rxy(ϕ̄)+

+ iϵ3ξ
(2)
3,+Z

(2) + iϵ
(2)
3,+Z

(1)Rxy(ϕ̄), (41)

where we defined

fw =
1

2

[
ϵ1e

−iϕξ
(2)
1,w + ϵ2e

iϕξ
(2)
2,w

]
(42)

and

f± =
1

2

[
ϵ1e

−iϕξ
(2)
1,± − ϵ2e

iϕξ
(2)
2,±

]
. (43)

Again, as in the single qubit case, the stochastic matrix
Ξ(θ, ϕ) can be assembled by combining gaussian random
variables, and hence it can be efficiently sampled and
numerically exponentiated; this, combined with the term
U(θ, ϕ)eΛ(θ,ϕ), gives the noisy gate for two qubits.

VI. COMPARISON OF THE ALGORITHMS

It is instructive to compare the structure of our ap-
proach to noise simulation with that of noise simulators
based on the standard approach in Eq. (1). As shown in
appendix H all relevant quantum computing frameworks
implement such standard approach, and we chose IBM’s
Qiskit as term of comparison since it is the most devel-
oped one; in the next section we will compare also their
performances in simulating the Lindblad equation as well
as a real quantum computer.
Both methods rely on the state vector formulation,

with important differences though. According to the
Qiskit documentation [24, 44] the noises are implemented
by Kraus maps, which in the density matrix formalism
read:

E(ρ) =
∑
i

KiρK
†
i , (44)

where
∑

i K
†
iKi = 1. The map can be unraveled as a

stochastic map on the state vector by imposing that, at
a given time, |ψ⟩ changes randomly as follows:

|ψ′⟩ = 1
√
pj

Kj |ψ⟩ , (45)

with probability:

pj = | ⟨ψ|K†
jKj |ψ⟩ |2. (46)
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The associate pseudo code is reported in Alg. 1.

Algorithm 1 Qiskit Simulation

Input: Initial state |ψ0⟩, a noiseless circuit C =

{U(1), ...,U(ng)} composed by ng gates U(i) and num-
ber of samples Ns

for 0 ≤ k ≤ Ns do
while 1 ≤ i ≤ ng do

compute |ψk⟩(i) = U(i) |ψk⟩(i−1)

compute pj = | ⟨ψk|(i) K†
jKj |ψk⟩(i) |2

sample Kj operator from {pj}

update the state to |ψk⟩(i) = 1√
pj
Kj |ψk⟩(i)

end

compute ρk = |ψk⟩(ng) ⟨ψk|(ng)

end

Output: ρf = 1
Ns

∑Ns
k=1 ρk

The time complexity of Alg.1 is primarily determined
by the matrix vector multiplication step, exhibiting a
complexity of O(22n), where n is the number of qubits.
The space complexity is dominated by the storage of the
state vector and it scales as O(2n). It has to be noted
that when the Kraus operators are not unitary, as for
relaxation, one needs to store the intermediate state vec-
tors, which are necessary in order to compute the prob-
abilites in Eq.(46). This operation has the same time
and space complexity as those of the the previous step.
(This can be avoided for mixed unitary error channels:
probabilities are known and independent of the current
state.)

Our noisy gates simulation instead is based on the al-
gorithm summarized in Alg. 2.

Algorithm 2 Noisy Gates Simulation

Input: Initial state |ψ0⟩, a noiseless circuit C =

{U(1), ...,U(ng)} composed by ng gates U(i) and num-
ber of samples Ns

for 0 ≤ k ≤ Ns do

map a noisy circuit C̃ = {N(1), ...,N(ng)} on C

sample stochastic processes ξ inside noisy gates N(i)

compute |ψk⟩ = N(ng) . . .N(1) |ψ0⟩
compute ρk = |ψk⟩ ⟨ψk|

end

Output: ρf = 1
Ns

∑Ns
k=1 ρk

The time complexity of Alg. 2 is again O(22n), deter-
mined by the matrix vector multiplication step. Analo-
gously, the space complexity is O(2n). We notice that in
Alg. 2 there is no need to perform the scalar product in
Eq. (46). Moreover, all optimization to reduce the time
complexity that are possible for the first step of Alg. 1
are also possible for Alg. 2. Finally, both algorithms per-
form samples of random numbers, but this operation has
a constant scaling.

VII. SIMULATIONS

We now study the performances of our noisy gates
method, and compare them with those of Qiskit’s simu-
lator [44]. First, in subsection VIIA we test the two ap-
proaches against the solution of Lindblad equation (4), by
studying a repeated application of IBM’s native gate set.
Then, in subsection VIIB we compare the predictions of
both methods with the behaviour of an actual quantum
computer, by running the inverse QFT algorithm on the
IBM’s quantum processors ibmq kolkata and ibmq oslo.
In appendix G we perform the same analysis by running
the GHZ algorithm on ibm oslo. All simulations are per-
formed by using the noise model described in section II
(see also appendices C and D). The implementation of
the work proposed in this paper is open source and avail-
able as a python package at this link. It allows the user
to run noisy simulations.

A. Comparison with the numerical solution of
Lindblad equations

First, let us compare our method with the one im-
plemented in the Qiskit simulator for the task of simu-
lating the Lindblad equation. To this purpose, we sim-
ulate the same Lindblad equation with both methods,
obtaining the density matrix ρng, from the noisy gates
simulation, and the density matrix ρibm from the Qiskit
simulation. We then benchmark the results with the den-
sity matrix σ obtained by directly solving numerically the
Lindblad equation with Mathematica [45]. We compare
these density matrices by computing the Hellinger dis-
tances Hng

σ = H(ρng, σ), Hibm
σ = H(ρibm, σ) where the

Hellinger distance is defined by

H(ρ, σ) =
1√
2

√√√√ N∑
k=1

(√
ρkk −

√
σkk

)2
, (47)

with ρkk (σkk) the diagonal elements of ρ (σ). Note
that the Hellinger distance is a classical measure of the
distance between the readout probability distributions:
while it cannot be interpreted as a distance between
quantum states (it does not take in account the coher-
ences), it directly compares the concrete outputs of the
real device, which are classical (the oucomes of Z mea-
surements). In appendix F we also compute the fidelities
Fng

σ = F(ρng, σ) and F ibm
σ = F(ρibm, σ). We run the

simulations on both single and two qubit gates. Consid-
ering the native gate set of IBM’s quantum computers,
{Rz(ϕ),X,SX,CNOT}, we remind that Rz(ϕ) are imple-
mented as virtual gates [28, 41], i.e. they are noiseless,
and the CNOT gates are implemented by combining sin-
gle qubit gates in Eq. (17) and CR gates in Eq. (31)
[28, 41, 46]. Moreover, X and SX gates are both rota-
tions around the X-axis for different values of θ, see Eq.
(17). Thus for our purposes, it is sufficient to simulate
the X, CR and CNOT gates affected by noises.

https://pypi.org/project/quantum-gates/
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FIG. 1. Repetition of X gates. The three upper panels (a), (b), (c) show the time evolution of the ρ00 = ⟨0|ρ|0⟩ entry of the
density matrix. The numerical solution of the Lindblad equation is displayed in orange (a), that of the noisy gates simulation in
blue (b), and that of the Qiskit simulation in red (c). The noisy gates and Qiskit simulations are obtained with 1000 samples,
and qualitatively they reproduce the time evolution of the Lindblad equation. Vertical dashed lines in the three top panels
represent the time scales of relaxation T1 (green), T2 (yellow) and depolarization Td (grey). Panel (d) shows the Hellinger
distances Hng

σ , in blue, and Hibm
σ , in red, as a function of time. Different curves are obtained from 100 independent runs of the

two methods (for better readability only five are shown), where each simulation is obtained by averaging over 1000 samples.
Panel (e) shows the mean of the Hellinger distances H̄ng

σ , and H̄ibm
σ , obtained from the 100 independent runs, and vertical error

bars show their standard deviations ∆Hng
σ , ∆Hibm

σ . The inset displays ∆Hng
σ and ∆Hibm

σ as functions of time. Panel (f) shows
the relative improvement of the distance H̄ng

σ with respect to H̄ibm
σ , calculated as |H̄ibm

σ − H̄ng
σ |/H̄ibm

σ . The fact that noises
drive the system towards the maximally mixed state is the reason why the improvement decreases in time. The noisy gates and
the standard approaches lead to the same predictions when one is close to decoherence times, as the noise is dominant over the
unitary evolution. In the interesting regime [0, 2000 · tg] before decoherence dominates, our improvement is always above 60%.

Single qubit simulations. We first simulate a repeti-
tion of X gates, each of which can be obtained by setting
θ = π and ϕ = 0 in Eq. (17); we initialize the qubit in
|0⟩ and we use the qubit noise parameters of ibmq manila
(more details on the device can be found in appendix E).
We evolve the state of the qubit for a time T = N tg,
with N = 15000. In the upper panels of Fig. 1 we plot
the time evolution of the population of the ground state,
ρ00 = ⟨0|ρ|0⟩, as obtained with the three methods. In the
noiseless case, ρ00 should oscillate between 0 and 1 with
period 2tg, as at each step of tg a complete X rotation is
performed; in the presence of noises, the oscillations are
damped due to the relaxation of the qubit, while the de-
polarization drives probabilities towards the asymptotic
value ρ00 → 0.5.

Both our simulation and that obtained using Qiskit’s
simlulator qualitatively reproduce this behaviour. In Fig.
1 we have also highlighted with dashed vertical lines the
characteristic times of relaxation and depolarization (see
the caption); for times approaching these values the state
is not a reliable quantum state anymore, as the density

matrix becomes completely mixed. Given this consider-
ation, in the lower plots we stop at N = 2000.

In order to inspect which of the two models repro-
duces more accurately and precisely the Lindblad evolu-
tion, we have run 100 independent simulations with both
the noisy gates simulator and the Qiskit simulator, com-
puting for each run the Hellinger distances Hng

σ , Hibm
σ .

We computed the means over the 100 independent sim-
ulations, H̄ng

σ , H̄ibm
σ and the standard deviations ∆Hng

σ ,
∆Hibm

σ . These quantities are shown in the lower panels
of Fig. 1. During the relevant time interval [0, T ] the
Hellinger distance of the noisy gates simulator is closer
to zero, than that obtained with the Qiskit simulator.
Both results are compatible within the error bars, how-
ever the standard deviations associated to the noisy gates
simulations are significantly smaller than those associ-
ated to the Qiskit simulations, as also highlighted in the
inset of Fig. 1 (e). We notice that the difference be-
tween H̄ng

σ and H̄ibm
σ is of the order ∼ 10−3 − 10−2, and

this corresponds to a relative improvement, calculated as
|H̄ibm

σ −H̄ng
σ |/H̄ibm

σ , in the range from 90% to 60% as time
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FIG. 2. Repetition of CR gates. The three upper panels (a), (b), (c) show the time evolution of the ρ22 entry of the density
matrix for the CR gate with θ = π and ϕ = 0. Colors have the same meaning as for Fig. 1. Vertical dashed lines represent
the time scales of relaxation, T1 (in green) and T2 (in yellow) of the target qubit, and depolarization Td (grey). The noisy
gates simulations reproduce qualitatively better the time evolution obtained from the direct numerical solution of the Lindblad
equation. Panels (d) and (e) display the Hellinger distances Hng

σ , in blue, and Hibm
σ , in red, as a function of time, for a repetition

of CR gates. The plots have the same meaning as for Fig.1. Panel (f) shows the relative improvement of the distance H̄ng
σ with

respect to H̄ibm
σ , calculated as |H̄ibm

σ −H̄ng
σ |/H̄ibm

σ . The fact that noises drive the system towards the maximally mixed state is
the reason why the improvement decreases in time. The noisy gates and the standard approaches lead to the same predictions
when one is close to decoherence times, as the noise is dominant over the unitary evolution. In the interesting regime [0, 100 · tg]
our improvement is always above 88%.

increases. The relative improvement is shown in Fig. 1
(f). The fact that noises drive the system towards the
maximally mixed state is the reason why the improve-
ment decreases over time. The noisy gates and the stan-
dard approaches lead to the same predictions when one
is close to decoherence times. Indeed after such times
the strength of the noise is dominant over the unitary
evolution, or the Hamiltonian contribution is negligible
with respect to the Lindblad term (see Eq.(4)), which is
the same in the two approaches. In the interesting regime
[0, T ] our improvement is always above 60%. In appendix
F we repeat a similar analysis for the fidelities.

Two qubits simulations. Next, we simulate a repetition
of Cross-resonance gates as defined in Eq. (31), where
we choose ϕ = 0 and θ = π. We initialize the system
in the state |10⟩ and we use the qubit noise parameters
of ibmq manila. In the three upper panels of Fig. 2 we
show the time evolution of the entry ρ22 = ⟨10|ρ|10⟩;
the x-axis is normalized in terms of the two-qubit gate
time tg. The two-qubit state goes asymptotically towards
the completely mixed state as ρ22 reaches the asymptotic
value 0.25. The probability ρ22, which in the ideal case
should flip between one and zero, is again damped over
time by relaxation effects. Again, we have highlighted

with vertical dashed lines the characteristic time scales
of the noises, showing only the T1 and T2 values of the
target qubit as representative values. The depolarizing
error is the dominant one, spoiling the quantum state
already after ∼ 100 CR gates; for this reason, the the
lower panels we consider a total duration N ∼ 100. As
before, we report the Hellinger distances, showing the
different results of 100 independent simulations together
with their mean and standard deviation in the three lower
panels of Fig. 2.

As in the single qubit case, within the relevant time
interval [0, T ] the Hellinger distances obtained with the
noisy gates simulations are closer to zero than those ob-
tained with the Qiskit simulator. However now, differ-
ently from the single qubit case, the two results are not
compatible within error bars. Moreover the difference
between H̄ng

σ and H̄ibm
σ is now of the order ∼ 10−1. This

corresponds to a relative improvement in the range from
90% to 88% as time increases, shown in Fig. 2 (f). In
the interesting regime [0, T ] our improvement is always
above 88%. We notice that in Fig. 2 (e) the value of
H̄ibm

σ approaches that of H̄ng
σ for times close to 100 CR

gate times. The reason why this happens is the same
explained above for the single qubit case. In appendix F
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FIG. 3. Repetition of CNOT gates. The three upper panels (a), (b), (c) show the time evolution of the ρ22 entry of the density
matrix for the CNOT gate. Colors have the same meaning as for Fig. 1. The noisy gates simulations reproduce qualitatively
better the time evolution obtained from the direct numerical solution of the Lindblad equation. Panel (d) displays mean of
the Hellinger distances H̄ng

σ , in blue, and H̄ibm
σ , in red, and their standard deviations as functions of time. Panel (e) shows the

relative improvement. The fact that noises drive the system towards the maximally mixed state is again the reason why the
improvement decreases in time: the noisy gates and the standard approaches lead to the same predictions when one is close to
decoherence times, as the noise is dominant over the unitary evolution. In the interesting regime [0, 100 · tg] our improvement
is always above 55%. The upper subplots of panel (f) show the time evolution of the ρ11 entry of the density matrix for the
same sequence of CR gates in Fig. 2 and the lower subplots show the time evolution of the ρ11 entry of the density matrix
for the sequence of CNOT gates. Colors have the same meaning as for Fig. 1. For the CR gates, the Qiskit simulation of ρ11
is visibly different from the Lindblad evolution, thus explaining the higher improvement of the noisy gates simulation in the
Hellinger distance in Fig. 2.

we repeat a similar analysis for the fidelities.

We then perform the analysis for a repetition of CNOT
gates, for an initial state given by |10⟩ and qubit noise
parameters of ibmq quito (see appendix E). We notice
that in this simulation we implement each CNOT gate
directly without expressing it as a combination of single
qubit gates and CR gates, as it is done in IBM devices.
We make this choice because in this way it is easier to
solve numerically the target Lindblad equation. At each
time step of the evolution we simulate a circuit with an
increasing number of CNOT gates and measurements at
the end. Thus we add SPAM channels (see appendices
C and D) to model measurements errors. This allows to
extend the analysis to runs on real hardware, that in-
volve measurements, as we will show later in subsection
VIIB. In the three upper panels of Fig. 3 we show the
time evolution of the ρ22 = ⟨10|ρ|10⟩ entry of the den-
sity matrix. The relevant time interval is again given by
a total duration of N ∼ 100 gates. Indeed the depo-
larizing error in this case spoils the quantum state after
∼ 120 CNOT gates. Fig. 3 (d) shows the mean of the
Hellinger distances H̄ng

σ (in blue) and H̄ibm
σ (in red) and

their standard deviations ∆Hng
σ and ∆Hibm

σ , also shown
in the inset. Once more, within the relevant time inter-
val [0, T ] the Hellinger distances obtained with the noisy
gates simulations are closer to zero than those obtained
with the Qiskit simulator and the difference between H̄ng

σ

and H̄ibm
σ is of the order ∼ 10−2. This corresponds to a

relative improvement in the range from 80% to 55% as
time increases. This is shown in Fig. 3 (e). In the in-
teresting regime [0, T ] the relative improvement is always
above 55%.

By looking at Figs. 2 (e) and 3 (d), we notice that the
improvement in the Hellinger distance gained by using
the noisy gates approach is much higher for CR gates
with respect to CNOT gates. The reason why this hap-
pens is clarified in Fig. 3 (f). The panel consists of two
upper subplots showing the time evolution of the ρ11 en-
try of the density matrix for the CR gates and two lower
subplots showing the time evolution of the ρ11 entry of
the density matrix for the CNOT gates. Similarly to
the convention used above, orange curves are obtained
with the numerical solution of the Lindblad equation,
blue curves are obtained with the noisy gates simulations
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FIG. 4. Repetition of CNOT gates. Panel (a) shows the
Hellinger distance Hχ

σ between the Lindblad evolution and
ibmq quito for the repetition of CNOT gates. Panel (b) shows
the mean Hellinger distance H̄ng

χ and the standard deviations
between the noisy gates simulation and ibmq quito. Panel (c)
shows the mean Hellinger distance H̄ibm

χ and the standard de-
viations between the Qiskit simulation and ibmq quito. Panel
(d) shows the relative improvement calculated as |H̄ibm

χ −
H̄ng

χ |/H̄ibm
χ . The relative improvement is around 10%. The

smaller relative improvement with respect to those shown in
the previous figures, is mainly due to additional noises present
in ibmq devices, i.e. crosstalks, correlated noises and coherent
errors.

and red curves are obtained with Qiskit simulations. The
noisy gates simulations make good predictions for both
gate sequences, as the blue curves follow closely the or-
ange curves. On the other hand, the Qiskit simulation
for the CR gates is visibly different from the numerical
solution of the Lindblad equation. This might be due to
the fact that the CR gate is a block diagonal matrix with
X(θ) in the upper block and X(−θ) in the lower block
while the CNOT gate is block diagonal with an identity
in the upper block and X(θ) in the lower block. The
identity in the CNOT might lead to a lower influence of
noises on the ρ00 and ρ11 entries of the density matrix.
These observations explain why the Hellinger distances
obtained with the noisy gates in different simulations are
very good and similar to each other, while the Hellinger
distance obtained with Qiskit is better for the CNOT
with respect to the CR. Nevertheless, the noisy gates
approach always outperforms the standard one by a sig-
nificant amount, as shown by the relative improvements.

B. Comparison with the behaviour of a real
quantum computer

Now, we inspect the performances of the noisy gates
approach when trying to reproduce the behaviour of a
real quantum computation. To this purpose, we first ex-

tend the analysis of the CNOT gates sequence in subsec-
tion VIIA, and then we focus on the inverse Quantum
Fourier Transform (QFT†). When dealing with a real
hardware, we must take into account that the noise model
we implement in this analysis (see section II) might not
be accurate enough in describing the device, and that
different quantum devices might behave very differently
from one another. As we will show, despite the choice of
a simple noise model and the instability of ibmq devices,
our approach is still able to outperform the standard one
also when compared with the real hardware.

CNOT simulations. We run the sequence of CNOT
gates of subsection VIIA on ibmq quito, available on the
cloud and comprising 7 superconducting transmon qubits
[47] (see appendix E) and we reconstruct the density ma-
trix χ obtained from the physical device, to be compared
with the density matrices ρng, ρibm and σ obtained for the
CNOT simulations discussed in subsection VIIA. We re-
mark again that for the CNOT simulations of subsection
VIIA, we implemented each CNOT gate directly without
expressing it as a combination of single qubit gates and
CR gates, as it is done in IBM devices, because in this
way it is easier to solve numerically the target Lindblad
equation. We create a list of circuits, each consisting
of an increasing number of CNOT gates, and measure
each circuit 1000 times to obtain the output probability
distributions, thus deriving the evolution of the outcome
probabilities as the number of gates increases. As noted
above, since each circuit involves measurements we added
a SPAM error to model measurement errors.

The Hellinger distance Hχ
σ = H(χ, σ) between the

Lindblad evolution and the evolution obtained with
ibmq quito is shown in Fig. 4 (a). This distance is three
to tens time larger with respect to H̄ng

σ and H̄ibm
σ that are

shown in Fig. 3 (d). While the standard approach and
the noisy gates approach have a certain level of agreement
with the Lindblad equation, the latter is deviating from
the quantum hardware by a significantly higher level.
This is also the reason why it is not possible to appre-
ciate the difference between the mean Hellinger distance
H̄ng

χ = H̄(ρng, χ) of the noisy gates with ibmq quito and

the mean Hellinger distance H̄ibm
χ = H̄(ρibm, χ) of Qiskit

with ibmq quito, as shown in Fig. 4 (b) and Fig. 4 (c).
Fig. 4 (d) shows the relative improvement with respect
to the device, which is calculated as |H̄ibm

χ − H̄ng
χ |/H̄ibm

χ .
The relative improvement is around 10%. The smaller
relative improvement with respect to those shown in the
previous subsection is only to a small extend due to the
fact that we do not decompose CNOT gates. The main
reason, as we explain when discussing the simulations of
the QFT (see below), is that additional noises are present
in ibmq devices, i.e. crosstalks, correlated noises and co-
herent errors [48, 49]. The simple noise model that we
consider in this work does not take such noises into ac-
count.

QFT simulations The (QFT†) is a subroutine of many
important quantum algorithms, as for example the Shor’s
algorithm [50, 51]. An important feature of QFT† is that
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FIG. 5. Quantum Fourier Transform. Panel (a) shows the Hellinger distances between the noisy gate approach and ibmq oslo,
and between the Qiskit simulator and ibmq oslo, when executing the QFT† algorithm for n = 2, . . . , 5 qubits. Each value is the
mean of 100 independent simulations for the noisy gates, in blue, and for the Qiskit simulations, in red. The left inset shows
the relative improvement, calculated as |H̄ibm

χ − H̄ng
χ |/H̄ibm

χ , while the right inset shows the standard deviations as functions
of the number of qubits. Panel (b) is the same as (a), with ibmq oslo replaced by ibmq kolkata and the number of qubit going
up to 8. In panel (c) the comparison presented in (b) has been repeated a second time on ibmq kolkata; in this case, only a
single simulation of 1000 samples is considered. The inset shows the relative improvement.

the circuit for n qubits is readily extendable to n + 1
qubits; thus we can efficiently test the robustness of the
method as the circuit’s width and depth increase. We run
QFT† for n = 2, . . . , 5 on ibmq oslo and for n = 2, . . . , 18
on ibmq kolkata. These devices are available on the
cloud, comprising respectively 7 and 27 superconducting
transmon qubits [47], see appendix E for further details.

We set as input of QFT† the state |+⟩⊗n
, obtained by

applying a layer of Hadamard gates on each qubit ini-
tialized in |0⟩. In this way the ideal output of QFT†

should be |0⟩⊗n
. Runs on real quantum computers are

performed by taking 1000 shots, i.e. measurements. We
also run the corresponding noisy gates and Qiskit simu-
lations. (In appendix G we perform a similar analysis for
the GHZ algorithm [52].)

Implementing QFT† circuit on ibmq devices requires
to transpile the circuit into their native gate set. We have
defined a custom noise model in Qiskit, by adding after
each gate of the transpiled circuit the depolarizing and
relaxation channels, and the SPAM channel before mea-
surements, see appendix C. Similarly, in the noisy gates
simulation each gate is replaced with its noisy version ac-
cording to the noise model in section II. During idle-times
of qubits we put the relaxation noise gates (see appendix
D) in order to take into account the stand-by times of the
physical qubits; before measurements, we apply SPAM
noise gates (see appendix D) which accounts for read-out
errors. In these simulations the CNOT gates inside the
circuits are decomposed in terms of single-qubit and CR
gates, as in ibmq devices.

In order to measure the performance of different ap-
proaches in simulating the behaviour of the quantum
computer, we look at their distance with the outcomes
of the real device; this is achieved by computing the
Hellinger distance between the probability distributions,
and it can be done without performing full tomography
on the quantum states, which scales exponentially with
the number of qubits and becomes unfeasible for the cur-

rent simulations.
In Fig. 5 (a) we plot the average values of Hng

χ =

H(ρng, χ), Hibm
χ = H(ρibm, χ) as the number of qubits n

increases from 2 to 5, where now the diagonal elements
of χ are the outcome probabilities of ibmq oslo. Fig. 5
(b) displays again the average values of Hng

χ = H(ρng, χ),

Hibm
χ = H(ρibm, χ) up to 8 qubits, where now the diag-

onal elements of χ come from ibmq kolkata. As shown
in Fig. 5 (c) we compute again Hng

χ , Hibm
χ to test the

stability of ibmq kolkata in different runs.
As in the previous section, we have run 100 indepen-

dent simulations, each including 1000 samples, for both
methods and for each n, in order to compute the stan-
dard deviations ∆Hng

χ , ∆Hibm
χ shown in the insets of Fig.

5. Only for Fig. 5 (c) we have run a single simula-
tion of 1000 samples, thus standard deviations are not
present. We notice that for every n we get H̄ng

χ < H̄ibm
χ

and ∆Hng
χ < ∆Hibm

χ . The relative improvement, shown
in green in the insets of of Fig. 5, changes significantly
between different devices and also for the same device but
in different moments, namely with different noise param-
eters, meaning that the performances of such devices are
not very stable. For example at n = 3, in the left panel
the relative improvement is ∼ 25%, in the central panel
it is ∼ 5% and in the right panel it is ∼ 25%. The highest
relative improvement obtained with the run on ibmq oslo
is ∼ 30% and for runs on ibmq kolkata is ∼ 35%.
The results show that our method is more accurate

than existing ones. Actually, it reproduces the Lindblad
dynamics better (Figures 1 and 2) than the dynamics of
the quantum devices. The reason, mentioned before, is
that quantum devices are affected by additional and more
complicated noises, which are not taken into account by
the noise model we are using; we stress again that to find
a better noise model is not the scope of this work, and
will be subject of future research.
The simulations on ibmq kolkata have been extended

to 18 qubits to test the computational scalability of the
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qubits for the QFT† executed on ibmq kolkata. Since for
n ≥ 9 the depth of the circuit is such that noises make the
resulting probability distribution very flat, 1000 runs of the
circuit on the quantum device, which returns a single com-
putational basis state in each run, are not sufficient to recon-
struct faithfully the probability distribution over the 2n basis
states; by increasing the number of qubits, a 0 probability is
associated to an increasing number of basis states. The sim-
ulator instead does does not suffer from this limitation: in
each run, it returns a non-zero value for each possible out-
put. Then the respective probability distributions differ more
and more, and this is the reason why the Hellinger distance
rapidly increases. Despite the fact that the number of runs of
the device is not sufficient to derive clear conclusions, we no-
tice that the noisy gates approach still performs better than
the standard one.

noisy gates simulator. In Fig. 6 we show the mean
Hellinger distances H̄ng

χ and H̄ibm
χ and their standard

deviations ∆Hng
χ and ∆Hibm

χ from n = 9 to n = 18
qubits: simulations apparently become rapidly bad, since
the Hellinger distance approaches 1, its maximum value.
There is a clear reason behind that, which does not rep-
resent a limitation of our simulator. First of all, for such
an high number of qubits, the depth of the transpiled cir-
cuit is so large that noises dominate [53] and the resulting
probability distributions are very flat. Then, to recover
a faithful probability distribution over the 2n possible
outcomes by the quantum device, which returns a single
outcome in each run, the number of circuit runs must
be significantly larger than 2n. Therefore, for n ≥ 9
a number of runs equal to 1000 is not sufficient (and
increasing this number becomes soon impractical): the
output distribution from the device is increasingly dom-
inated by 0’s, while our simulator returns (in general) a
non-zero probability for each output state: this makes
the Hellinger distances of Fig. 6 approach 1. Neverthe-
less, also in this case the noisy gates approach performs
better than the standard one, even if the number of runs
of the quantum device are not enough to properly recover
the full probability distribution.

As a final remark, we stress that we obtain better re-
sults with respect to Qiskit, despite the fact that we have
chosen the simplest time dependent pulse shape in the

Hamiltonians (see Eq. (17) and Eq. (31)).

VIII. CONCLUSIONS AND OUTLOOK

We have developed a novel approach, called noisy
quantum gates, to improve classical simulations of NISQ
computers: it is based on integrating the noise into the
gates, rather than keeping gates and noise as two separate
dynamics. We have shown that our approach is very suc-
cessful in simulating the Lindblad dynamics, with a rela-
tive improvement between 50% and 90% and more, com-
pared with the standard gate-noise separation method.
When compared against real quantum devices, the

improvement fluctuates between 10% and 30%; this is
largely due to the fact that the underlying noise model
is too simple to accurately represent the dynamics of the
device, as discussed in connection to the simulation of the
CNOT gate. This is not a weakness of the noisy gate ap-
proach here presented, but of the underlying noise model,
which we used since it is rather standard in the literature.
There is a number of potential improvements that can

be straightforwardly implemented; all of them require an
update of the noise model, not of the simulation strategy,
which is already very good. First of all, there are likely
additional single-qubit errors which should be taken into
account, for example those induced by the driving pulses.
Secondly, in the present work we considered only non-
correlated single-qubit errors, but the method can easily
accommodate also correlated two-qubits errors [48, 54]
by introducing proper correlated noises into the stochas-
tic equations. Another possible extension of the ap-
proach is to add in the Hamiltonians small interactions
between adjacent qubits in order to mimic cross talk er-
rors [49, 55]. Last, the current version of the noisy gates
approach relies on the Lindblad equation that works in
the Markovian limit; this is reflected in the fact that we
used stochastic equations based on white noises. The
approach can be generalized to non-Markovian dynam-
ics by using colored noises, as already discussed in the
literature in different contexts [19–22].
Furthermore, our approach is also useful for other pur-

poses that go beyond plane error analysis. For example,
the shape of the pulse in the driving Hamiltonians, (see
Eq. (17) and Eq. (31)), can affect the noise. In our work
we chose for simplicity a rectangular shape, but usually
in real devices different shapes can be used, for example
Gaussian ones. Consequentially, a natural application of
our approach is error mitigation [56, 57], by optimizing
the parameters of the pulse in order to minimize the effect
of the noise [58–60]; the optimization can be performed
for example by exploiting machine learning techniques,
to find the best pulse parameters, which can be tested
on real quantum hardware.
In this work we specified our approach to the native

gate set and noise model of IBM devices; clearly the ap-
proach is general and can be used to describe in principle
any NISQ platform.
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Appendix A: Derivation of the approximate solution

In this appendix, let us show how the approximate
solution in Eq. (12) to Eq. (10) can be rigorously derived
to order O(ϵ2). We propose two different methods.

1. Perturbative expansion in the interaction
picture

As a first proof, let us perform the stochastic unrav-
eling in the interaction picture, hence defining the state
quantum trajectory at any time as |ψs⟩ = Us |ϕs⟩, where
the state vector |ϕs⟩ is the solution, at time s, of the Itô
equation

d |ϕs⟩ =
[
iϵ

N2−1∑
k=1

dWk,sLk,s −
ϵ2

2

N2−1∑
k=1

dsL†
k,sLk,s

]
|ϕs⟩ ;

(A1)
here, dWk,s are defined as in the main text, and we
defined the jump operators in the interaction picture,
Lk,s := U†

sLkUs. Then, by dividing the time interval
s ∈ [0, 1] in infinitesimal steps of width 1/M and taking
the limit M → ∞, formally the solution to Eq. (10) can
be written as

N = Ug lim
M→∞

NM , (A2)

where we defined NM :=
∏M−1

m=0 exp
[
ϵBm + ϵ2

2 Am

]
, with

Am = − 1

M

N2−1∑
k=1

[
L†
k,m/MLk,m/M − L2

k,m/M

]
(A3)

and

Bm = i

N2−1∑
k=1

Lk,m/M

∫ (m+1)/M

m/M

dWk,s. (A4)

For general purposes (and, in particular, for ours) N can
not be calculated analytically; hence, we show how to

obtain a general form to the second order in ϵ (i.e., to
first order in λtg). First, let us prove that the following
approximation holds:

NM = e
ϵ2

2 AM eϵBM+ ϵ2

2 CM +O(ϵ3), (A5)

where we defined BM =
∑M−1

k=0 Bk, AM =
∑M−1

k=0 Ak,
and

CM =

M−1∑
k=0

k∑
j=0

[
Bk,Bj

]
=

M−1∑
k=0

[
Bk,Bk

]
. (A6)

The proof follows by induction. First, one can straight-
forwardly check that Eq. (A5) holds for M = 0; then,

suppose it holds for M̃ = M − 1. Since by definition

NM = eϵBM+ ϵ2

2 AMNM−1, applying the inductive hypoth-
esis one can see that

NM = 1 + ϵBM +
ϵ2

2

[
AM + B2

M + CM
]
+O(ϵ3)

= e
ϵ2

2 AM eϵBM+ ϵ2

2 CM +O(ϵ3), (A7)

which concludes the proof. Then, inserting (A5) in the
formal expression for N, one can perform the limit M →
∞, ending up with N = Uge

ΛeΞ, where we defined

Λ = −ϵ
2

2

∫ 1

0

ds

N2−1∑
k=1

[
L†
k,sLk,s − L2

k,s

]
(A8)

and

Ξ = iϵ

N2−1∑
k=1

∫ 1

0

dWk,sLk,s −
ϵ2

2
C; (A9)

here, C =
∑N2−1

k,l=1

∫ 1

0
dWk,s

∫ s

0
dWl,s′

[
Lk,s,Ll,s′

]
. As ex-

plained in the main text, this term can actually be
dropped at second order in ϵ, leading to the expressions
given in (13) and (14).

2. Small noise expansion

A second approach makes use of a perturbative method
known as small noise expansion or asymptotic perturba-
tive expansion [37]. For simplicity, let us consider the
SDE with one single Lindblad operator,

d |ψs⟩ =
[
− i

ℏ
Hsds+ iϵLdWs −

ϵ2

2
L†Lds

]
|ψs⟩ , (A10)

the generalization to N2 − 1 Lindblad operators being
straightforward, and let us set the following ansatz:

|ψs⟩ =
∣∣ψ0

s

〉
+ ϵ

∣∣ψ1
s

〉
+ ϵ2

∣∣ψ2
s

〉
+ . . . (A11)

Substituting this ansatz into Eq.(A10) and equating
terms with the same power of ϵ, up to second order we
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get a system of SDEs:

d
∣∣ψ0

s

〉
= − i

ℏ
Hs

∣∣ψ0
s

〉
ds

d
∣∣ψ1

s

〉
= − i

ℏ
Hs

∣∣ψ1
s

〉
ds+ iL

∣∣ψ0
s

〉
dWs

d
∣∣ψ2

s

〉
= − i

ℏ
Hs

∣∣ψ2
s

〉
ds+ iL

∣∣ψ1
s

〉
dWs −

1

2
L†L

∣∣ψ0
s

〉
ds,

(A12)

which must be solved with the initial conditions
∣∣ψ0

0

〉
=

|ψ0⟩. The zeroth order differential equation is the deter-
ministic one given by the Hamiltonian evolution alone,
hence its solution is simply

∣∣ψ0
s

〉
= Us |ψ0⟩. The first

order SDE is an example of a time-dependent Ornstein-
Uhlenbeck process [37]: the solution is∣∣ψ1

s

〉
= iUsSs |ψ0⟩ , (A13)

where we defined Ss =
∫ s

0
dWτLτ . Finally, the solution

to the second order SDE is∣∣ψ2
s

〉
= −Us

∫ s

0

[1
2
L†
sLsds+ LsSsdWs

]
|ψ0⟩ , (A14)

where Ls = U†
sLUs. Then, the solution at order ϵ2 is

given by |ψ1⟩ = N |ψ0⟩ +O(ϵ3), where the evolution op-
erator is N = UgN

′, with

N′ =

[
1 + ϵS1 − ϵ2

∫ 1

0

[1
2
L†
sLsds+ LsSsdWs

]]
. (A15)

In order to evaluate the solution in the form given in the
main text, we make use of the following equality:∫ τ

0

dWsLsSs =
1

2

[
S2s +

∫ τ

0

dWs[Ls,Ss]−
∫ τ

0

dsL2
s

]
(A16)

obtained by using the Itô rule [37] for each entry of the
stochastic matrices. Substituting this expression into
Eq.(A15), we get to second order:

N′ = 1 + iϵS1 −
ϵ2

2

[
S21 +

∫ 1

0

ds
[
L†
s − Ls

]
Ls + C

]
=

= eΛeΞ +O(ϵ3),

where Λ, Ξ and C =
∫ 1

0
dWs

[
Ls,Ss

]
are the same quan-

tities defined in the main text.

Appendix B: Comparison of the approximations

We focus on the main differences between the stan-
dard approximation made in error analysis against the
one considered in the noisy gates approach.

Given the following Lindblad master equation

d

dt
ρt = − i

ℏ
[Ht, ρt] + γL [ρt] , (B1)

where L [ρt] = LρtL
† − 1

2{L
†L, ρt}, let’s move to the

interaction picture by defining χt = U†
t,t0ρtUt,t0 and

χt0 = ρt0 . Then

d

dt
χt = γL(t) [χt] , (B2)

where L(t) [χt] = U†
t,t0L [ρt]Ut,t0 .

The formal solution of Eq. (B2) is

χt = T

[
e
γ
∫ t
t0

dsL(s)

]
χt0 , (B3)

where T [·] is the time ordering. Thus in the Schrödinger
picture we can write the formal solution of Eq. (B1) as

ρt = Ut,t0T

[
e
γ
∫ t
t0

dsL(s)

]
ρt0U

†
t,t0 . (B4)

- Standard approximation - The main approximation
that can be found in the literature is to separate the
Hamiltonian dynamics from the noise one [15, 16]. This
choice is based on the observation that in general in quan-
tum devices ω >> γ, where ω is the pulse frequency of
the Hamiltonian. Thus, the noise dynamics can be seen
as frozen with respect to the faster Hamiltonian one. It
means that in Eq. (B4) one assumes

L(t) ≃ L (B5)

getting

ρt ≃ Ut,t0e
γL·(t−t0)ρt0U

†
t,t0 . (B6)

We notice that indeed in Eq. (B6) the two dynamics are
independent.

- Noisy gates approximation - Also in this case the
approximation is based on ω >> γ, but we assume that γ
is not small enough to completely separate the dynamics.
An example of this can be seen in the devices of IBM
where the noise evolution can be influenced in a non-
negligible manner by the pulse of the drive Hamiltonian
[46, 61]. Thus we make a first order approximation over
γ in Eq. (B4)

T

[
e
γ
∫ t
t0

dsL(s)

]
≃ 1 + γ

∫ t

t0

dsL(s), (B7)

and we get

ρt ≃ Ut,t0

(
1 + γ

∫ t

t0

dsL(s)

)
ρt0U

†
t,t0 . (B8)

In Eq. (B8) the noise depends on the Hamiltonian dy-
namics through L(s). We stress that the perturbative
solution of the SDE in the noisy gates model reproduce
density matrices of the form of Eq. (B8).
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Appendix C: Kraus maps used in Qiskit simulations

The error channels that we included in the custom
Qiskit noise model are a composition of depolarization
and relaxation after the gates and bitflip before mea-
surements. With relaxation we mean the amplitude and
phase damping channel. In this appendix we show the
corresponding Kraus maps for these channels that are
used in Qiskit simulations through Alg. 1 in section VI.

1. State Preparation and measurement (SPAM)

This kind of error is usually described as a bit flip
channel that acts on a single qubit [16]. Hence, its Kraus
representation reads:

E(ρ) = (1− p)ρ+ pXρX, (C1)

where ρ is the density matrix of a single qubit, X is the
x-Pauli matrix and p is the probability of having a flip
of the states of the computational basis. The probability
p that we used in the simulations is the readout error
provided as a calibration parameter for IBM devices, see
appendix E.

2. Depolarization

Depolarization drives the qubit towards the maximally
mixed state [16] and models incoherent gate infidelities.
Its Kraus representation reads:

E(ρ) =
(
1− 3

4
p
)
ρ+

p

4
XρX +

p

4
Y ρY +

p

4
ZρZ, (C2)

where ρ is the density matrix of a single qubit, X,Y, Z
are the Pauli matrices and p/4 is the equal probability
of having a bit flip, a phase flip or a bit and phase flip of
the states of the computational basis. The probability p
that we used in the simulations is the gate error provided
as a calibration parameter for IBM devices, see appendix
E.

3. Amplitude and phase damping (Relaxation)

The amplitude-damping channel describes the decay
|1⟩ → |0⟩ due to the interaction with the environment;
on the other hand, phase-damping represents the pro-
cess in which phase coherences decay over time. Here
we briefly call relaxation the combination of both effects.
The Kraus representation is given by [15, 16]

E(ρ) = KρK + p1σ
+ρσ− + pzP1ρP1, (C3)

where we defined

K =

(
1 0
0

√
1− p1 − pz

)
; (C4)

as usual, σ+ = |0⟩ ⟨1|, σ− = |1⟩ ⟨0| and P1 = |1⟩ ⟨1|.
Moreover, p1 = 1−e−t/T1 is the probability of amplitude
damping, T1 being the relaxation time (the time it takes
for the qubit to decay in the ground state), and pz = (1−
p1)ppd, where ppd = 1 − e−t/Tpd and Tpd = T1T2/(2T1 −
T2), T2 being the decoherence time. We mention that the
time scales T1 and T2 are related as T2 ≤ 2T1. The times
T1 and T2 that we used in the simulations are directly
provided as calibration parameters for IBM devices, see
appendix E.

Appendix D: Noise gates for Spam and Relaxation
on idle qubits

In this section we address SPAM and relaxation noises
on idle qubits, where the corresponding noise gates can
be derived exactly [33, 62, 63]. We do not consider de-
polarization error on idle qubits, because this channel is
used to model incoherent gate infidelities.

1. Noise gate for SPAM

The Kraus map of SPAM is in Eq.(C1) of appendix
C. Assuming a behaviour in time of the form p = (1 −
e−2t/T )/2 for a characteristic time T = γ−1, one gets the
corresponding Lindblad master equation

d

dt
ρt = γ(XρtX − ρt). (D1)

The associated stochastic differential equation is

d|ψt⟩ =
[
i
√
γXdWt −

γ

2
dt

]
|ψt⟩ . (D2)

This equation is analytically solvable with standard
methods [37, 63], and thus we can exactly evaluate the
corresponding noise gate as

NSPAM(t, t0) = ei
√
γXW̄ (t,t0), (D3)

where W̄ (t, t0) :=
∫ t

t0
dWs. In this case, the noise gate

happens to be unitary, thus we can interpret it as a
stochastic Schrödinger evolution due to the presence of
the Wiener process W̄ (t, t0). In the simulations we can
directly sample W̄ (t, t0) from a Gaussian distribution
with mean E[W̄ (t, t0)] = 0 and variance E[W̄ 2(t, t0)] =
t− t0.

2. Noise gate for amplitude and phase damping
(Relaxation)

The Kraus map of the amplitude and phase damping
is in Eq.(C2) of appendix C. Defining γ1 = 1/T1, γpd =
1/Tpd, the corresponding Lindblad equation is

d

dt
ρt = γ1σ

+ρtσ
− − γ1

2
{P1, ρt}+

γpd
4

(ZρtZ − ρt), (D4)
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and the stochastic term of the relative Itô equation reads:

dW = i
√
γ1σ

+dWt,1 −
γ1
2
P1dt+ i

√
γpd
4
ZdWt,2 −

γpd
8

dt.

(D5)
With this stochastic term the Itô equation is analytically
solvable [40] and we get the following non-unitary noisy
gate

N relax(t, t0) =

(
eiαW̄2(t,t0) iS(t, t0)e

iαW̄2(t,t0)

0 e−
γ1
2 (t−t0)e−iαW̄2(t,t0)

)
,

(D6)

where we defined for simplicity α :=
√
γpd/4, and

S(t, t0) =
√
γ1

∫ t

t0

e−
γ1
2 (s−t0)e−2iαW̄2(s,t0)dWs,1 (D7)

is a complex stochastic Itô process. In principle, such a
term is problematic in view of a simulation, since it is not
easy to sample. To understand this, look for instance at
the real part,

SR(t, t0) =
√
γ1

∫ t

t0

e−
γ1
2 (s−t0) cos

(
2αW̄2(s, t0)

)
dWs,1;

(D8)
this is an Itô integral of a stochastic function, and it is
not easy to derive its probability distribution; thus, sam-
pling S(t, t0) may be problematic. We can avoid such
a difficulty by adequately substituting N relax(t, t0) with
some modified noisy gate, which is equivalent to the for-
mer once the average is carried out, in the sense that Eq.
(C3) still holds even if the new noisy gate is not a solu-
tion of the unraveling (D5) anymore. For instance, it is
straightforward to verify that this holds for the following
choice:

Ñ relax(t, t0) =

(
eiαW̄2(t,t0) iS̃(t, t0)e

−iαW̄2(t,t0)

0 e−
γ1
2 (t−t0)e−iαW̄2(t,t0)

)
,

(D9)
with the definition

S̃(t, t0) =
√
γ1

∫ t

t0

e−
γ1
2 (s−t0)dWs,1; (D10)

i.e., one always has that

E
[
N relax |ψ⟩ ⟨ψ|N relax†] = E

[
Ñ relax |ψ⟩ ⟨ψ| Ñ relax†].

(D11)

The difference is that now the process S̃(t, t0) is just the
Itô integral of a deterministic function, hence we know
that it must have a Gaussian statistics [37], which makes
it more convenient for a simulation.

Appendix E: Device parameters

For the simulations in Sec. VII and in appendix G we
used the device parameters provided by IBM. Here we
report the average value of such parameters.

ibmq manila contains 5 fixed-frequency transmons
qubits [47], with median fundamental transition fre-
quency of 4.962 GHz and median anharmonicity of
−0.34358 GHz. The median qubit lifetime T1 of the
qubits is 149.11µs, the median coherence time T2 is
44.43µs and the median readout error is 0.0217. The
single qubit gate error varies between 1.975 × 10−4 and
6.138 × 10−4, while the CNOT error varies between
7.072 × 10−3 and 1.125 × 10−2, depending on the
specific connection. In the simulations that reproduce
the Lindblad equations, parameters of qubits zero
and one were used. ibmq kolkata contains 27 fixed-
frequency transmons qubits, with median fundamental
transition frequency of 5.102 GHz and median anhar-
monicity of −0.34345 GHz. The median qubit lifetime
T1 of the qubits is 127.39µs, the median coherence
time T2 is 86.41µs and the median readout error is
0.0132. The single qubit gate error varies between
1.443 × 10−4 and 5.410 × 10−3, while the CNOT error
varies between 4.214 × 10−3 and 1 × 10−2, depend-
ing on the specific connection. The qubits, which
are used to run QFT† algorithm, belong to the list
[0,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11,8,5,3,2].
ibmq quito contains 7 fixed-frequency transmons qubits,
with the median fundamental transition frequency of
5.164 GHz and median anharmonicity of −0.3315 GHz.
The median qubit lifetime T1 of the qubits is 105.84µs,
the median coherence time T2 is 84.05µs and the median
readout error is 0.044. The single qubit gate error varies
between 3.054×10−4 and 6.929×10−4, while the CNOT
error varies between 9.682 × 10−3 and 1.463 × 10−2,
depending on the specific connection. The qubits,
which are used for CNOT gate sequence are 0 and 1.
ibmq oslo contains 7 fixed-frequency transmons qubits,
with the median fundamental transition frequency
of 5.046 GHz and median anharmonicity of −0.3429
GHz. The median qubit lifetime T1 of the qubits is
128.12µs, the median coherence time T2 is 58.57µs and
the median readout error is 0.0216. The single qubit
gate error varies between 1.648× 10−4 and 6.698× 10−4,
while the CNOT error varies between 6.471 × 10−3 and
2.067× 10−2, depending on the specific connection. The
qubits, which are used to run GHZ algorithm, belong to
the list [0,1,3,5,4].

Appendix F: Plots of the fidelities of the X and CR
gates Lindblad simulations

Here in Fig 7 and Fig. 8 we show the plots of the
fidelities obtained from the simulations in Sec. VII. The
fidelity is defined as:

F(ρ, σ) =
(
Tr

√
σ1/2ρσ1/2

)2
. (F1)

We notice that when one considers only diagonal density
matrices, the fidelity is called Hellinger fidelity and it is
related to the Hellinger distance as F = (1−H2)2. The
Hellinger fidelity is not a proper mathematical distance,
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FIG. 7. Fidelities Fng
σ , in blue, and F ibm

σ , in red, as a function of time, for a repetition of X gates. On panel (a), the fidelities
obtained from 100 independent runs of the two methods are pictured (for better readability only five are shown), where each
simulation is obtained by averaging over 1000 samples. On panel (b), the means F̄ng

σ , F̄ ibm
σ of the same simulations and their

standard deviations ∆Fng
σ , ∆F ibm

σ are displayed. The inset shows the standard deviations ∆Fng
σ , ∆F ibm

σ as functions of time.

0 20 40 60 80 100
time [tg units]

0.96

0.97

0.98

0.99

1.00

F

Noisy Gates vs Lindblad
Qiskit vs Lindblad

(a) 0 20 40 60 80 100
time [tg units]

0.970

0.975

0.980

0.985

0.990

0.995

1.000

F

Noisy Gates vs Lindblad
Qiskit vs Lindblad

0 50 100
time [tg units]

0.0000

0.0025

0.0050

F

(b)

FIG. 8. Fidelities Fng
σ , in blue, and F ibm

σ , in red, as a function of time, for a repetition of CR gates. Panels (a) and (b) have
the same meaning as for Fig.7.
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FIG. 9. On panel (a), probabilities histograms for 4 qubits of a single independent simulation of the GHZ algorithm. In orange
the results for ibmq oslo, in blue for the noisy gates and in red for the Qiskit simulator. On panel (b), Hellinger distance for
the GHZ algorithm for n = 2, . . . , 5 qubits. Each value is the mean of 100 independent simulations for the noisy gates, in blue,
and for the Qiskit simulations, in red. The left inset shows the relative improvement, calculated as |H̄ibm

σ −H̄ng
σ |/H̄σibm, while

the right inset shows the standard deviations as functions of the number of qubits.
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thus in the main text we used the Hellinger distance. As
one can see the results are consistent with those in Sec.
VII.

Appendix G: GHZ simulations

In this appendix we report the results of the analysis of
the GHZ algorithm in order to inspect the performances
of the noisy gates approach when trying to reproduce the
behaviour of a real quantum computer. We run GHZ for
n = 2, ... , 5 on ibmq oslo and we set as input the state
|0⟩⊗n

. Runs on real quantum computer are performed by
taking 1000 shots, i.e. measurements. We also run the
corresponding classical simulations. We use the same
custom noise model defined in Sec. VII in the QFT †

case. The resulting probability histograms for 4 qubits
of a single independent simulation is reported in Fig. 9.
We notice that, as for the QFT† case, for every n we get
H̄ng < H̄ibm and ∆Hng < ∆Hibm, see Fig. 9.

Appendix H: Comparison between relevant quantum
computing frameworks on noisy simulations

In the following we report a table with a list of relevant
quantum computing frameworks where we verify whether
they support noise simulation (NS) and if so wheter they
implement the approach descibed in Eq. (1) of Sec. I

that we call standard approach (SA).

Company Name Ref. NS SA
IBM Qiskit [64] Yes Yes

Rigetti pyQuil [23] Yes Yes
Quantinuum t|ket⟩ [65] Yes Yes

Xanadu Pennylane [66] Yes Yes
Xanadu Strawberry Field [67] Yes Yes
Microsoft Azure Quantum [68] No -
Microsoft LIQUI|⟩ [69] Yes Yes
Google Cirq [70] Yes Yes
Google TensorFlow Quantum [71] Yes Yes
Intel Intel QS [72] Yes Yes
Baidu Paddle Quantum [73] Yes Yes

Amazon Braket [74] Yes Yes
- ProjectQ [75] No -
- QiBO [76] Yes Yes
- QCL [77] No -
- Quipper [78] No -
- Quirk [79] No -
- SilQ [80] No -

TABLE I. List of relevant quantum computing frameworks.
In the fourth column is specified whether the corresponding
framework support noise simulation (NS) while in the fifth
column we specify whether the noise simulation is based on
the approach described in Eq. (1) of Sec. I that we call
standard approach (SA).
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