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We consider the screening of the axio-dilaton fields when both the dilaton and the axion couple to matter
with Yukawa couplings. We analyze the screening of the dilaton in the vicinity of a compact object and find
that this can only take place when special boundary conditions at infinity are imposed. We study the

cosmological dynamics of the axio-dilaton system when linearly coupled to matter and find that the special
boundary conditions at infinity, which guarantee the screening of compact objects, do not generically
emerge from cosmology. We analyze the background cosmology and the cosmological perturbations at late

times in these models and show that the baryon acoustic oscillations constrain the coupling of the dilaton to

matter to be smaller than in its natural supergravity realization. Moreover, we find that the Hubble rate in

the present Universe could deviate from the normalized Planck value, although by an amount too small to
account for the H|, tension, and that the growth of the structure is generically reduced compared to ACDM.

DOI: 10.1103/PhysRevD.108.063517

I. INTRODUCTION

General relativity (GR) effectively passes all the current
gravitational tests in the solar system [1]. Yet there is still
tension on larger scales, which may eventually necessitate
challenging Einstein’s theory of gravity. These are related
to two classes of observations. First, there are long-standing
astrophysical results that imply the existence of dark matter
[2]. Second, there is now robust evidence in favor of the
acceleration of the expansion of the Universe [3,4]. The
latter is best accounted for in GR by adding a cosmological
constant to the Lagrangian of the theory. However, under-
standing the origin of this constant energy density, e.g.,
from quantum field theoretic considerations, has proven to
be fraught with difficulties [5]. Modifying GR is not an
easy task either [6]. We know from Lovelock’s theorem [7]
and, in the effective field theory context, from Weinberg’s
theorem [8] that GR is unique in four dimensions provided
Lorentz invariance and the masslessness of the graviton
hold [9].

One way to modify GR is to add additional fields. This is
the route taken by scalar-tensor theories [10] in which one
or more additional scalar fields are added to the setting and
couple to matter. Such scalar fields appear in many
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proposed dynamical models attempting to account for
the late cosmic acceleration [11]. They also find theoretical
motivation in the fact that they appear naturally in UV-
complete theories such as string theory [12,13]. In par-
ticular, the swampland conjectures favor an explanation of
the late-time acceleration of the Universe resulting from the
nontrivial dynamics of string moduli [14]. We present the
axio-dilaton, which is one such scalar-tensor theory whose
origin can be traced to a compactification of ten to four
dimensions [13].

Unfortunately, most scalar-tensor theories are typically
ruled out by solar system tests of gravity. In their most
naive form, consistency of scalar-tensor theories either
requires them to have a small coupling to matter or the
scalar must be stabilized with large masses leading to short-
ranged interactions [15].

This can be illustrated with the Brans-Dicke theory (BD)
and the action [1,16]

R 1
Spp = / d*x\/=gM5, <3 — 5990 = V((P)>
+ S (G Wim) (1)

where y,, represents the ordinary matter fields and the
Jordan frame metric is given by

G = AX(@)g,, with  A(p) = €% (2)

where g is a coupling constant. The scalar couples to matter
only via the metric g[, The metric g, is the Einstein metric
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for which the Einstein equations take their usual form; i.e.,
matter “feels” the geometry of the Jordan frame.

Constraints from solar system tests like those using
measurements by the Cassini probe [17] can be understood
using the parametrized post-Newtonian (PPN) formalism.
It is enough here to define two important PPN parameters.
We introduce the gravitational mass of the source M, and
the PPN parameters yppy, fppn Via the following para-
metrization of the Jordan metric element in isotropic
coordinates around a given compact object,

2GM GM\? 1
dS‘% = —<1 - T + 2ﬁppN <}"> + O(P))dlz

GM 1
+ (1 + ZyPPNT + O(p)) (dr2 + }’zdgz). (3)

In GR yppny = Pppy = 1 while for the Brans-Dicke theory
the deviation from GR is captured by yppy, i.€., fppy = 1
and [13]

1 —2g?

e 4
1 +2g° “)

VPPN —

The Cassini probe, on the other hand, gives [17]
lypen — 1] < 2.3 x 1075, (5)

This constrains the coupling g* to be less than 107.
Larger deviations from GR can be reached in certain
regimes when the theories are subject to a screening
mechanism, i.e., a modification which allows the theory
to evade solar system tests while having an order unity
coupling to matter whose role is important on large scales.
There are now at least three types of screening mechanisms
for single field models, i.e., the chameleon, K-mouflage,
and Vainshtein mechanisms [18-20]. They all rely on
higher derivatives and/or nonlinearities of the kinetic terms
and interacting potentials of the models [15]. In [13], a new
screening mechanism was introduced, which relies on a
second field that has a nonzero but small coupling to matter.
The mechanism depends crucially on the interplay between
the scalar profiles inside and outside matter [21,22]. Here,
we consider the situations where the two fields, the dilaton
and the axion, have a linear coupling to matter, which we
denote by x and e. We focus on the small € regime and vary
k from small values up to unity, which corresponds to its
value in supergravity where the dilaton plays the role of the
volume modulus of string compactifications [23]. We find
that for x = 1, screening of the dilaton around compact
objects only takes place when the fields take particular
values at infinity. These values should emerge from the
cosmological dynamics. We then focus on the cosmology
of these values where both x and the values of the coupling
€ to both baryons and cold dark matter are varied.
Generically, the field values in the present Universe do

not satisfy the screening conditions. In fact, one must resort
to yet unknown screening mechanisms for the axio-dilaton
system in order to accommodate both local solar system
tests and cosmological constraints such as the baryon
acoustic oscillations [24].

The coupling of the axion to dark matter e plays a
crucial role cosmologically and can be of order unity. On
the other hand, we find that the coupling of the dilation x
must be reduced locally to small values in order to pass
solar system tests. In this paper, we consider two likely
scenarios. The first one is that the coupling « is determined
locally to be extremely small, of the order of 1073, and that
most of the cosmological dynamics are due to the coupling
of the axion €. in a manner reminiscent of coupled
quintessence [25], although in a multifield setting here
[26]. This could be achieved if another field y drove
the coupling x to such values dynamically in the whole
Universe. Another possibility could be that the coupling «
is small locally but allowed to take larger values cosmo-
logically. This could happen if the field y only made « small
locally. In this second scenario, we find that the baryon
acoustic oscillation (BAO) constraints on late time cosmo-
logy are so stringent that x cannot be taken of order unity as
in the original supergravity model. In this setting, we
consider the allowed deviations of H|, from their values as
calibrated by the Planck satellite experiment and find that
only a few percent of discrepancy is allowed. This is much
less than the current H, tension [27,28]. Finally, we notice
that the linear growth in these models is reduced compared
to the ACDM case, despite the existence of attractive fifth
forces due to the dilaton and the axion. This could provide a
solution to the oy tension [29] where the observed amount
of clustering is reduced compared to the expected one from
early times [30,31]. The precise study of this possibility is
left to future work.

The scenario that we present here enlarges the usual
single-field class of models for late time cosmology.
Such multifield generalizations could prove useful in
view of future measurements and present cosmological
tensions [32].

The paper is arranged as follows. In Sec. II, we present
the axio-dilaton model. In Sec. III, we consider the
screening of compact objects. We then discuss the cosmol-
ogy of these models in Sec. IV.

II. AXIO-DILATON THEORY
A. Lagrangian

The axio-dilaton theory contains two scalar fields, the
dilaton 7 > 0 and the axion a. The dilaton 7 couples to
matter only through the Jordan frame metric while a is
directly coupled to matter. The difference is made clear
below where we construct an effective metric which
mediates the coupling of both scalars to matter. The action
of the theory is
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d0'70 dao
s_/ﬁu¢%M2E—§ FrrT TN L s,
P2 4 72
(6)
with
Sm = Sm(g/fw a, l//m)’ gp]ty = A(T)zguw
A(r) = 772, (7)

Here, « is a coupling constant. The theory studied in [13]
corresponds to k = 1 and is associated to a supergravity
model of string theory origin with a Kéhler potential K =
—3In(7 +7) and a coupling to matter determined by
A = ¢K/® In this setting, the dilaton can be seen as the
volume modulus of a 6D compatification of string theory
from 10D to 4D. Introducing « enables one to tune the
matter-dilaton coupling and make the solar system tests of
gravity easier to satisfy. We see that screening is compul-
sory for the model to pass the solar system tests of
gravitation.
The two fields can be viewed as the real and imaginary
parts of a complex field 7 = § (7 + ia) whose Lagrangian is
B , (R 3070, T )
£y (G ) o )

In this model, we define the usual stress-energy tensor and
the coupling of a to matter,

2 88,
V=909

For the trace, we use the notation ' = g, T**. Notice that the
matter action depends on the axion field in a nontrivial
manner and not via the Jordan metric. This has drastic
consequences, which we unravel below.

There are two Klein-Gordon equations for the two scalar
fields, i.e.,

T =

1 T
Oz — . (0,70"t — d,ad"a) — KMT =0 (10)
and
Oa 20,000+ - A= 0 (11)
a—=- a+-—5A=0.
ot 3IM>

P
It is convenient to introduce the dilaton field ¢ such that
7 = e?, leading to
_ K
Og + (0,ad*a)e™ — MT =0. (12)

The Einstein equation is simply

1

3 1
Rﬂu - P (aﬂfa,ff + a/taaua) - W <Tﬂu - ETg,W> =0.
(13)

P
where we have separated the matter energy-momentum
tensor from the scalar one.

B. Symmetries

In the absence of matter, the theory is invariant under a
SL(2,R) group whose origin can be traced back to
supergravity. Indeed, the kinetic term of the fields is
invariant under

al —ib
N
icT +d

provided ad—bd=1 (14)

corresponding to a Kéhler transformation of the theory.
There are thus three conserved currents, corresponding to
the dimension of the symmetry group in the absence of
matter. As a basis for these currents, we can choose the

following:
(i) The axion shift symmetry 7 — 7 — ib (a = ¢ =0,
d=1):
da

(ii) The rescaling symmetry 7 — a7 (b=c=0,
d=1):

Fr ad
p=2rp000 (16)

T 72

(iii) The nonlinear symmetry 7 —7 —icT?(a =d = 1,
b=0,c<x1):

2_ 2
- o
o8 ya—2a2" (17)
T

JN =
N 2

From the Klein-Gordon equations we can directly obtain
the (non)conservation laws

A kT —aA
VMJQ:—M, vﬂjgzw,
2 — ) A-2axT
O Gl . (18)
u 32

As can be seen, matter breaks the whole symmetry group as
none of the three currents is conserved anymore.

When S, does not depend on a, i.e., A = 0, the axio-
dilation theory is equivalent to a Brans-Dicke theory. Indeed,
when A = 0 we have the axion solution a = cste, so Eq. (12)
becomes
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Oy T =0. (19)

K
Ry

3M;,
Similarly, the BD Lagrangian (50) gives the Klein-Gordon
equation

g
O —T=0. 20
¢BD +Mf, (20)

Matching the two Weyl factors e™*?/2 = %80 we get
¢@ep = (—K/2g)¢. Combining the two Klein-Gordon equa-
tions

—k 3¢
213 ap=0= ¢ = /6. 21
G+ Mow-0=g—es @)
When « = 1, we find that the coupling reduces to 1/ V6, ie.,
the same as for f(R) and massive gravity.

III. NONRELATIVISTIC SOURCE
AND SCREENING

Screening requires one to study the gravitational physics
around objects like the Sun. We model the Sun and other
compact objects such as the Earth or the Moon as non-
relativistic sources; i.e., the only nonzero component of
their stress-energy tensor is Ty = p. We also assume that
they are static and spherically symmetric. We look for
space-time solutions with the same symmetries, which we
chart with isotropic coordinates,

Gudx'dx? = =20 di + 0 (dr? + 2dQ?).  (22)

The Jordan metric is obtained by multiplying this line
element by the coupling function A.

A. Exterior solution

We simplify the setting by considering nonrelativistic
objects with a small Newtonian potential. As a result, we
approximate the Klein-Gordon equations using a flat
background g =, where 7,, is the Minkowski metric
tensor. The validity of the approximation is evaluated
a posteriori.

In the following, primes refer to derivatives with respect
to r. We assume spherical symmetry. The resulting Klein-
Gordon equations are

27 ,L./z _ a/2 7
"4 —— =0 23
T+ " . +K3M%, (23)
and
S 2/ 2dd  7A _o (24)

r T 3M%,

Here p is the matter density inside or outside the object.
Instead of using these equations directly, we can use the
equations for the currents (18). In the absence of matter,
i.e., outside the objects, the currents are conserved:

/

a
rzz = CA’ (25)
, (7 ad
T —+—2 = Cs, (26)
T T
2 —a®d 2ar
rz(—( 1'2 ) - - >—CN (27)

These constants are fixed by the conditions inside the
source.

We are interested in the case where a # cste. Thus,
Cy # 0. Defining y = C,, a=Cg/Cy, p=(Cs/Cp)*+
Cy/Cy4, we obtain

2+ (a—a)? = p?, (28)

where 7 and a thus evolve on a circle in the 7 — a plane.
Therefore, we can eliminate 7 in Eq. (25) and obtain

d =L (F - (a=ap). (29)

We integrate this to obtain the axion profile

with X(r):y—f—Fé, (30)

a = a—ftanh X(r)
where ¢ is a new integration constant. Using Eq. (25) again,
we finally obtain

p
= 31
* = CoshX (r) (31)
Some of the integration constants are fixed by the boundary
conditions inside the source. Indeed, from the currents (18),
we see that

y=Cs=

1 R
—M[) drr* A(r), (32)
1

:C i —
144y S 3M%,

A " a2 (ep(r) + a(PA().  (33)

On the other hand, $ and 6 can only be fixed by the values
of the fields at infinity,

aw, =a—ftanhs,  f=1,c0shd= /7% + (@ —ay)>.

(34)
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As shown in the Appendix, these solutions in the flat
background approximation are valid as long as

r>GM and r> |yf. (35)

The first condition corresponds to being far from the
Schwarzschild radius.

B. Screening

We first investigate screening in the Jordan frame where
we extract the PPN parameters from the Jordan metric,

gﬁb dx*dx’ = A? Gudxt dx”

2GM GM \? 1
:—<1——g+2ﬁppN <—g> +O<—3>>dt2
r r r

GM 1
+<1+2yPPN q+(’)(—2)>(dr2+r2d£22),
r

r

(36)

where A> = 1/7% and 9w 18 given by (22). Here, M, is the
gravitational mass as defined in the PPN formalism. We
have that M, # M = fsourcep; i.e., the mass of the object in
the Jordan frame is renormalized by the presence of the
scalar fields.

In the absence of fields, the Einstein frame metric g, is
the Schwarzschild metric. In the presence of the fields, the
Einstein equations are modified, and we expand as

21 2P 1
W=1-"4 40—, 37
e St (P) (37)
21 1
e2W=1+—+O(—3>, (38)
r r

where [ = GM. Expanding the conformal factor A” in
inverse powers of the distance, we have

A2:A%°<1—al/r—i-az/rz—l—(?(%)), (39)

from which we deduce that

[—a
2

YPPN = ) (40)
1+5

B P+ la —l—%az

= 41
PPN (H—%al)z (41)

For the axio-dilaton theory the conformal factor is given by

A2 =~ = (W) (42)

where we have used the explicit solution for z(r).
Expanding in 1/r we find the coefficients
oy = —Kkfy tanh 6,

- Kﬂ2y2
ay = )

((k—1)tanh?>5 + 1). (43)
In the following, we always choose the ansatz [13]
A= —€T, (44)

where € is a small constant and 7 the trace of the energy-
momentum tensor. In the case of static sources this reduces
to A =ep. As we see, this choice is not innocent as it
brings back the two-field model within the realm of the
scalar-tensor theories with an effective coupling to both
the dilaton and the axion. We make this explicit in the
following. From Eq. (32) we obtain

2¢eGM 2el
=- =——, 45
v 3 3 (45)
and in the Jordan frame the PPN parameters become
3 —exfitanh o
= 46
VPPN 3 4 exftanh o (46)
and
ke’ (1 — tanh? §
Peen =1+ ( )

(3 + keftanh §)

Hence, by taking e small, GR is recovered as long as  does
not increase accordingly. This is the essence of this new type
of screening, which corresponds to a nonuniform limite — 0.
Indeed, when € = 0 the model is equivalent to a Brans-Dicke
model with a coupling k/+/6 which needs to be small enough
to satisfy the solar system tests of gravity. However, it turns
out that the nonuniform limit ¢ — 0 requires particular
boundary conditions at infinity which are not generic. We
come back to this point in the next section.

C. Interior solution
We now solve Eqgs. (23) and (24) inside the source of
radius R, with the boundary conditions 7/(0) = &’(0) =0
at the origin. We assume a uniform density inside the body
as a simplifying assumption and a coupling A with the
same profile as p,

— M
P=Po~ 3
{ 0 3IL'R (47)

A = €py.
The dynamical equations cannot be solved exactly. We

obtain perturbative solutions in € as we have seen that a
small coupling ¢ is required to screen in the Jordan frame.
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1. Dilaton dynamics

The equation for the current J% from Eq. (18) gives

AW 2
24 _ ﬂ 48
<r 12) BME, ’ (48)
Assuming regularity for the fields at the origin, we obtain

3

a'(r) epy T
= - —. (49)
72(r) 3M3 P 3
We define m? = py/3M3, leading to
2
a = ——621 re2. (50)

We can substitute this expression in Eq. (23) to get

2/ N2 2.4
T//+_T_ (7) +%r213 +xm?7t = 0. (51)
r T

In terms of the dilaton ¢ = Inz, the Klein-Gordon equa-
tion (12) then becomes

2 2 .4
"+ ;(p' L& ;n re* +xm? =0 (52)

where we impose the boundary equation ¢'(0) = 0.

2. Perturbative expansion in €

Up to now, everything is exact. We now expand in
powers of e:

o =09 4+ ep) + .., (53)
a=a"% +ea) + ..., (54)

and impose the boundary conditions at each order.
The advantage of this perturbative method is that the

problematic term ¢ in Eq. (52) appears only at second
order in ¢. Indeed, at orders 0 and 1, we obtain

2
POV + =0 4 xm? =0, (55)
r
(42 0
74 +;(ﬂ =0. (56)

The solution for ¢! is then
oV = ¢y + o, (57)
r

For ¢© we have

+7——r. (58)

The boundary conditions ¢’(0) =0 impose that the
fields are regular at 0, so we have no 1/r term, i.e.,
¢y = d; =0, and finally

7= (79 + erl)e_%’z + ... (59)

where we have redefined the constants of integration. Inside
the source and for small €, 7 decreases exponentially fast.
We can now obtain a. Using Eq. (50) we have

T% xm2 2/
a4 eaV)' = eg(e‘T’ ). (60)
and therefore
a% = cste, (61)
T% sz 2
a) = Ee‘T’ + cste. (62)

The axion field is then given by

km? 2

2
a:ao—l—e(al—}—%oe'T’)—l—.... (63)

We see that the axion and dilaton fields only evolve
when € # 0.

3. Matching to the exterior solution

The continuity of 7 and a at r = R reads

_xm?p2 B
70+ er)e” s K =— 64
(s + em1) vt

2,
a0+e<a1+12—0e‘%’?> :a—ﬂtanh(‘%Jrﬁ). (65)

We use the continuity equations for ¢/ = 7//7 and a’/7°,

xkm’ Br . S\ Pr
extim? V4

——5R=—. 67
3(zo +e71)? R? (67)

Thus, we have eight integration constants, i.e., a, f3, 7, 6 for
the exterior solution and 7y, 7|, ag, a; for the interior
solution. Recall that

2
€em
y=- TR3’ (68)
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ya = —m? AR drr*(k + ea(r)). (69)

Thus, y is fixed independently of the others, and o depends
on ao and a;. We are left with six parameters. With a
system of four continuity constraints as given above, we
end up with 2 degrees of freedom. These can be para-
metrized by the values of the fields at infinity 7., and a,
which determine the full solution.

D. Screening revisited

We can now revisit the conditions under which the
gravitational deviation from GR in the Jordan frame is
small. Using

1

Y= =
3M,

R
/ drr?(kp(r) + a(r)A(r))  (70)
0
and y = —em?R?/3, we obtain the identity

_ 2R3 R3 R
6’2 a=-m? (K? + e/ drr*a(r)
0

+ €2 AR drrza(l)(r)>. (71)

As aresult, the expansion of « is singular in the limit ¢ < 1
and becomes

K
a:E+ao+€a1+..., (72)

implying that the outside solution is very sensitive to small
values of e. In particular, we see that the limit of small
€ < 1 leads to a large value for the exterior axion field.
Using Eq. (34) we obtain

ﬂz%ﬁﬁ('}ao—aé‘i))z (73)

where we have neglected the terms of order e. Now, unless
a, turns out to be of order 1/¢ and cancels exactly the term
in k/e, we find that for generic boundary values at infinity

K
ﬁ:EJraO—af,g)Jr... (74)

when x = O(1) and € < 1. The matching conditions at
r =R simplify as we notice that m?’R?/2 = GyM/R,
where M is the mass of the object. This is nothing but
the Newtonian potential of the compact object at its surface
which is always small in our Newtonian approximation, its

value being close to 107 for the Sun. We then deduce,

using (65), that ay = af,?,) to leading order, and similarly

2.2
€1

tanhd =1—-——+ ..., 75
an 5+ (75)
implying that 6 is always large. As a result we have
eftanh o = k + - - -, and the PPN parameters are simply the

ones of a scalar tensor theory with a coupling /+/6,

_ 3__’<2 + O(e) (76)
VPPN — 312 €
and
Peen = 1+ O(€?). (77)

In this limit fppy can be arbitrarily close to 1 for small €, but
not yppn. Small deviations of yppy from unity are only
achieved for very small x, a result which does not differ
from Brans-Dicke’s, signaling that screening does not take
place. Screening can only take place when

ald — ay = E, (78)
€

which corresponds to a specific choice for the axion field at
infinity. As the theory has no scalar potential, the value of
the axion field at infinity is not obtained by minimizing an
effective potential like in the chameleon mechanism.
Hence, the boundary value of the axion field must emerge
from the cosmological dynamics. We study this below.
Our analysis has assumed that A = ep. As soon as the
dependence of the matter action on the axion is weak, i.e.,
A/p ~ e < 1, the same qualitative results follow as y will
be of order ¢ and ya of order k. This reasoning is
independent of the details of the model inside the source.

E. Effective metric

As we have seen, the generic absence of screening leads
to the coupling of a compact object to be equivalent to the
one of a point particle with coupling x/+/6. This is the
coupling of matter to the dilaton. The fact that the axion
couples to the matter action, too, implies that compact
objects do not follow the geodesics of the Jordan metric but
the ones of an effective metric whose presence can be
inferred from the small field expansion

dlnA
58, = — / d4x\/_—g< an 5(p—§5a)T (79)
0

where the variation of the fields is taken around the
background values for the dilaton and the axion. Notice
that the axion and the dilaton fields both couple to the trace
of the energy-momentum tensor. Let us define

B(g.a) = A(p)e /. (80)

Then the coupling to matter can be written as
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olnB onB
8S, = — | d*x/= S
m / X g< op @ + oa

(Sa)T (81)

corresponding to the coupling of a two-field scalar-tensor
theory where the effective metric is

g = B*(9.a)g,,. (82)

As a result, compact objects evolve along the geodesics of
the effective metric and not the Jordan metric.

This can be confirmed by analyzing the geodesic
equations for pressureless matter for the axio-dilaton
theories. Indeed, the Klein-Gordon equations and the
Bianchi identity V#(R,, —%g,,) =0 imply the noncon-
servation equation

v

VT = (kT — Ada). (83)

N[ =

For nonrelativistic matter, the energy-momentum tensor is
simply

T,, = pu,u, with w,u"=—1. (84)
In this section, dots denote the time derivative along the
particle lines defined by u*, i.e., X = V,X = u*V, X. For
scalar quantities X, this also corresponds to the derivative
with respect to the proper time of a particle moving with
velocity u¥. We define the local Hubble rate as 32 =V, u*.
The nonconservation equation then becomes

(kpd'p + Ad'a). (85)

| =

put + 3hput =

Contracting with u, and using w*u, = —1 we get the
generalized continuity equation

1
p+3hp = —i(ch(erAa). (86)
We recognize the coupling function B,

B = ¢s(ko+ea) i (87)

when ¢ = cste. We can define a conserved density p.,, in
the Einstein frame such that

p = Bpcon (88)

as
Peon + 3hpeon = 0. (89)
This is the conserved matter density in the axio-dilaton

setting. Combining Egs. (85) and (86), we obtain the
modified Newton law

(k'@ + ed*a). (90)

| =

i — 2 (k¢ + ea)u* =

This reads

dInB

i+ W = —9"InB, (91)

where 7 is the proper time. With m, defining the mass of the
particles, we find that the effective mass of these particles
in the Einstein frame is dressed by the scalar field and
becomes

m = B(¢p, a)my. (92)
This follows from the identification p = mé™ (x* — x# (7))

along the particle’s trajectory and peo, = md™® (x# — x*(z)).
The momentum of each particle becomes

Pt = mut. (93)

Newton’s law then becomes
p* = —md" InB. (94)
As aresult, a force deriving from the potential In B is exerted
on each particle whose mass is also field dependent. For

instance, in the nonrelativistic limit and in the presence of
gravity, Newton’s law becomes

dp'
dt

= —mo'® (95)
where @, is Newton’s potential and
O =0y +1nB (96)

combines the effects of gravity and the scalar field. This
modification of Newton’s law is nothing but the one which
can be derived from the coupling of matter to the effective
metric g;ff As a result, we have confirmed that compact
objects do not follow the geodesics of the Jordan metric but
rather the one of the effective metric. We analyze the

cosmological consequences of this result below.

F. Effective charge

Let us come back to the effective scalar charge carried by
a compact object. We have seen that in the € < 1 limit and
unless the fields at infinity take special values, which
should be adjusted cosmologically, the objects are not
screened. Far away from a given object we expect the
acceleration of another object due to the scalar field to fall
off as
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2
_20°GyM (97)

>~ r3
where Q is the scalar charge of both objects. Here M is the
mass of the object responsible for the acceleration of the
second body. The charges of both objects are equal as no

screening takes place. Using

InB = —%(K{/} +ea) D %(Kln cosh X(r) + ¢fftanh X(r))
(98)

and identifying this as —2Q>GyM /r at large distances, we
find that far away from the object

202GyM = —% tanhé + (1 — tanh?s))  (99)

and for € < 1 we retrieve

K
=

up to corrections of order €% The resulting interaction
including gravity is equivalent to rescaling Newton’s
constant as

(100)

Gt = (1 +20%)Gy (101)
with @ = —G M/ r. As expected in this limit correspond-
ing to € <k, the coupling of the axion field to matter
becomes negligible for far-away objects, and the coupling
is the same as in the Jordan frame.

In conclusion, we find that x < 1073 for the Cassini test
to be evaded. This is a very small value which could only be
avoided if the cosmological values of the axion and dilaton
fields were tuned cosmologically.

G. Numerical integration

In this section, we find numerical solutions of the
equations around a massive sphere.

1. Setting the numerical problem

The Klein-Gordon equations with the constant source
inside a ball of radius R have the form

207 () (d)?  kpyt
! - o(r) =0, 102
e : +3M§, (r) (102)
2ad" 24d'7  epytr?
" —— d(r) =0, 103
@ T 3M? (r) (103)

where 6(r) is the step function that goes from 1 to 0 at the
radius of the source R. We introduce the characteristic

length L = /3M?% /py = m™" and write r = ?L. We obtain
the dimensionless equations

27 /2 7\2
o 2 @Y o=, (104)
r T T
2/ 2//
a"+ 5 2T L eo(R)e? =0, (105)
r

which we solve with the initial conditions 7'(0) =
a'(0) =0. We also regularize the step function, e.g.,
0(7) = I (tanh(N Alg? )+ 1), to have a transition of width
~R/N. Notice that R = R/L = \/2GM/R, i.e., the square
root of the ratio of the Schwarzschild radius to the radius of
the source. For the Sun, Ry = 2.05 x 1073,

2. Results

We see in the example in Fig. 1 that we obtain a perfect
match with the exterior solution but also with the first order
interior solution. The variations of the fields are relatively
small, i.e., of order 107° relative to the value at the center.
For other sets of parameters the variation increases with the
initial value at the center and of course the values of k and €.

The equations that we have used in the flat metric
approximation are valid only for

r>GM, r>|ypl. (106)
With R = RL, we have
R3
r>> GM©?>>7. (107)

For the Sun, f€3® ~ 1078, One can trust our description of
the static solution apart from a small region around the

origin. Similarly, we have y = —eR3L/3, so we obtain
0.00+ —— T — 7y numerical
—0.251 : — = T—T) analytic
' ——— @ — ag numerical
—0.501 a — ay analytic
_—0.751
T
S -1.00
RS
—1.251
—1.501
—1.751
—2.00 1
0.000 0.005 0.010 0.015 0.020

r

FIG. 1. Field profiles for R = Rg, k=1, and € = 0.5. The
initial values are taken such that 7, = a5 = 1, 7/(0) = @/(0) = 0.
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r>|ypl e > R3%}, (108)

which excludes a very small region around the origin.

IV. AXIO-DILATON COSMOLOGY
A. Two-fluid model

In the following, we concentrate on models where two
fluids are present, i.e., the baryons and cold dark matter
(CDM) with couplings determined by « to the dilaton and
€pc to the axion. We have seen that x and €j, i.e., the
coupling of the baryons to the axion, must be small to
comply with the solar system tests unless the fields take
special values at infinity. This translates into a choice of
boundary conditions for the fields on cosmological scales.
We see that this situation is not generic and that, starting
from initial conditions in the radiation era which do not
perturb the background cosmology, the cosmological
dynamics do not drive the fields to special values now.

The energy-momentum tensor of matter is taken to be

B.C __ B.C. B.C
Ty = ppcuy uy

(109)
corresponding to the baryons B and CDM C. We also
assume here, for definiteness,
A=—eTc—epTy (110)
where Tz - = —pp ¢ are the baryonic and CDM densities,

respectively. The matter energy-momentum tensors are not
conserved but satisfy the nonconservation equations

VT == (kT:0"¢ + €,T;0"a) (111)

| =

where i =B, C. This implies that the total energy-
momentum tensor

T =T +T¢ (112)
satisfies the nonconservation equation
V% = L (T — Ara) (113)
I =5 kTFg a

which is a consequence of the Bianchi identity.

In this section, we denote the time derivative along the
particle lines, defined by uf, by d/dr; = u}/'V, We define
the local Hubble rate as 3h; = V,uf. Notice that the
covariant derivatives are calculated in the Einstein frame;
hence, this is the local Hubble rate along the particle lines
as measured using the geometry of the Einstein frame. The
nonconservation equations for each species then become

dp;

1
i, +3hip; = ) (k¢ + €ia)p;. (114)
We define the coupling function B; as
B, = eHevtaa (115)

when €; = cste. We can now introduce a conserved density
Peon,i 1N the Einstein frame such that

Pi = Bipcon,i (116)

and

d con,i
Deoni | 31pegns = 0.

117
ar (117)

This is the conserved matter density in the axio-dilaton
setting. Similarly, we obtain the modified Newton law

i—f%—%u’f:—a“ ; (118)
where
xi =InB,. (119)
For each species, we can define an effective metric
G = B} 9 (120)

which corresponds to the Jordan frame for the given
species. As Bp # B, we see that the Jordan frames for
CDM and the baryons do not coincide.

We apply this formalism first to the background cos-
mological case and then to the cosmological perturbations.

B. Spatially flat cosmology

We are interested in the cosmology of a homogeneous
and isotropic universe in the presence of the axio-dilaton
fields. The FLRW (Friedmann-Lemaitre-Robertson-Walker)
metric reads

Gudxtdx’ = —di* + R*(t)y;;dx dx/

dr?

1 — kr?

= —dr* + R*(1) < + r2d92> (121)

where R is the scale factor. We define, as usual, the Hubble
rate as H = R/R. In the following we focus on the spatially
flat case k = 0.

We assume that the fields are irrelevant in the early
Universe up until some redshift z; which will typically be
the matter-radiation equality. Indeed, in the radiation era the
matter density is negligible, and therefore the fields are
hardly influenced by their matter couplings. As a result they
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remain constant if their initial velocities vanish. This also
guarantees that the influence of the axio-dilaton system on
big bang nucleosynthesis (BBN) is minimal. We choose the
initial conditions for the fields ¢, a, and their derivatives
such that they vanish at z;. This does not correspond to the
values of the fields for which screening takes place. On
the other hand, this entails a vanishing energy density for
the axion and dilatons initially.

Each species has its own Jordan frame with the back-
ground metric

Ghpdxtdx = —di} + Ridx'dx; (122)

where the cosmic time and the scale factor are defined by

dtl' = Bidt, Ri - B[R (123)
As CDM is not subject to the precision tests in the solar
system, we allow for large values of e¢.. Moreover, we
consider the effects on the scale factor in the Jordan frame
of the baryons Rz = BgR corresponding to the conserva-
tion of baryonic matter. We use the convention that Ry = 1
today and identify the redshift as detected from transition
lines of atoms by

1+z=R3". (124)
Although we focus on the dynamics in the baryon frame,
we first study the equations of motion in the Einstein frame.

C. Klein-Gordon equations

We look for time-dependent solutions for the scalar
fields 7(¢) and a(z) of the Klein-Gordon equations

?2—a>  ktp
T+ 3Ht — -——=0 125
7+ 3Ht . W (125)
and
o 2ta T?A
Cl+3Hd—T—W_O (126)

Here the total matter density is p = pg+pc and
A = eppp + €cpc. Notice that these equations are valid
both in the radiation and matter eras. In the radiation era,
the source terms depend on the matter density only as the
trace of the radiation energy-momentum tensor vanishes.
As a first approximation, we neglect the source terms in the
radiation era. This implies that ¢ ~ 0 and ¢ ~ (0, and the
field hardly moves during the radiation era. In our numeri-
cal analysis, we are interested in the physics in the matter
era, and we fix the initial conditions at matter-radiation
equality. A detailed analysis of the model from the end of
inflation through radiation to the matter era is left for future

work. We consider that the fields start evolving signifi-
cantly when the matter era begins.

D. Continuity equations

The energy density and pressure carried by the two scalar
fields are given by

3IM? (2 4 i
pf_Tp< 2 > (127)
and
3IM? (1% 4 o
pf=4”( 2 > (128)

corresponding to a perfect fluid with equation of state
w; = 1. Using the Bianchi identity and the Einstein
equation in the Einstein frame, we obtain that the total
energy is conserved, i.e.,

p+ps+3H(p+p+P+P)=0, (129

where the pressure terms have been included. This leads to

p+pyr+3H(p+2ps) = 0. (130)
Using the identity
pr=—r—@titraa—1v —1a°) (131)
4 7

and the expression of 7 and & in the Klein-Gordon
equations, Eqgs. (125) and (126), we obtain

1 .
pf+6pr:§<sz+Aa>. (132)
Finally, using the continuity equation we obtain
. | P .
,0+3Hp+§(quo+Aa) =0 (133)

as we have argued previously. This is associated with the
nonconservation equations per species,

1
pi +3Hp; +§Pi(’<¢+€ia) =0. (134)
This can be integrated exactly and leads to
p p
p=ﬂ3+pc=33%+3c%- (135)

Notice that if we define
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Po
p=B8B B (136)
then B = AzBg + AcB¢ where the fraction of baryons and
CDM is 4; = ’% where pg = pop + poc- In practice, we
have Az = Qofﬁgzoc where Qop ~0.022 and Qo ~0.12
from the Planck experiment [3]. Here and in the following,
we normalize the density p, to the Planck value as deduced

from early-time physics compared to the late-time effects
on the matter density that we study below.

E. Friedmann equations

The Friedmann equation is obtained from the (00)
component of the Einstein equation and becomes

P Pr PA

=t
2 2 ’
3M3 T 3ML T 3M3

H2

(137)

where we have introduced a cosmological constant asso-
ciated with the energy density p,. The Raychaudhuri
equation from the (if) Einstein equation reads

R 1
E:—@(p+pf+pA+3(P+Pf+PA>)7 (138)
leading to
R 1
EI—W(PJF“PAf—zﬂA)- (139)

P

These equations are defined in the Einstein frame and will
be transformed into the effective frame for baryons below.

We thus have the following system of differential
equations for R, 7z, and a only:

)

72— &2

p(t.a)

3 — _ _o.
7+ T . K 3M%, T
25 7
Y P L GL)
T 3M;,
R=H(r,a)R, (140)
with the Friedmann equations
14 Py PA
H? = + + :
3M3  3M% 3M3
Pos Poc 3M;, (4 &
P=Brgs B =g T )
dIn B; 1 . .
T —E(Kgo—i-e,u). (141)

We solve these equations numerically for different values
of € and k.

F. Dynamics in the effective baryon frame

In the baryon frame, the Hubble rate is

_dinRgy H  dyp
B= "dty By diz’

(142)
The conserved baryon density in the baryon frame is simply

~ 4
PB = PconB = % (143)
B

In this frame, CDM is not conserved, but an observer fitting
the evolution of the Universe with a prior that CDM is also
conserved in the same frame as the baryons would identify
the conserved CDM density as

ﬁ:@
C RgB’

(144)
and we could write an effective Friedmann equation in the
baryonic frame,

87[GB - 8ﬂ'GC~

+ +8ﬂ'GN~
3 PB 3 Pc 3

PA> (145)

H%E

where we have used 8zGy = 1 /Mf,. This allows one to
identify the effective Newton constants Gy ¢ and the dark
energy component p,. None of these constants is constant
in the baryon frame. In practice, the effective Newton
constants are determined by
Gy = B3Gy, G¢ = BgBGy; (146)
i.e., the two Newtonian constants evolve differently. The
dark energy component is simply defined as the comple-
ment to the baryon and CDM contributions in the baryonic
Friedmann equation.
As long as the fields do not evolve rapidly, i.e., at the
beginning of the matter era, we have Hy ~ H/Bpg. The dark
energy component becomes

pr= (147)
B
In the late Universe, this identification is not valid anymore,
and a numerical integration of the equations of motion is
necessary.
The same Friedmann equation in the baryon frame can
be written as

QE+ Q8 +Qf =1 (148)

where the energy fractions Qf, i = B, C, A are identified in

the baryon frame and are such that
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oF 87Gp cPp.c oF 8xGnpA
BC = a2 A= 7
3 3

(149)
The deviations of the energy fractions from ACDM are
represented in Fig. 5.

G. Deviations from ACDM
and observational constraints

We first define the effective gravitational constant that an
observation would measure. For example, big bang nucleo-
synthesis (BBN) puts constraints on the variation of such a
G [33,34]:

Gtoday _ GBBN

|AG/G|E‘% <0.4. (150)

eff

This assumes a Hubble evolution similar to that of ACDM
in the matter-dominated era. In our model, since observa-
tions are made in the baryon frame, the corresponding G
satisfies

< Gt | (151)

Hp = 8_ﬂGeff [C—Z + pA,B] )
B

for some c,,. In order to have G;(z;) = Gy initially, we set
¢, = po, as defined by Eq. (136); i.e., we normalize
Newton’s constant by using the Planck normalization in
the early Universe. Since the physics between BBN and
z = z; is the same as in the standard model, G.¢ = G until
z = z;. Later, the relative variation of the effective coupling
to baryons can be computed between z = z; and today:

AGy
Gp

_ AGy

BBN-—today GB

(152)

z;—~today

We can further constrain the possible deviations of the
Hubble rate from the standard model by imposing that this
should be less than the discrepancy appearing in the H|
tension. Indeed, there are two diverging determinations of
the present-time Hubble rate H, with a relative difference
of order 10% [28]. In the axio-dilaton theory, the fact that
Newton’s constant varies implies that the Hubble rate now
differs from the corresponding Hubble rate in the standard
model. We have normalized the Hubble rates to coincide at
the beginning of the matter era. This motivates us to look
for parameters that satisfy

<0.1, (153)

AH,
Hp

2’ Hp(z=0) —Hgu(z =0)
tension_ HSM (Z = O)
where Hgy is the Hubble rate in the standard model.
Another stringent constraint comes from BAO [24] which
specify that the deviations of Hp(z) for 0.2 <z<2.5
should be less than around 3% [24],

‘ AHy|  _ ' Hy(z€[0.2.2.5]) — HM(z€[0.2,2.5))
Hp |gao H3M(z€[0.2.2.5])

< 0.03. (154)
This implies that the differences between A-CDM and the
axio-dilaton models must appear late in the evolution of the
Universe. We see that the BAO constraint is the most
stringent one amongst the ones we have selected. Of
course, a much more precise numerical study is required
to constrain the parameter space. This is left to future work.

We also consider the effective equation of state of dark
energy. In GR with matter, in addition to a fluid X with
equation of state w, the deceleration parameter

i
0= | e (155)
RHZ today
is given by
1
qo = 5 (o + (1 +30)Qx ) (156)

2
where Q; = p;(z = 0)/3M3%H}. Observations thus give

an estimate for w depending on &, . For Q,, 3 ~ 0.3, which
can be obtained independently, this leads to [35,36]
w~—1+£0.1. (157)

Recent constraints and future prospects can be found in
[37]. We now define the effective equation of state

12gp0 = Qo
f=-—7"1—""—1, 158
Wett 3 QA,O ( )
where
97, Rp
a0 = %" - (159)
RBH%’ today
Taking €, o ~ 0.3, we must impose the constraint
|Aw| = |wegr + 1] £ 0.1. (160)

We use this bound in what follows as a guiding principle.
We are not trying to give a precise fit to the data but
an indication on the parameter space compatible with
cosmology.

H. Numerical integration

1. Dimensionless equations

In the following, we use L = \/3M3/p, as the unit of
time and length. Here p, is defined via Eq. (135). We
obtain quantities as functions of redshift starting at
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matter-radiation equality. We define the system of dynami-
cal equations with the number of e-folds N and ¢ such that
R = ¢V and 7 = ¢?. We obtain

o =-3H¢p—i*e™ +«p,
d=-3Ha+2¢pa+epe®,
N=~H,
with
HZ:ﬁ—’_ﬁf—’_ﬁA? ﬁ:B€_3N,

N T
Pr :Z(¢2+a2e 20). (161)

Here p, corresponds to p,/py where p, is the density
associated with the cosmological constant. In ACDM, p,, is
also the value of the matter density today, so p, =
Qp 0/ 0=~7/3 in ACDM. It is convenient to work in
conformal time #, such that Rdn = dt, implying that

(HB,O — Hsm,O)/Hsm,U

3.0

0.04
28 0.03

0.02
2.6

001

S 241 0.00

—0.01
2.2

—0.02
2.0 —0.03

—0.04
1

.8 T T T T r
0.00 0.05 0.10 0.15 0.20 0.25 0.30
€c

(Getto — Gn)/GnN

—-0.01

-0.02

.8 T T T T r
0.00 0.05 0.10 0.15 0.20 0.25 0.30
€c

(p// — _27’_\{(p/ _ a/Ze—Z(/) + Kﬁ,
a' = =2Hd +2¢'d + epe?,

N =H, (162)

with

T2 = p+pp+pas (163)
where the derivatives are now with respect to 7. We have
rescaled all the densities as p = ¢?Vp and similarly for the
scalar and dark energy parts.

2. Results

There are four main parameters: k, €, €c, and py.
Following our discussion about screening in Sec. III D and
our identification of the effective metric in Sec. IVA, we
first take x and ez to be small. Taking k = e5 = 1073 turns
out to be enough to satisfy solar system constraints. Taking
one of them to be 1 order of magnitude higher leads to a
violation of the cosmological constraints when e is large

Wegr + 1
3.0 eff
0.06
2.8
0.04
26 0.02
324 0.00
221 -0.02
~0.04
2.0
~0.06
1.8 T T : T r
0.00  0.05 0.10 015 020 025 0.30
e
Highest deviation (Hp — Hy,,)/Hgy, for z € (0.2, 2.5]
0.02
0.01
0.00
-0.01
2.0 -0.02
1.

8 ; ; ; . .
0.00  0.05 0.10 015 020 025 030
€

FIG. 2. Values of the parameters which satisfy the cosmological tests for k = 10~ and ez = 1073, Note that 602 x 602 points are
plotted. The colored regions satisfy the four constraints |[AH,/Hy| < 0.1, |[Aw| < 0.1, |AG/G| < 0.4, |AH/H|gpo < 0.03.
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3.0

2.8
2.6
24

2.2

2.0

1.8 v , , . ;
005 010 015 020 025 0.30

€c

FIG. 3. Positions of a selection of parameters in the region
of parameter space where the cosmological tests are satisfied:
Me=005p, =22, ec=0.05p, =2.5; M ec =0.15,
pr=23; Mec=0.17,py =255 M ec = 0.22,p, = 2.65.

enough. Numerically we study the cosmological evolution
for a large range of values of ¢ and p,. We always start the
cosmological evolution at z; = 3400 % z¢4.

A first picture of the deviations from ACDM can be
obtained by focusing on the cosmological tests (Newton’s
constant, the equation of state, the Hubble parameter today
and in z €[0.2,2.5] relative to that of the standard model)
we defined above and their consequences as viewed in the
€ — p plane. This is shown in Fig. 2. We show their values
only for the region in which the four of them satisfy the
observational constraints. It turns out that the constraint
from BAO is always the strongest. We illustrate the
cosmological evolution using five sets of parameters in
Figs. 4-6. Standard model quantities are computed ana-
lytically from the ACDM solutions in the matter-dominated
era with Q4 /€, 0 = 7/3.

0.001

—0.011

—0.02 1
S

—0.03 1

—0.04 1

—0.051

0 1000 2000 3000
z

We recover that the smallest deviations to ACDM are for
ec =0, pp ~7/3. We observe that deviations of H, depend
mostly on p, while deviations of G are essentially given by
€c. Additionally, we see deviations which are both positive
and negative for H, with the sign depending on the sign of
the deviation of p, compared to ~7/3. On the other hand,
there are only negative deviations of G. As we observe in
Fig. 4, ea increases, so Gy decreases.

For both Hy and wg, the deviations due to e, tend to be
compensated by deviations of p,. This can be understood
from the fact that the fields act as a fluid of equation of state
wy =1 opposite to that of the cosmological constant
wp = —1. They have opposite effects on the cosmic
acceleration.

Moving on to the dynamical curves, we see in Fig. 4 the
evolution of the fields. The axion a increases with z, which
can be expected as the source term in its Klein-Gordon
equation (126) has a factor ¢ > 0 and initially dominates.
On the other hand, ¢ slightly increases at first but
eventually decreases much more. This can be expected,
as the source term in its Klein-Gordon equation has a factor
k > 0 which initially dominates, and later the source term is
dominated by the axion term proportional to —a?. The
deviation from the constant and vanishing fields increases
with € as we can expect.

Figure 5 shows the evolution of the energy content of
the Universe in both the Einstein and baryon frames. As the
couplings « and ep are small, the difference between the
Einstein and the baryon frame quantities is negligible. In
the matter-dominated era we have a slight increase in the
field density and a corresponding decrease of the matter
density. In the very late Universe close to a vanishing
redshift, the proportion of the cosmological constant
increases, and we get the usual values 0.3 and 0.7 for
matter and A with some deviations of the order of 0.01.

As a result, we can see that, generically, the matter
contents of the Universe are modified. First of all, the axion
and dilaton energy densities evolve from being negligible

0.8

0.6

0.2

0.0

0 1000 2000 3000
z

FIG. 4. Field evolutions for k = 1073 and e; = 107 as a function of the redshift z defined in the baryon frame. The values of e and

pa for each color are given in Fig. 3.
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FIG. 5.

Evolution of energy contents of the Universe in the Einstein frame (left) and baryon frame (top three figures on the right) as a

function of the redshift of the baryon frame. The ACDM case is represented in the bottom right figure. Deviations from ACDM are
represented in the other figures for k = 1073, e = 1073, and values of €. and p, given in Fig. 3.
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FIG. 6. Evolution of the cosmological quantities Hp, G, and wg as a function of the redshift in the baryon frame for x = 10~ and
eg = 1073. We zoom in on the late evolution on the right. The values of e and p, for each color are given in Fig. 3.

initially to a long phase in the matter era where they remain
nearly constant before dropping to lower values in the last
few e-foldings of the Universe. This has important conse-
quences as the dynamics of the axio-dilaton system and, in
particular, the variation of the conformal factors By ~ imply
that the matter fractions of the Universe deviate from their
ACDM values. We also notice that the deviation can be
negative by a few percent. This is important as it will
hamper the growth of structure and entail a compensation

of the extra growth due to the attractive scalar forces by the
lower amount of matter in the Universe. This results in a
reduced growth of structure in these models.

Figure 6 shows the evolution for the cosmological
quantities of interest. In ACDM, both AH,/H, and
AG/G vanish. We observe deviations that become stronger
as the parameters move away from the light regions and
into the darker ones of Fig. 2. Both also present a maximal
negative deviation around z ~ 2. At smaller redshifts the
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FIG. 7. Deviations of the Hubble rate from ACDM for different values of k, ¢c = ¢ = 1073 and p, = 7/3, as a function of the

redshift in the baryon frame.

deviation shrinks. This can be attributed to the effect of the
cosmological constant which becomes non-negligible at
late times. In the case of the red, orange, and purple curves,
the deviation crosses 0 and becomes positive. They have in
common that their values for the cosmological constant are
stronger than the standard model value: p, = 7/3. Finally,
notice that the evolution of G shows a negative deviation
from Newton’s constant in GR. This has two origins which
can be traced to its definition (151). First of all, as the
effective Newtonian constant is normalized with the Planck
normalization for p, the fact that in Fig. 5 we find that there
is less matter in the recent Universe than in ACDM implies
that G.g/Gy should be less than unity. Another important
effect is that the conformal factors By ¢ are less than unity
too, implying a reduction of G4 compared to Gy. These
effects could have been compensated by the extra pull
arising from the scalar forces. This is not the case.

Figure 6 also shows w.y. It is defined by generali-
zing (158),

1 2q <) — Qm.
Weit (2) = 3 <# - 1)«

(164)
This can simply be seen as a rescaling of the deceleration
parameter ¢g(z). In ACDM it is easy to see that we goes
from 0 to —1 (and, equivalently, ¢ from 0.5 to —0.55).
Figure 6 shows that for parameters consistent with obser-
vations, the deviations are not drastic.

3. Cosmological constraint on k

We now concentrate on another scenario where the
coupling of the dilaton is relaxed from its solar system
bound. This is of interest if the dilaton is screened in the
solar system and partially on cosmological scales. The
largest dilaton coupling allowed by cosmological data is
smaller than the supergravity motivated value x = 1.

We fix e = 1073, and we look for the highest value of x
such that there are some values of €. and p, such that the

observables are within the observational bounds. We use a
precision of the order 1073 relative to the order of
magnitude of the parameters. We find that the maximal
order of magnitude of x is 0.1. More precisely, if we also fix
€c and try to find some valid values of p,, we find that for
€c = 01, Klim = 0110, and for €c = 0001, Kiim = 0.124.

This is illustrated in Fig. 7. Since BAO is the strongest
constraint, we look only at the deviations of the Hubble rate
in the BAO interval. We can see that for favorable values of
the other parameters (. = €5 = 107>, pp = 7/3), k is
allowed at least up to 0.12. However, for x = 0.13 the BAO
constraint is no longer satisfied. This is of course much less
than unity and signals that the dilaton must be cosmologi-
cally screened.

V. COSMOLOGICAL PERTURBATIONS

In this section, we study the growth of perturbations for
the axio-dilaton models in the matter era in the subhorizon
and quasistatic approximation [38]. We obtain the equation
governing the evolution of the density contrast 6p/p [39].

A. Cosmological perturbations

We focus on small perturbations to the background
solutions. We are interested in structure formation, and
we evaluate the time evolution of the baryon and CDM
density contrasts simultaneously [40]. We only consider the
scalar modes of the perturbation of the metric. Using
Newton’s gauge in the Einstein frame, we have

Gudx'dx’ = R*(n)(—(142®@y)dn? + (1 -2Dy)y;;dx'dx’ )

(165)
where y;; = 6;;. The cosmological perturbations are
defined by

1 -
pi =pi+dpi=pi(1+9;), ”lzfzﬁ(“r(s”ov”i) (166)
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for each field. We also perturb the fields and the axion-
matter coupling:

» =+ o, (167)
a=a+éa, (168)
A=A+5A (169)

All the symbols with a bar denote background values. The
velocity u¥ of the two fluids is given by

(170)

at linear order. The perturbed Newton’s law becomes, for
each species,

—

- o \%
0,711i + (H + 01’]){!’)01' = —— (q)N + 5){,)

-2 (171)

We recognize the scalar force in the Euler’s equation due to
the interaction with dark matter and the friction term whose
origin is the modified Hubble rate H; =H +d,y; in
conformal time and in the Einstein frame.

B. Density contrast of subhorizon modes
in the quasistatic regime

We focus on subhorizon modes such that k£ > H, and in
the quasistatic regime, 9, ~ ‘H. Using the Einstein equation

Roo — % (0,70,7 + 0,a0,a) — Mif, <T00 - % Tgm) =0,
(172)
and the curvature perturbation
O0Ryy = IHD) + ADy = ADy, (173)
which reduces to the Laplacian of Newton’s potential as

3HD) ~ H*®y < k*®)y ~ ADy, the Poisson equation
then becomes

ADy = Z—M%Rz(ﬁzﬁg +Pcde). (174)
The perturbed Klein-Gordon equation for ¢ is
K _ _
Adp = — = R*(ppdp + pcdc)- (175)
3M;,

Its structure is similar to the Poisson equation. Similarly, we
obtain, for the axion field,

e _ _
Ada = —MRz(ﬂBGB% + pcecdc)

(176)
where we have systematically used the subhorizon and
quasistatic approximations. The conservation equation for
each species implies that p; = B,p;.,ns Where the conserved
density satisfies

dp:
M + 3hipicon =0.
dTi

(177)
In the subhorizon limit, we can identify §; 2~ §;.ons- This is
also the density contrast in the baryon frame as the
contributions of both da and 6¢ to the change of frame
are negligible in the subhorizon limit. This implies that the
perturbed conservation equation becomes

8 =-V.7. (178)
N
Now we apply V to Eq. (171) and obtain

A
=] — (H+ )0, = _F((DN +8x:)- (179)

Using the Laplacians from Egs. (174)-(176), we finally
deduce the growth equation for each species in the
subhorizon limit,

3 2 4 202
5/ + (H +;?:»>6;—§93H2<1+7K : €B>53

3 24,202
_EQCH2<1 +w>5c =0

: (180)

in terms of the matter fraction €2; in the Einstein frame. We
find that the deviations from the standard model have two
origins. First, there is the friction term depending on
H; = H +};, which is specific to each species as the
two fluids couple differently to the axion. Second, there is a
modification of Newton’s constant for each species on the
two effective couplings

Gly = (1+20%)Gy (181)
such that the perturbation equations become
&) + (H+ %19
_ %QBHz(l +202)55 - %QCHZ(I +202)50 = 0.
(182)

We have defined the effective couplings
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K% + e20¢?
QP=—
1

. (183)

which parametrize the deviations from ACDM. We retrieve
that, in the absence of the ¢;’s, gravity is modified by a
factor x?/6 like in the static regime around a compact
object. In the following, we solve these equations numeri-
cally as a way of investigating the growth of structure for
the baryons and CDM.

C. Growth rate

We now focus on the growth rate for small redshifts [41]
as defined by

_dlIng;
~ dInRy

i (184)

where the redshift is deduced from the baryonic scale factor.
We represent the growth rates in Figs. 8 and 9. We choose

1.5
1.4 4
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Z;’Q “E 1.2 4
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Growth rate for a few allowed parameters and in ACDM, shown for redshifts in the baryon frame z < 3.

as initial conditions &;(zj,;) << 1 and &8}(zi;) /8 (Zini) ~ Hini-
We notice that the growth can be either enhanced or
disfavored at small redshifts depending on e, and p,. On
the other hand, the maximal deviation from ACDM is at
most five percent. We have also represented the growth
factors when « is varied and both e (- are small. Notice that
when « is varied, the growth rate at small redshift becomes
smaller and smaller. This is also the case when « is fixed and
€c 1s increased. As the effective Newton constants should
increase the growth thanks to the presence of fifth forces
between particles, we conclude that the background evolu-
tion and the effective friction have a drastic effect on the
growth of structure. This can be observed in Fig. 5 where the
matter density in the late Universe decreases compared to
ACDM as in [29] where a similar effect was obtained and
used to alleviate the og tension. It would certainly be
interesting to see if this trend is also present in the nonlinear
regime and could have some consequences for the Sg tension
where less matter clustering is observed at late times than
inferred in the ACDM scenario [42] from the Planck data

063517-20



TWO-FIELD SCREENING AND ITS COSMOLOGICAL DYNAMICS

PHYS. REV. D 108, 063517 (2023)

0.01 A

0.00

—0.01 A

—0.02

—0.03 1

(fC - fC,sm)/fC‘sm

—0.04

—0.05

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.01 A

0.00

—0.01 A

—0.02

—0.03 1

(fB - fB‘sm)/fB.,sm

—0.04

—0.05

0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 9. Growth rate at z < 3 in the baryon frame for different values of x and e = ez = 1073, p, = 7/3.

[3]. The analysis of the Sg tension in this scenario is left for
future work.

Finally, let us remark that we have not taken into account
an important effect which would result from both the
fact that the effective equation of state w.g (see Fig. 6) is
not strictly equal to zero deep into the matter era for z 2 2
and that the perturbations do not behave like in the
Einstein—de Sitter universe with f # 1 (see Fig. 8). This
would imply that the Newtonian potential @, in (174)
is not strictly constant in the matter era. This could lead
to a large integrated Sachs-Wolfe effect (ISW), which
is tightly constrained and could appear in the galaxy
counts versus the cosmic microwave background cross-
correlations [43—45]. This certainly restricts the available
parameter space and constrains the possible deviations of
the growth factor from ACDM. A detailed study of this
effect is left for future work.

VI. CONCLUSION

The axio-dilaton model has a clear origin in string theory.
We have focused on the screening mechanism introduced
in [13] for a constant coupling of the axion to matter,
and we have explicitly shown how it can only be effective
when the field values at infinity are tuned to specific values.
These values should be determined cosmologically. We
have studied the background cosmology of these models
and shown that the cosmological values do not correspond
to the tuned values generically.

In the absence of explicit screening for the axio-dilaton
system, which may require one to introduce nonlinear
couplings to matter and/or new fields [46] whose dynamics
would drive the couplings of the dilaton and the axion to
small values in the solar system and larger values cosmo-
logically, we have employed a simple alternative and
considered two scenarios. In the first one, the coupling
of the dilaton and the axion to baryons is taken to satisfy the

solar system constraints and to remain identical to these
values on large scales. Only the coupling to cold dark
matter is allowed to take much larger values. In this case,
we find that the coupling to cold dark matter must be
bounded. It turns out that the constraints from BAO at small
redshift are the tightest, and the present-day Hubble rate
does not deviate from the Planck normalized one by more
than three percent. This is not enough to account for the H,,
tension, which lies at the ten-percent level. Similarly,
the growth of structure is affected at the five-percent
level. Interestingly, in these models growth is not always
enhanced, and effectively, a decrease in the growth rate is
observed for a large part of the parameter space of the
model. This follows from the fact that the growth increase
due to the scalar forces is compensated by the decrease of
the matter density. This could have some relevance to the oy
tension. We hope to come back to this suggestion in the
near future. We also consider the case where the axion does
not couple significantly to matter and the dilaton couples
with a strength « reduced from the string theory motivated
example. We find that x cannot be allowed values of order
unity and must be bounded around 0.1. This entails that
the dilaton must not only be screened locally in the solar
system but also cosmologically.

Of course, our examples can be modified, and the
resulting physics can be very different. For instance, the
couplings to matter of both the axion and the dilaton could
become nonlinear and therefore lead to screening mecha-
nisms akin to the ones of the symmetron model, for
instance. Another possibility would be that other fields
could relax to values whereby the couplings of the dilaton
and the axion would become very small in the solar system
and small cosmologically. The construction of these models
is left for future work.

Phenomenologically, the scenarios we have introduced
fall within the category of late-time dark energy models
where the evolution of the fields at small redshift would
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modify both the background cosmology and the growth of
structure. As expected, we find that the BAO bound entails
a tight constraint on both the possible deviations of the
present Hubble rate from its Planck value and the growth
factor from its ACDM counterpart. We notice that the
allowed deviations of the growth factor could reach a few
percent and therefore may become detectable by future
large scale surveys. The detailed study of the phenomenol-
ogy of these models is left for future work.
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APPENDIX: VALIDITY OF THE FLAT
BACKGROUND APPROXIMATION

We consider that the conditions for the flat background
approximation used in Sec. IIl hold. We assume the exterior
solution of Sec. III A and find in which regime the terms
neglected by the approximation are indeed negligible. The
metric of Sec. III can be written as

ds? = —(1 +2®)de? + (1 = 2%)(dr? + r2dDQ?). (A1)

The Christoffel symbols, and the Ricci and Einstein tensors
for this metric can be found in, e.g., Ref. [47], Sec. 7.
The (7¢) and (rr) equations from Eq. (13) are

£ (A2)

2
2M2

)2 a')?
(a-a)@—w) =L

T

AD =

(A3)

where A is the Laplacian. The exterior solution gives

@)+ (@) _ PP
v

= . (A4)
Integration then gives us
GM 3 B2

The deviations from the flat metric are therefore negli-
gible for

V| < 1, O~V (A6)
This is verified in the regime
r>GM, r>|yp|. (A7)
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