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We consider the screening of the axio-dilaton fields when both the dilaton and the axion couple to matter
with Yukawa couplings. We analyze the screening of the dilaton in the vicinity of a compact object and find
that this can only take place when special boundary conditions at infinity are imposed. We study the
cosmological dynamics of the axio-dilaton system when linearly coupled to matter and find that the special
boundary conditions at infinity, which guarantee the screening of compact objects, do not generically
emerge from cosmology. We analyze the background cosmology and the cosmological perturbations at late
times in these models and show that the baryon acoustic oscillations constrain the coupling of the dilaton to
matter to be smaller than in its natural supergravity realization. Moreover, we find that the Hubble rate in
the present Universe could deviate from the normalized Planck value, although by an amount too small to
account for theH0 tension, and that the growth of the structure is generically reduced compared to ΛCDM.
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I. INTRODUCTION

General relativity (GR) effectively passes all the current
gravitational tests in the solar system [1]. Yet there is still
tension on larger scales, which may eventually necessitate
challenging Einstein’s theory of gravity. These are related
to two classes of observations. First, there are long-standing
astrophysical results that imply the existence of dark matter
[2]. Second, there is now robust evidence in favor of the
acceleration of the expansion of the Universe [3,4]. The
latter is best accounted for in GR by adding a cosmological
constant to the Lagrangian of the theory. However, under-
standing the origin of this constant energy density, e.g.,
from quantum field theoretic considerations, has proven to
be fraught with difficulties [5]. Modifying GR is not an
easy task either [6]. We know from Lovelock’s theorem [7]
and, in the effective field theory context, from Weinberg’s
theorem [8] that GR is unique in four dimensions provided
Lorentz invariance and the masslessness of the graviton
hold [9].
One way to modify GR is to add additional fields. This is

the route taken by scalar-tensor theories [10] in which one
or more additional scalar fields are added to the setting and
couple to matter. Such scalar fields appear in many

proposed dynamical models attempting to account for
the late cosmic acceleration [11]. They also find theoretical
motivation in the fact that they appear naturally in UV-
complete theories such as string theory [12,13]. In par-
ticular, the swampland conjectures favor an explanation of
the late-time acceleration of the Universe resulting from the
nontrivial dynamics of string moduli [14]. We present the
axio-dilaton, which is one such scalar-tensor theory whose
origin can be traced to a compactification of ten to four
dimensions [13].
Unfortunately, most scalar-tensor theories are typically

ruled out by solar system tests of gravity. In their most
naive form, consistency of scalar-tensor theories either
requires them to have a small coupling to matter or the
scalar must be stabilized with large masses leading to short-
ranged interactions [15].
This can be illustrated with the Brans-Dicke theory (BD)

and the action [1,16]

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
M2

p

�
R
2
−
1

2
∂
μφ∂μφ − VðφÞ

�
þ SmðgJμν;ψmÞ ð1Þ

where ψm represents the ordinary matter fields and the
Jordan frame metric is given by

gJμν ¼ A2ðφÞgμν with AðφÞ ¼ egφ ð2Þ

where g is a coupling constant. The scalar couples to matter
only via the metric gJμν . The metric gμν is the Einstein metric
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for which the Einstein equations take their usual form; i.e.,
matter “feels” the geometry of the Jordan frame.
Constraints from solar system tests like those using

measurements by the Cassini probe [17] can be understood
using the parametrized post-Newtonian (PPN) formalism.
It is enough here to define two important PPN parameters.
We introduce the gravitational mass of the source M, and
the PPN parameters γPPN, βPPN via the following para-
metrization of the Jordan metric element in isotropic
coordinates around a given compact object,

ds2J ¼ −
�
1 −

2GM
r

þ 2βPPN

�
GM
r

�
2

þO
�
1

r3

��
dt2

þ
�
1þ 2γPPN

GM
r

þO
�
1

r2

��
ðdr2 þ r2dΩ2Þ: ð3Þ

In GR γPPN ¼ βPPN ¼ 1 while for the Brans-Dicke theory
the deviation from GR is captured by γPPN, i.e., βPPN ¼ 1
and [13]

γPPN ¼ 1 − 2g2

1þ 2g2
: ð4Þ

The Cassini probe, on the other hand, gives [17]

jγPPN − 1j < 2.3 × 10−5: ð5Þ

This constrains the coupling g2 to be less than 10−5.
Larger deviations from GR can be reached in certain

regimes when the theories are subject to a screening
mechanism, i.e., a modification which allows the theory
to evade solar system tests while having an order unity
coupling to matter whose role is important on large scales.
There are now at least three types of screening mechanisms
for single field models, i.e., the chameleon, K-mouflage,
and Vainshtein mechanisms [18–20]. They all rely on
higher derivatives and/or nonlinearities of the kinetic terms
and interacting potentials of the models [15]. In [13], a new
screening mechanism was introduced, which relies on a
second field that has a nonzero but small coupling to matter.
The mechanism depends crucially on the interplay between
the scalar profiles inside and outside matter [21,22]. Here,
we consider the situations where the two fields, the dilaton
and the axion, have a linear coupling to matter, which we
denote by κ and ϵ. We focus on the small ϵ regime and vary
κ from small values up to unity, which corresponds to its
value in supergravity where the dilaton plays the role of the
volume modulus of string compactifications [23]. We find
that for κ ¼ 1, screening of the dilaton around compact
objects only takes place when the fields take particular
values at infinity. These values should emerge from the
cosmological dynamics. We then focus on the cosmology
of these values where both κ and the values of the coupling
ϵ to both baryons and cold dark matter are varied.
Generically, the field values in the present Universe do

not satisfy the screening conditions. In fact, one must resort
to yet unknown screening mechanisms for the axio-dilaton
system in order to accommodate both local solar system
tests and cosmological constraints such as the baryon
acoustic oscillations [24].
The coupling of the axion to dark matter ϵC plays a

crucial role cosmologically and can be of order unity. On
the other hand, we find that the coupling of the dilation κ
must be reduced locally to small values in order to pass
solar system tests. In this paper, we consider two likely
scenarios. The first one is that the coupling κ is determined
locally to be extremely small, of the order of 10−3, and that
most of the cosmological dynamics are due to the coupling
of the axion ϵC in a manner reminiscent of coupled
quintessence [25], although in a multifield setting here
[26]. This could be achieved if another field χ drove
the coupling κ to such values dynamically in the whole
Universe. Another possibility could be that the coupling κ
is small locally but allowed to take larger values cosmo-
logically. This could happen if the field χ only made κ small
locally. In this second scenario, we find that the baryon
acoustic oscillation (BAO) constraints on late time cosmo-
logy are so stringent that κ cannot be taken of order unity as
in the original supergravity model. In this setting, we
consider the allowed deviations of H0 from their values as
calibrated by the Planck satellite experiment and find that
only a few percent of discrepancy is allowed. This is much
less than the current H0 tension [27,28]. Finally, we notice
that the linear growth in these models is reduced compared
to the ΛCDM case, despite the existence of attractive fifth
forces due to the dilaton and the axion. This could provide a
solution to the σ8 tension [29] where the observed amount
of clustering is reduced compared to the expected one from
early times [30,31]. The precise study of this possibility is
left to future work.
The scenario that we present here enlarges the usual

single-field class of models for late time cosmology.
Such multifield generalizations could prove useful in
view of future measurements and present cosmological
tensions [32].
The paper is arranged as follows. In Sec. II, we present

the axio-dilaton model. In Sec. III, we consider the
screening of compact objects. We then discuss the cosmol-
ogy of these models in Sec. IV.

II. AXIO-DILATON THEORY

A. Lagrangian

The axio-dilaton theory contains two scalar fields, the
dilaton τ > 0 and the axion a. The dilaton τ couples to
matter only through the Jordan frame metric while a is
directly coupled to matter. The difference is made clear
below where we construct an effective metric which
mediates the coupling of both scalars to matter. The action
of the theory is
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
M2

p

�
R
2
−
3

4

�
∂
μτ∂μτ þ ∂

μa∂μa

τ2

��
þ Sm;

ð6Þ

with

Sm ¼ SmðgJμν; a;ψmÞ; gJμν ¼ AðτÞ2gμν;
AðτÞ ¼ τ−κ=2: ð7Þ

Here, κ is a coupling constant. The theory studied in [13]
corresponds to κ ¼ 1 and is associated to a supergravity
model of string theory origin with a Kähler potential K ¼
−3 lnðT þ T̄ Þ and a coupling to matter determined by
A ¼ eK=6. In this setting, the dilaton can be seen as the
volume modulus of a 6D compatification of string theory
from 10D to 4D. Introducing κ enables one to tune the
matter-dilaton coupling and make the solar system tests of
gravity easier to satisfy. We see that screening is compul-
sory for the model to pass the solar system tests of
gravitation.
The two fields can be viewed as the real and imaginary

parts of a complex field T ¼ 1
2
ðτ þ iaÞwhose Lagrangian is

L ¼ ffiffiffiffiffiffi
−g

p
M2

p

�
R
2
−
3∂μT ∂μT̄

ðT þ T̄ Þ2
�
þ Lm: ð8Þ

In this model, we define the usual stress-energy tensor and
the coupling of a to matter,

Tμν ≡ −
2ffiffiffiffiffiffi−gp δSm

δgμν
; A≡ −

2ffiffiffiffiffiffi−gp δSm
δa

: ð9Þ

For the trace, we use the notationT ≡ gμνTμν. Notice that the
matter action depends on the axion field in a nontrivial
manner and not via the Jordan metric. This has drastic
consequences, which we unravel below.
There are two Klein-Gordon equations for the two scalar

fields, i.e.,

□τ −
1

τ
ð∂μτ∂μτ − ∂μa∂μaÞ − κ

τ

3M2
p
T ¼ 0 ð10Þ

and

□a −
2

τ
∂μτ∂

μaþ τ2

3M2
p
A ¼ 0: ð11Þ

It is convenient to introduce the dilaton field φ such that
τ ¼ eφ, leading to

□φþ ð∂μa∂μaÞe−2φ −
κ

3M2
p
T ¼ 0: ð12Þ

The Einstein equation is simply

Rμν −
3

2τ2
ð∂μτ∂ντ þ ∂μa∂νaÞ −

1

M2
p

�
Tμν −

1

2
Tgμν

�
¼ 0:

ð13Þ

where we have separated the matter energy-momentum
tensor from the scalar one.

B. Symmetries

In the absence of matter, the theory is invariant under a
SLð2;RÞ group whose origin can be traced back to
supergravity. Indeed, the kinetic term of the fields is
invariant under

T →
aT − ib
icT þ d

provided ad − bd ¼ 1 ð14Þ

corresponding to a Kähler transformation of the theory.
There are thus three conserved currents, corresponding to
the dimension of the symmetry group in the absence of
matter. As a basis for these currents, we can choose the
following:

(i) The axion shift symmetry T → T − ib (a ¼ c ¼ 0,
d ¼ 1):

JμA ¼ ∂
μa
τ2

: ð15Þ

(ii) The rescaling symmetry T → aT (b ¼ c ¼ 0,
d ¼ 1):

JμS ¼
∂
μτ

τ
þ a∂μa

τ2
: ð16Þ

(iii) The nonlinear symmetry T → T − icT 2 (a ¼ d ¼ 1,
b ¼ 0, c ≪ 1):

JμN ¼ τ2 − a2

τ2
∂
μa − 2a

∂
μτ

τ
: ð17Þ

From the Klein-Gordon equations we can directly obtain
the (non)conservation laws

∇μJ
μ
A ¼ −

A
3M2

p
; ∇μJ

μ
S ¼

κT − aA
3M2

p
;

∇μJ
μ
N ¼ ða2 − τ2ÞA − 2aκT

3M2
p

: ð18Þ

As can be seen, matter breaks the whole symmetry group as
none of the three currents is conserved anymore.
When Sm does not depend on a, i.e., A ¼ 0, the axio-

dilation theory is equivalent to a Brans-Dicke theory. Indeed,
whenA ¼ 0wehave the axion solutiona ¼ cste, soEq. (12)
becomes
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□φ −
κ

3M2
p
T ¼ 0: ð19Þ

Similarly, the BD Lagrangian (50) gives the Klein-Gordon
equation

□φBD þ g
M2

p
T ¼ 0: ð20Þ

Matching the two Weyl factors e−κφ=2 ¼ egφBD, we get
φBD ¼ ð−κ=2gÞφ. Combining the two Klein-Gordon equa-
tions �

−κ
2g

þ 3g
κ

�
□φ ¼ 0 ⇒ g2 ¼ κ2=6: ð21Þ

When κ ¼ 1, we find that the coupling reduces to 1=
ffiffiffi
6

p
, i.e.,

the same as for fðRÞ and massive gravity.

III. NONRELATIVISTIC SOURCE
AND SCREENING

Screening requires one to study the gravitational physics
around objects like the Sun. We model the Sun and other
compact objects such as the Earth or the Moon as non-
relativistic sources; i.e., the only nonzero component of
their stress-energy tensor is T00 ≡ ρ. We also assume that
they are static and spherically symmetric. We look for
space-time solutions with the same symmetries, which we
chart with isotropic coordinates,

gμνdxμdxν ¼ −e2uðrÞdt2 þ e2wðrÞðdr2 þ r2dΩ2Þ: ð22Þ

The Jordan metric is obtained by multiplying this line
element by the coupling function A2.

A. Exterior solution

We simplify the setting by considering nonrelativistic
objects with a small Newtonian potential. As a result, we
approximate the Klein-Gordon equations using a flat
background g ¼ η, where ημν is the Minkowski metric
tensor. The validity of the approximation is evaluated
a posteriori.
In the following, primes refer to derivatives with respect

to r. We assume spherical symmetry. The resulting Klein-
Gordon equations are

τ00 þ 2τ0

r
−
τ02 − a02

τ
þ κ

τρ

3M2
p
¼ 0 ð23Þ

and

a00 þ 2a0

r
−
2τ0a0

τ
þ τ2A
3M2

p
¼ 0: ð24Þ

Here ρ is the matter density inside or outside the object.
Instead of using these equations directly, we can use the
equations for the currents (18). In the absence of matter,
i.e., outside the objects, the currents are conserved:

r2
a0

τ2
¼ CA; ð25Þ

r2
�
τ0

τ
þ aa0

τ2

�
¼ CS; ð26Þ

r2
�ðτ2 − a2Þa0

τ2
−
2aτ0

τ

�
¼ CN: ð27Þ

These constants are fixed by the conditions inside the
source.
We are interested in the case where a ≠ cste. Thus,

CA ≠ 0. Defining γ ≡ CA, α≡ CS=CA, β≡ ðCS=CAÞ2þ
CN=CA, we obtain

τ2 þ ða − αÞ2 ¼ β2; ð28Þ

where τ and a thus evolve on a circle in the τ − a plane.
Therefore, we can eliminate τ in Eq. (25) and obtain

a0 ¼ γ

r2
ðβ2 − ða − αÞ2Þ: ð29Þ

We integrate this to obtain the axion profile

a ¼ α − β tanhXðrÞ with XðrÞ ¼ γβ

r
þ δ; ð30Þ

where δ is a new integration constant. Using Eq. (25) again,
we finally obtain

τ ¼ β

coshXðrÞ : ð31Þ

Some of the integration constants are fixed by the boundary
conditions inside the source. Indeed, from the currents (18),
we see that

γ ¼ CA ¼ −
1

3M2
p

Z
R

0

drr2AðrÞ; ð32Þ

γα ¼ CS ¼ −
1

3M2
p

Z
R

0

drr2ðκρðrÞ þ aðrÞAðrÞÞ: ð33Þ

On the other hand, β and δ can only be fixed by the values
of the fields at infinity,

a∞ ¼ α− β tanhδ; β ¼ τ∞ coshδ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2∞ þ ðα− a∞Þ2

q
:

ð34Þ
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As shown in the Appendix, these solutions in the flat
background approximation are valid as long as

r ≫ GM and r ≫ jγβj: ð35Þ

The first condition corresponds to being far from the
Schwarzschild radius.

B. Screening

We first investigate screening in the Jordan frame where
we extract the PPN parameters from the Jordan metric,

gJμνdxμdxν¼A2gμνdxμdxν

¼−
�
1−

2GMg

r
þ2βPPN

�
GMg

r

�
2

þO
�
1

r3

��
dt2

þ
�
1þ2γPPN

GMg

r
þO

�
1

r2

��
ðdr2þr2dΩ2Þ;

ð36Þ

where A2 ¼ 1=τκ and gμν is given by (22). Here, Mg is the
gravitational mass as defined in the PPN formalism. We
have thatMg ≠ M ¼ R

source ρ; i.e., the mass of the object in
the Jordan frame is renormalized by the presence of the
scalar fields.
In the absence of fields, the Einstein frame metric gμν is

the Schwarzschild metric. In the presence of the fields, the
Einstein equations are modified, and we expand as

e2u ¼ 1 −
2l
r
þ 2l2

r2
þO

�
1

r3

�
; ð37Þ

e2w ¼ 1þ 2l
r
þO

�
1

r3

�
; ð38Þ

where l ¼ GM. Expanding the conformal factor A2 in
inverse powers of the distance, we have

A2 ¼ A2
∞

�
1 − α1=rþ α2=r2 þO

�
1

r3

��
; ð39Þ

from which we deduce that

γPPN ¼ 1 − α1
2l

1þ α1
2l

; ð40Þ

βPPN ¼ l2 þ lα1 þ 1
2
α2

ðlþ 1
2
α1Þ2

: ð41Þ

For the axio-dilaton theory the conformal factor is given by

A2 ¼ τ−κ ¼
�
coshðβγr þ δÞ

β

�κ

ð42Þ

where we have used the explicit solution for τðrÞ.
Expanding in 1=r we find the coefficients

α1 ¼ −κβγ tanh δ;

α2 ¼
κβ2γ2

2
ððκ − 1Þ tanh2 δþ 1Þ: ð43Þ

In the following, we always choose the ansatz [13]

A ¼ −ϵT; ð44Þ

where ϵ is a small constant and T the trace of the energy-
momentum tensor. In the case of static sources this reduces
to A ¼ ϵρ. As we see, this choice is not innocent as it
brings back the two-field model within the realm of the
scalar-tensor theories with an effective coupling to both
the dilaton and the axion. We make this explicit in the
following. From Eq. (32) we obtain

γ ¼ −
2ϵGM

3
¼ −

2ϵl
3

; ð45Þ

and in the Jordan frame the PPN parameters become

γPPN ¼ 3 − ϵκβ tanh δ
3þ ϵκβ tanh δ

ð46Þ

and

βPPN ¼ 1þ κϵ2β2ð1 − tanh2 δÞ
ð3þ κϵβ tanh δÞ2 :

Hence, by taking ϵ small, GR is recovered as long as β does
not increase accordingly. This is the essence of this new type
of screening,which corresponds to a nonuniform limit ϵ → 0.
Indeed, when ϵ ¼ 0 the model is equivalent to a Brans-Dicke
model with a coupling κ=

ffiffiffi
6

p
which needs to be small enough

to satisfy the solar system tests of gravity. However, it turns
out that the nonuniform limit ϵ → 0 requires particular
boundary conditions at infinity which are not generic. We
come back to this point in the next section.

C. Interior solution

We now solve Eqs. (23) and (24) inside the source of
radius R, with the boundary conditions τ0ð0Þ ¼ a0ð0Þ ¼ 0
at the origin. We assume a uniform density inside the body
as a simplifying assumption and a coupling A with the
same profile as ρ,

� ρ≡ ρ0 ¼ M
4
3
πR3

A ¼ ϵρ0:
ð47Þ

The dynamical equations cannot be solved exactly. We
obtain perturbative solutions in ϵ as we have seen that a
small coupling ϵ is required to screen in the Jordan frame.
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1. Dilaton dynamics

The equation for the current JμA from Eq. (18) gives

�
r2

a0

τ2

�0
¼ −

r2A
3M2

p
: ð48Þ

Assuming regularity for the fields at the origin, we obtain

a0ðrÞ
τ2ðrÞ ¼ −

ϵρ0
3M2

pr2
r3

3
: ð49Þ

We define m2 ¼ ρ0=3M2
p, leading to

a0 ¼ −
ϵm2

3
rτ2: ð50Þ

We can substitute this expression in Eq. (23) to get

τ00 þ 2τ0

r
−
ðτ0Þ2
τ

þ ϵ2m4

9
r2τ3 þ κm2τ ¼ 0: ð51Þ

In terms of the dilaton φ ¼ ln τ, the Klein-Gordon equa-
tion (12) then becomes

φ00 þ 2

r
φ0 þ ϵ2m4

9
r2e2φ þ κm2 ¼ 0 ð52Þ

where we impose the boundary equation φ0ð0Þ ¼ 0.

2. Perturbative expansion in ϵ

Up to now, everything is exact. We now expand in
powers of ϵ:

φ ¼ φð0Þ þ ϵφð1Þ þ…; ð53Þ

a ¼ að0Þ þ ϵað1Þ þ…; ð54Þ

and impose the boundary conditions at each order.
The advantage of this perturbative method is that the

problematic term e2φ in Eq. (52) appears only at second
order in ϵ. Indeed, at orders 0 and 1, we obtain

φð0Þ00 þ 2

r
φð0Þ0 þ κm2 ¼ 0; ð55Þ

φð1Þ00 þ 2

r
φð1Þ0 ¼ 0: ð56Þ

The solution for φð1Þ is then

φð1Þ ¼ c0 þ
c1
r
: ð57Þ

For φð0Þ we have

φð0Þ ¼ d0 þ
d1
r
−
κm2

6
r2: ð58Þ

The boundary conditions φðnÞ0ð0Þ ¼ 0 impose that the
fields are regular at 0, so we have no 1=r term, i.e.,
c1 ¼ d1 ¼ 0, and finally

τ ¼ ðτ0 þ ϵτ1Þe−κm2

6
r2 þ… ð59Þ

where we have redefined the constants of integration. Inside
the source and for small ϵ, τ decreases exponentially fast.
We can now obtain a. Using Eq. (50) we have

að0Þ0 þ ϵað1Þ0 ¼ ϵ
τ20
2
ðe−κm2

3
r2Þ0; ð60Þ

and therefore

að0Þ ¼ cste; ð61Þ

að1Þ ¼ τ20
2
e−

κm2

3
r2 þ cste: ð62Þ

The axion field is then given by

a ¼ a0 þ ϵ

�
a1 þ

τ20
2
e−

κm2

3
r2
�
þ…: ð63Þ

We see that the axion and dilaton fields only evolve
when ϵ ≠ 0.

3. Matching to the exterior solution

The continuity of τ and a at r ¼ R reads

ðτ0 þ ϵτ1Þe−κm2

6
R2 ¼ β

coshðβγR þ δÞ ; ð64Þ

a0 þ ϵ

�
a1 þ

τ20
2
e−

κm2

3
R2

�
¼ α − β tanh

�
βγ

R
þ δ

�
: ð65Þ

We use the continuity equations for φ0 ¼ τ0=τ and a0=τ2,

−
κm2

3
R ¼ tanh

�
βγ

R
þ δ

�
βγ

R2
; ð66Þ

−
ϵκτ20m

2

3ðτ0 þ ϵτ1Þ2
R ¼ γ

R2
: ð67Þ

Thus, we have eight integration constants, i.e., α, β, γ, δ for
the exterior solution and τ0, τ1, a0, a1 for the interior
solution. Recall that

γ ¼ −
ϵm2

3
R3; ð68Þ
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γα ¼ −m2

Z
R

0

drr2ðκ þ ϵaðrÞÞ: ð69Þ

Thus, γ is fixed independently of the others, and α depends
on a0 and a1. We are left with six parameters. With a
system of four continuity constraints as given above, we
end up with 2 degrees of freedom. These can be para-
metrized by the values of the fields at infinity τ∞ and a∞
which determine the full solution.

D. Screening revisited

We can now revisit the conditions under which the
gravitational deviation from GR in the Jordan frame is
small. Using

γα ¼ −
1

3M2
p

Z
R

0

drr2ðκρðrÞ þ aðrÞAðrÞÞ ð70Þ

and γ ¼ −ϵm2R3=3, we obtain the identity

−ϵm2R3

3
α ¼ −m2

�
κ
R3

3
þ ϵ

Z
R

0

drr2að0ÞðrÞ

þ ϵ2
Z

R

0

drr2að1ÞðrÞ
�
: ð71Þ

As a result, the expansion of α is singular in the limit ϵ ≪ 1
and becomes

α ¼ κ

ϵ
þ a0 þ ϵa1 þ…; ð72Þ

implying that the outside solution is very sensitive to small
values of ϵ. In particular, we see that the limit of small
ϵ ≪ 1 leads to a large value for the exterior axion field.
Using Eq. (34) we obtain

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2∞ þ

�
κ

ϵ
þ a0 − að0Þ∞

�
2

s
ð73Þ

where we have neglected the terms of order ϵ. Now, unless
a∞ turns out to be of order 1=ϵ and cancels exactly the term
in κ=ϵ, we find that for generic boundary values at infinity

β ¼ κ

ϵ
þ a0 − að0Þ∞ þ… ð74Þ

when κ ¼ Oð1Þ and ϵ ≪ 1. The matching conditions at
r ¼ R simplify as we notice that m2R2=2 ¼ GNM=R,
where M is the mass of the object. This is nothing but
the Newtonian potential of the compact object at its surface
which is always small in our Newtonian approximation, its
value being close to 10−6 for the Sun. We then deduce,

using (65), that a0 ¼ að0Þ∞ to leading order, and similarly

tanh δ ¼ 1 −
ϵ2

κ

τ20
2
þ…; ð75Þ

implying that δ is always large. As a result we have
ϵβ tanh δ ¼ κ þ � � �, and the PPN parameters are simply the
ones of a scalar tensor theory with a coupling κ=

ffiffiffi
6

p
,

γPPN ¼ 3 − κ2

3þ κ2
þOðϵÞ ð76Þ

and

βPPN ¼ 1þOðϵ2Þ: ð77Þ

In this limit βPPN can be arbitrarily close to 1 for small ϵ, but
not γPPN. Small deviations of γPPN from unity are only
achieved for very small κ, a result which does not differ
from Brans-Dicke’s, signaling that screening does not take
place. Screening can only take place when

að0Þ∞ − a0 ¼
κ

ϵ
; ð78Þ

which corresponds to a specific choice for the axion field at
infinity. As the theory has no scalar potential, the value of
the axion field at infinity is not obtained by minimizing an
effective potential like in the chameleon mechanism.
Hence, the boundary value of the axion field must emerge
from the cosmological dynamics. We study this below.
Our analysis has assumed that A ¼ ϵρ. As soon as the

dependence of the matter action on the axion is weak, i.e.,
A=ρ ∼ ϵ ≪ 1, the same qualitative results follow as γ will
be of order ϵ and γα of order κ. This reasoning is
independent of the details of the model inside the source.

E. Effective metric

As we have seen, the generic absence of screening leads
to the coupling of a compact object to be equivalent to the
one of a point particle with coupling κ=

ffiffiffi
6

p
. This is the

coupling of matter to the dilaton. The fact that the axion
couples to the matter action, too, implies that compact
objects do not follow the geodesics of the Jordan metric but
the ones of an effective metric whose presence can be
inferred from the small field expansion

δSm ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
∂ lnA
∂φ

δφ −
ϵ

2
δa

�
T ð79Þ

where the variation of the fields is taken around the
background values for the dilaton and the axion. Notice
that the axion and the dilaton fields both couple to the trace
of the energy-momentum tensor. Let us define

Bðφ; aÞ ¼ AðφÞe−ϵa=2: ð80Þ

Then the coupling to matter can be written as
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δSm ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
∂ lnB
∂φ

δφþ ∂ lnB
∂a

δa

�
T ð81Þ

corresponding to the coupling of a two-field scalar-tensor
theory where the effective metric is

geffμν ¼ B2ðφ; aÞgμν: ð82Þ

As a result, compact objects evolve along the geodesics of
the effective metric and not the Jordan metric.
This can be confirmed by analyzing the geodesic

equations for pressureless matter for the axio-dilaton
theories. Indeed, the Klein-Gordon equations and the
Bianchi identity ∇μðRμν − R

2
gμνÞ ¼ 0 imply the noncon-

servation equation

∇μTμν ¼ 1

2
ðκT∂νφ −A∂

νaÞ: ð83Þ

For nonrelativistic matter, the energy-momentum tensor is
simply

Tμν ¼ ρuμuν with uμuμ ¼ −1: ð84Þ

In this section, dots denote the time derivative along the
particle lines defined by uμ, i.e., Ẋ ≡∇uX ¼ uμ∇μX. For
scalar quantities X, this also corresponds to the derivative
with respect to the proper time of a particle moving with
velocity uμ. We define the local Hubble rate as 3h≡∇μuμ.
The nonconservation equation then becomes

ρ̇uμ þ 3hρuμ ¼ 1

2
ðκρ∂μφþA∂

μaÞ: ð85Þ

Contracting with uμ and using uμuμ ¼ −1 we get the
generalized continuity equation

ρ̇þ 3hρ ¼ −
1

2
ðκρφ̇þAȧÞ: ð86Þ

We recognize the coupling function B,

B≡ e−
1
2
ðκφþϵaÞ; ð87Þ

when ϵ ¼ cste. We can define a conserved density ρcon in
the Einstein frame such that

ρ ¼ Bρcon ð88Þ

as

ρ̇con þ 3hρcon ¼ 0: ð89Þ

This is the conserved matter density in the axio-dilaton
setting. Combining Eqs. (85) and (86), we obtain the
modified Newton law

u̇μ −
1

2
ðκφ̇þ ϵȧÞuμ ¼ 1

2
ðκ∂μφþ ϵ∂μaÞ: ð90Þ

This reads

u̇μ þ d lnB
dη

uμ ¼ −∂μ lnB; ð91Þ

where η is the proper time. Withm0 defining the mass of the
particles, we find that the effective mass of these particles
in the Einstein frame is dressed by the scalar field and
becomes

m ¼ Bðφ; aÞm0: ð92Þ

This follows from the identification ρ ¼ mδð4Þðxμ − xμðτÞÞ
along the particle’s trajectory and ρcon ¼m0δ

ð4Þðxμ− xμðτÞÞ.
The momentum of each particle becomes

pμ ¼ muμ: ð93Þ

Newton’s law then becomes

ṗμ ¼ −m∂
μ lnB: ð94Þ

As a result, a force deriving from the potential lnB is exerted
on each particle whose mass is also field dependent. For
instance, in the nonrelativistic limit and in the presence of
gravity, Newton’s law becomes

dpi

dt
¼ −m∂

iΦ ð95Þ

where ΦN is Newton’s potential and

Φ ¼ ΦN þ lnB ð96Þ

combines the effects of gravity and the scalar field. This
modification of Newton’s law is nothing but the one which
can be derived from the coupling of matter to the effective
metric geffμν . As a result, we have confirmed that compact
objects do not follow the geodesics of the Jordan metric but
rather the one of the effective metric. We analyze the
cosmological consequences of this result below.

F. Effective charge

Let us come back to the effective scalar charge carried by
a compact object. We have seen that in the ϵ ≪ 1 limit and
unless the fields at infinity take special values, which
should be adjusted cosmologically, the objects are not
screened. Far away from a given object we expect the
acceleration of another object due to the scalar field to fall
off as
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ai ≃ −
2Q2GNM

r3
ri ð97Þ

where Q is the scalar charge of both objects. Here M is the
mass of the object responsible for the acceleration of the
second body. The charges of both objects are equal as no
screening takes place. Using

lnB ¼ −
1

2
ðκφþ ϵaÞ ⊃ 1

2
ðκ ln coshXðrÞ þ ϵβ tanhXðrÞÞ

ð98Þ

and identifying this as −2Q2GNM=r at large distances, we
find that far away from the object

2Q2GNM ¼ −
γβ

2
ðκ tanh δþ ϵβð1 − tanh2 δÞÞ ð99Þ

and for ϵ ≪ 1 we retrieve

Q ¼ κffiffiffi
6

p ð100Þ

up to corrections of order ϵ2. The resulting interaction
including gravity is equivalent to rescaling Newton’s
constant as

Geff ¼ ð1þ 2Q2ÞGN ð101Þ

with Φ ¼ −GeffM=r. As expected in this limit correspond-
ing to ϵ ≪ κ, the coupling of the axion field to matter
becomes negligible for far-away objects, and the coupling
is the same as in the Jordan frame.
In conclusion, we find that κ ≲ 10−3 for the Cassini test

to be evaded. This is a very small value which could only be
avoided if the cosmological values of the axion and dilaton
fields were tuned cosmologically.

G. Numerical integration

In this section, we find numerical solutions of the
equations around a massive sphere.

1. Setting the numerical problem

The Klein-Gordon equations with the constant source
inside a ball of radius R have the form

τ00 þ 2τ0

r
−
ðτ0Þ2
τ

þ ða0Þ2
τ

þ κρ0τ

3M2
p
θðrÞ ¼ 0; ð102Þ

a00 þ 2a0

r
−
2a0τ0

τ
þ ϵρ0τ

2

3M2
p
θðrÞ ¼ 0; ð103Þ

where θðrÞ is the step function that goes from 1 to 0 at the
radius of the source R. We introduce the characteristic

length L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M2

p=ρ0
q

¼ m−1 and write r ¼ r̂L. We obtain

the dimensionless equations

τ00 þ 2τ0

r̂
−
ðτ0Þ2
τ

þ ða0Þ2
τ

þ κθðr̂Þτ ¼ 0; ð104Þ

a00 þ 2a0

r̂
−
2a0τ0

τ
þ ϵθðr̂Þτ2 ¼ 0; ð105Þ

which we solve with the initial conditions τ0ð0Þ ¼
a0ð0Þ ¼ 0. We also regularize the step function, e.g.,
θ̂ðr̂Þ ¼ 1

2
ðtanhðN R̂−r̂

R̂
Þ þ 1Þ, to have a transition of width

∼R̂=N. Notice that R̂ ¼ R=L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM=R

p
, i.e., the square

root of the ratio of the Schwarzschild radius to the radius of
the source. For the Sun, R̂⊙ ¼ 2.05 × 10−3.

2. Results

We see in the example in Fig. 1 that we obtain a perfect
match with the exterior solution but also with the first order
interior solution. The variations of the fields are relatively
small, i.e., of order 10−6 relative to the value at the center.
For other sets of parameters the variation increases with the
initial value at the center and of course the values of κ and ϵ.
The equations that we have used in the flat metric

approximation are valid only for

r ≫ GM; r ≫ jγβj: ð106Þ

With R ¼ R̂L, we have

r ≫ GM ⇔ r̂ ≫
R̂3

2
: ð107Þ

For the Sun, R̂3
⊙ ∼ 10−8. One can trust our description of

the static solution apart from a small region around the
origin. Similarly, we have γ ¼ −ϵR̂3L=3, so we obtain

FIG. 1. Field profiles for R̂ ¼ R̂⊙, κ ¼ 1, and ϵ ¼ 0.5. The
initial values are taken such that τ0 ¼ a0 ¼ 1, τ0ð0Þ ¼ a0ð0Þ ¼ 0.
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r ≫ jγβj ⇔ r̂ ≫ R̂3 ϵβ

3
; ð108Þ

which excludes a very small region around the origin.

IV. AXIO-DILATON COSMOLOGY

A. Two-fluid model

In the following, we concentrate on models where two
fluids are present, i.e., the baryons and cold dark matter
(CDM) with couplings determined by κ to the dilaton and
ϵB;C to the axion. We have seen that κ and ϵB, i.e., the
coupling of the baryons to the axion, must be small to
comply with the solar system tests unless the fields take
special values at infinity. This translates into a choice of
boundary conditions for the fields on cosmological scales.
We see that this situation is not generic and that, starting
from initial conditions in the radiation era which do not
perturb the background cosmology, the cosmological
dynamics do not drive the fields to special values now.
The energy-momentum tensor of matter is taken to be

TB;C
μν ¼ ρB;Cu

B;C
μ uB;Cν ð109Þ

corresponding to the baryons B and CDM C. We also
assume here, for definiteness,

A ¼ −ϵCTC − ϵBTB ð110Þ

where TB;C ¼ −ρB;C are the baryonic and CDM densities,
respectively. The matter energy-momentum tensors are not
conserved but satisfy the nonconservation equations

∇μT
μν
i ¼ 1

2
ðκTi∂

νφþ ϵiTi∂
νaÞ ð111Þ

where i ¼ B, C. This implies that the total energy-
momentum tensor

Tμν ¼ Tμν
B þ Tμν

C ð112Þ

satisfies the nonconservation equation

∇μTμν ¼ 1

2
ðκT∂νφ −A∂

νaÞ ð113Þ

which is a consequence of the Bianchi identity.
In this section, we denote the time derivative along the

particle lines, defined by uμi , by d=dτi ¼ uμi∇μ We define
the local Hubble rate as 3hi ≡∇μu

μ
i . Notice that the

covariant derivatives are calculated in the Einstein frame;
hence, this is the local Hubble rate along the particle lines
as measured using the geometry of the Einstein frame. The
nonconservation equations for each species then become

dρi
dτi

þ 3hiρi ¼ −
1

2
ðκφ̇þ ϵiȧÞρi: ð114Þ

We define the coupling function Bi as

Bi ≡ e−
1
2
ðκφþϵiaÞ ð115Þ

when ϵi ¼ cste. We can now introduce a conserved density
ρcon;i in the Einstein frame such that

ρi ¼ Biρcon;i ð116Þ

and

dρcon;i
dτi

þ 3hiρcon;i ¼ 0: ð117Þ

This is the conserved matter density in the axio-dilaton
setting. Similarly, we obtain the modified Newton law

duμi
dτi

þ dχi
dτi

uμi ¼ −∂μχi ð118Þ

where

χi ≡ lnBi: ð119Þ

For each species, we can define an effective metric

giμν ¼ B2
i gμν ð120Þ

which corresponds to the Jordan frame for the given
species. As BB ≠ BC, we see that the Jordan frames for
CDM and the baryons do not coincide.
We apply this formalism first to the background cos-

mological case and then to the cosmological perturbations.

B. Spatially flat cosmology

We are interested in the cosmology of a homogeneous
and isotropic universe in the presence of the axio-dilaton
fields. The FLRW (Friedmann-Lemaître-Robertson-Walker)
metric reads

gμνdxμdxν ¼ −dt2 þ R2ðtÞγijdxidxj

¼ −dt2 þ R2ðtÞ
�

dr2

1 − kr2
þ r2dΩ2

�
ð121Þ

where R is the scale factor. We define, as usual, the Hubble
rate as H ¼ Ṙ=R. In the following we focus on the spatially
flat case k ¼ 0.
We assume that the fields are irrelevant in the early

Universe up until some redshift zi which will typically be
the matter-radiation equality. Indeed, in the radiation era the
matter density is negligible, and therefore the fields are
hardly influenced by their matter couplings. As a result they

PHILIPPE BRAX and AYOUB OUAZZANI PHYS. REV. D 108, 063517 (2023)

063517-10



remain constant if their initial velocities vanish. This also
guarantees that the influence of the axio-dilaton system on
big bang nucleosynthesis (BBN) is minimal. We choose the
initial conditions for the fields φ, a, and their derivatives
such that they vanish at zi. This does not correspond to the
values of the fields for which screening takes place. On
the other hand, this entails a vanishing energy density for
the axion and dilatons initially.
Each species has its own Jordan frame with the back-

ground metric

giμνdxμdxν ¼ −dt2i þ R2
i dx

idxi ð122Þ

where the cosmic time and the scale factor are defined by

dti ¼ Bidt; Ri ¼ BiR: ð123Þ

As CDM is not subject to the precision tests in the solar
system, we allow for large values of ϵC. Moreover, we
consider the effects on the scale factor in the Jordan frame
of the baryons RB ¼ BBR corresponding to the conserva-
tion of baryonic matter. We use the convention that RB ¼ 1
today and identify the redshift as detected from transition
lines of atoms by

1þ z ¼ R−1
B : ð124Þ

Although we focus on the dynamics in the baryon frame,
we first study the equations of motion in the Einstein frame.

C. Klein-Gordon equations

We look for time-dependent solutions for the scalar
fields τðtÞ and aðtÞ of the Klein-Gordon equations

̈τ þ 3Hτ̇ −
τ̇2 − ȧ2

τ
−

κτρ

3M2
p
¼ 0 ð125Þ

and

äþ 3Hȧ −
2τ̇ ȧ
τ

−
τ2A
3M2

p
¼ 0: ð126Þ

Here the total matter density is ρ ¼ ρB þ ρC and
A ¼ ϵBρB þ ϵCρC. Notice that these equations are valid
both in the radiation and matter eras. In the radiation era,
the source terms depend on the matter density only as the
trace of the radiation energy-momentum tensor vanishes.
As a first approximation, we neglect the source terms in the
radiation era. This implies that ȧ ≈ 0 and ϕ̇ ≈ 0, and the
field hardly moves during the radiation era. In our numeri-
cal analysis, we are interested in the physics in the matter
era, and we fix the initial conditions at matter-radiation
equality. A detailed analysis of the model from the end of
inflation through radiation to the matter era is left for future

work. We consider that the fields start evolving signifi-
cantly when the matter era begins.

D. Continuity equations

The energy density and pressure carried by the two scalar
fields are given by

ρf ¼
3M2

p

4

�
τ̇2 þ ȧ2

τ2

�
ð127Þ

and

pf ¼ 3M2
p

4

�
τ̇2 þ ȧ2

τ2

�
; ð128Þ

corresponding to a perfect fluid with equation of state
ωf ¼ 1. Using the Bianchi identity and the Einstein
equation in the Einstein frame, we obtain that the total
energy is conserved, i.e.,

ρ̇þ ρ̇f þ 3Hðρþ ρf þ Pþ PfÞ ¼ 0; ð129Þ

where the pressure terms have been included. This leads to

ρ̇þ ρ̇f þ 3Hðρþ 2ρfÞ ¼ 0: ð130Þ

Using the identity

ρ̇f ¼ 3M2
p

4

2

τ3
ðττ̇ ̈τþτȧ ä−τ̇3 − τ̇ȧ2Þ ð131Þ

and the expression of ̈τ and ä in the Klein-Gordon
equations, Eqs. (125) and (126), we obtain

ρ̇f þ 6Hρf ¼
1

2

�
κρ

τ̇

τ
þAȧ

�
: ð132Þ

Finally, using the continuity equation we obtain

ρ̇þ 3Hρþ 1

2
ðκρφ̇þAȧÞ ¼ 0 ð133Þ

as we have argued previously. This is associated with the
nonconservation equations per species,

ρ̇i þ 3Hρi þ
1

2
ρiðκφ̇þ ϵiȧÞ ¼ 0: ð134Þ

This can be integrated exactly and leads to

ρ ¼ ρB þ ρC ¼ BB
ρ0B
R3

þ BC
ρ0C
R3

: ð135Þ

Notice that if we define
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ρ ¼ B
ρ0
R3

ð136Þ

then B ¼ λBBB þ λCBC where the fraction of baryons and
CDM is λi ¼ ρ0i

ρ0
where ρ0 ¼ ρ0B þ ρ0C. In practice, we

have λB ¼ Ω0B
Ω0BþΩ0C

where Ω0B ≃ 0.022 and Ω0C ≃ 0.12
from the Planck experiment [3]. Here and in the following,
we normalize the density ρ0 to the Planck value as deduced
from early-time physics compared to the late-time effects
on the matter density that we study below.

E. Friedmann equations

The Friedmann equation is obtained from the (00)
component of the Einstein equation and becomes

H2 ¼ ρ

3M2
p
þ ρf
3M2

p
þ ρΛ
3M2

p
; ð137Þ

where we have introduced a cosmological constant asso-
ciated with the energy density ρΛ. The Raychaudhuri
equation from the (ii) Einstein equation reads

R̈
R
¼ −

1

6M2
p
ðρþ ρf þ ρΛ þ 3ðPþ Pf þ PΛÞÞ; ð138Þ

leading to

R̈
R
¼ −

1

6M2
p
ðρþ 4ρf − 2ρΛÞ: ð139Þ

These equations are defined in the Einstein frame and will
be transformed into the effective frame for baryons below.
We thus have the following system of differential

equations for R, τ, and a only:

̈τ þ 3Hτ̇ −
τ̇2 − ȧ2

τ
− κ

ρðτ; aÞ
3M2

p
τ ¼ 0;

äþ 3Hȧ −
2τ̇ ȧ
τ

− ϵ
ρðτ; aÞ
3M2

p
τ2 ¼ 0;

Ṙ ¼ Hðτ; aÞR; ð140Þ

with the Friedmann equations

H2 ¼ ρ

3M2
p
þ ρf
3M2

p
þ ρΛ
3M2

p
;

ρ ¼ BB
ρ0B
R3

þ BC
ρ0C
R3

; ρf ¼ 3M2
p

4

�
τ̇2 þ ȧ2

τ2

�
;

d lnBi

dt
¼ −

1

2
ðκφ̇þ ϵiȧÞ: ð141Þ

We solve these equations numerically for different values
of ϵ and κ.

F. Dynamics in the effective baryon frame

In the baryon frame, the Hubble rate is

HB ≡ d lnRB

dtB
¼ H

BB
þ dχB

dtB
: ð142Þ

The conserved baryon density in the baryon frame is simply

ρ̃B ≡ ρconB ¼ ρ0B
R3
B
: ð143Þ

In this frame, CDM is not conserved, but an observer fitting
the evolution of the Universe with a prior that CDM is also
conserved in the same frame as the baryons would identify
the conserved CDM density as

ρ̃C ¼ ρ0C
R3
B
; ð144Þ

and we could write an effective Friedmann equation in the
baryonic frame,

H2
B ≡ 8πGB

3
ρ̃B þ 8πGC

3
ρ̃C þ 8πGN

3
ρ̃Λ; ð145Þ

where we have used 8πGN ¼ 1=M2
p. This allows one to

identify the effective Newton constants GB;C and the dark
energy component ρΛ. None of these constants is constant
in the baryon frame. In practice, the effective Newton
constants are determined by

GB ¼ B2
BGN; GC ¼ BBBCGN ; ð146Þ

i.e., the two Newtonian constants evolve differently. The
dark energy component is simply defined as the comple-
ment to the baryon and CDM contributions in the baryonic
Friedmann equation.
As long as the fields do not evolve rapidly, i.e., at the

beginning of the matter era, we haveHB ≈H=BB. The dark
energy component becomes

ρ̃Λ ¼ ρf þ ρΛ
B2
B

: ð147Þ

In the late Universe, this identification is not valid anymore,
and a numerical integration of the equations of motion is
necessary.
The same Friedmann equation in the baryon frame can

be written as

ΩB
B þ ΩB

C þ ΩB
Λ ¼ 1 ð148Þ

where the energy fractions ΩB
i , i ¼ B;C;Λ are identified in

the baryon frame and are such that
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ΩB
B;C ¼ 8πGB;Cρ̃B;C

3H2
B

; ΩB
Λ ¼ 8πGN ρ̃Λ

3H2
B

: ð149Þ

The deviations of the energy fractions from ΛCDM are
represented in Fig. 5.

G. Deviations from ΛCDM
and observational constraints

We first define the effective gravitational constant that an
observation would measure. For example, big bang nucleo-
synthesis (BBN) puts constraints on the variation of such a
Geff [33,34]:

jΔG=Gj≡
����G

today
eff −GBBN

eff

GBBN
eff

���� < 0.4: ð150Þ

This assumes a Hubble evolution similar to that of ΛCDM
in the matter-dominated era. In our model, since observa-
tions are made in the baryon frame, the corresponding Geff
satisfies

H2
B ¼ 8π

3
Geff

�
cρ
R3
B
þ ρΛ;B

�
; ð151Þ

for some cρ. In order to have GeffðziÞ ¼ GN initially, we set
cρ ¼ ρ0, as defined by Eq. (136); i.e., we normalize
Newton’s constant by using the Planck normalization in
the early Universe. Since the physics between BBN and
z ¼ zi is the same as in the standard model,Geff ¼ GN until
z ¼ zi. Later, the relative variation of the effective coupling
to baryons can be computed between z ¼ zi and today:

ΔGB

GB

����
BBN→today

¼ ΔGB

GB

����
zi→today

: ð152Þ

We can further constrain the possible deviations of the
Hubble rate from the standard model by imposing that this
should be less than the discrepancy appearing in the H0

tension. Indeed, there are two diverging determinations of
the present-time Hubble rate H0 with a relative difference
of order 10% [28]. In the axio-dilaton theory, the fact that
Newton’s constant varies implies that the Hubble rate now
differs from the corresponding Hubble rate in the standard
model. We have normalized the Hubble rates to coincide at
the beginning of the matter era. This motivates us to look
for parameters that satisfy����ΔHB

HB

����
tension

≡
����HBðz ¼ 0Þ −HSMðz ¼ 0Þ

HSMðz ¼ 0Þ
���� < 0.1; ð153Þ

where HSM is the Hubble rate in the standard model.
Another stringent constraint comes from BAO [24] which
specify that the deviations of HBðzÞ for 0.2≲ z≲ 2.5
should be less than around 3% [24],

����ΔHB

HB

����
BAO

≡
����HBðz∈ ½0.2; 2.5�Þ −HSM

B ðz∈ ½0.2; 2.5�Þ
HSM

B ðz∈ ½0.2; 2.5�Þ
����

< 0.03: ð154Þ

This implies that the differences between Λ-CDM and the
axio-dilaton models must appear late in the evolution of the
Universe. We see that the BAO constraint is the most
stringent one amongst the ones we have selected. Of
course, a much more precise numerical study is required
to constrain the parameter space. This is left to future work.
We also consider the effective equation of state of dark

energy. In GR with matter, in addition to a fluid X with
equation of state w, the deceleration parameter

q0 ≔ −
���� R̈
RH2

����
today

ð155Þ

is given by

q0 ¼
1

2
ðΩm;0 þ ð1þ 3ωÞΩX;0Þ ð156Þ

where Ωi;0 ¼ ρiðz ¼ 0Þ=3M2
pH2

0. Observations thus give
an estimate for w depending onΩm;0. ForΩm;0 ∼ 0.3, which
can be obtained independently, this leads to [35,36]

w ∼ −1� 0.1: ð157Þ

Recent constraints and future prospects can be found in
[37]. We now define the effective equation of state

weff ≡ 1

3

2qB;0 − Ωm;0

ΩΛ;0
− 1; ð158Þ

where

qB;0 ¼ −
∂
2
tBRB

RBH2
B

����
today

: ð159Þ

Taking Ωm;0 ≃ 0.3, we must impose the constraint

jΔwj≡ jweff þ 1j ≲ 0.1: ð160Þ

We use this bound in what follows as a guiding principle.
We are not trying to give a precise fit to the data but
an indication on the parameter space compatible with
cosmology.

H. Numerical integration

1. Dimensionless equations

In the following, we use L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M2

P=ρ0
p

as the unit of
time and length. Here ρ0 is defined via Eq. (135). We
obtain quantities as functions of redshift starting at
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matter-radiation equality. We define the system of dynami-
cal equations with the number of e-folds N and φ such that
R ¼ eN and τ ¼ eφ. We obtain

φ̈ ¼ −3Ĥ φ̇−ȧ2e−2φ þ κρ̂;

ä ¼ −3Ĥ ȧþ2φ̇ ȧþϵρ̂e2φ;

Ṅ ¼ Ĥ;

with

Ĥ2 ¼ ρ̂þ ρ̂f þ ρ̂Λ; ρ̂ ¼ Be−3N;

ρ̂f ¼
1

4
ðφ̇2 þ ȧ2e−2φÞ: ð161Þ

Here ρ̂Λ corresponds to ρΛ=ρ0 where ρΛ is the density
associated with the cosmological constant. In ΛCDM, ρ0 is
also the value of the matter density today, so ρ̂Λ ¼
ΩΛ;0=Ωm;0 ≃ 7=3 in ΛCDM. It is convenient to work in
conformal time η, such that Rdη ¼ dt, implying that

φ00 ¼ −2Ĥφ0 − a02e−2φ þ κρ̃;

a00 ¼ −2Ĥa0 þ 2φ0a0 þ ϵρ̃e2φ;

N0 ¼ Ĥ; ð162Þ

with

Ĥ2 ¼ ρ̌þ ρ̌f þ ρ̌Λ; ð163Þ

where the derivatives are now with respect to η. We have
rescaled all the densities as ρ̌ ¼ e2N ρ̂ and similarly for the
scalar and dark energy parts.

2. Results

There are four main parameters: κ, ϵB, ϵC, and ρ̂Λ.
Following our discussion about screening in Sec. III D and
our identification of the effective metric in Sec. IVA, we
first take κ and ϵB to be small. Taking κ ¼ ϵB ¼ 10−3 turns
out to be enough to satisfy solar system constraints. Taking
one of them to be 1 order of magnitude higher leads to a
violation of the cosmological constraints when ϵC is large

FIG. 2. Values of the parameters which satisfy the cosmological tests for κ ¼ 10−3 and ϵB ¼ 10−3. Note that 602 × 602 points are
plotted. The colored regions satisfy the four constraints jΔH0=H0j < 0.1, jΔwj < 0.1, jΔG=Gj < 0.4, jΔH=HjBAO < 0.03.
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enough. Numerically we study the cosmological evolution
for a large range of values of ϵC and ρ̂Λ. We always start the
cosmological evolution at zi ¼ 3400 ≈ zeq.
A first picture of the deviations from ΛCDM can be

obtained by focusing on the cosmological tests (Newton’s
constant, the equation of state, the Hubble parameter today
and in z∈ ½0.2; 2.5� relative to that of the standard model)
we defined above and their consequences as viewed in the
ϵ − ρ̂Λ plane. This is shown in Fig. 2. We show their values
only for the region in which the four of them satisfy the
observational constraints. It turns out that the constraint
from BAO is always the strongest. We illustrate the
cosmological evolution using five sets of parameters in
Figs. 4–6. Standard model quantities are computed ana-
lytically from the ΛCDM solutions in the matter-dominated
era with ΩΛ;0=Ωm;0 ¼ 7=3.

We recover that the smallest deviations to ΛCDM are for
ϵC ¼ 0, ρ̂Λ ≃ 7=3. We observe that deviations ofH0 depend
mostly on ρ̂Λ while deviations of G are essentially given by
ϵC. Additionally, we see deviations which are both positive
and negative for H0, with the sign depending on the sign of
the deviation of ρ̂Λ compared to ≈7=3. On the other hand,
there are only negative deviations of G. As we observe in
Fig. 4, ϵa increases, so GB decreases.
For both H0 and weff , the deviations due to ϵC tend to be

compensated by deviations of ρ̂Λ. This can be understood
from the fact that the fields act as a fluid of equation of state
wf ¼ 1 opposite to that of the cosmological constant
wΛ ¼ −1. They have opposite effects on the cosmic
acceleration.
Moving on to the dynamical curves, we see in Fig. 4 the

evolution of the fields. The axion a increases with z, which
can be expected as the source term in its Klein-Gordon
equation (126) has a factor ϵ > 0 and initially dominates.
On the other hand, φ slightly increases at first but
eventually decreases much more. This can be expected,
as the source term in its Klein-Gordon equation has a factor
κ > 0which initially dominates, and later the source term is
dominated by the axion term proportional to −ȧ2. The
deviation from the constant and vanishing fields increases
with ϵ as we can expect.
Figure 5 shows the evolution of the energy content of

the Universe in both the Einstein and baryon frames. As the
couplings κ and ϵB are small, the difference between the
Einstein and the baryon frame quantities is negligible. In
the matter-dominated era we have a slight increase in the
field density and a corresponding decrease of the matter
density. In the very late Universe close to a vanishing
redshift, the proportion of the cosmological constant
increases, and we get the usual values 0.3 and 0.7 for
matter and Λ with some deviations of the order of 0.01.
As a result, we can see that, generically, the matter

contents of the Universe are modified. First of all, the axion
and dilaton energy densities evolve from being negligible

FIG. 3. Positions of a selection of parameters in the region
of parameter space where the cosmological tests are satisfied:

ϵC ¼ 0.05; ρ̂Λ ¼ 2.2; ϵC ¼ 0.05; ρ̂Λ ¼ 2.5; ϵC ¼ 0.15;
ρ̂Λ ¼ 2.3; ϵC ¼ 0.17; ρ̂Λ ¼ 2.55; ϵC ¼ 0.22; ρ̂Λ ¼ 2.65.

FIG. 4. Field evolutions for κ ¼ 10−3 and ϵB ¼ 10−3 as a function of the redshift z defined in the baryon frame. The values of ϵC and
ρ̂Λ for each color are given in Fig. 3.
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FIG. 5. Evolution of energy contents of the Universe in the Einstein frame (left) and baryon frame (top three figures on the right) as a
function of the redshift of the baryon frame. The ΛCDM case is represented in the bottom right figure. Deviations from ΛCDM are
represented in the other figures for κ ¼ 10−3, ϵB ¼ 10−3, and values of ϵC and ρ̂Λ given in Fig. 3.
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initially to a long phase in the matter era where they remain
nearly constant before dropping to lower values in the last
few e-foldings of the Universe. This has important conse-
quences as the dynamics of the axio-dilaton system and, in
particular, the variation of the conformal factors BB;C imply
that the matter fractions of the Universe deviate from their
ΛCDM values. We also notice that the deviation can be
negative by a few percent. This is important as it will
hamper the growth of structure and entail a compensation

of the extra growth due to the attractive scalar forces by the
lower amount of matter in the Universe. This results in a
reduced growth of structure in these models.
Figure 6 shows the evolution for the cosmological

quantities of interest. In ΛCDM, both ΔH0=H0 and
ΔG=G vanish. We observe deviations that become stronger
as the parameters move away from the light regions and
into the darker ones of Fig. 2. Both also present a maximal
negative deviation around z ∼ 2. At smaller redshifts the

FIG. 6. Evolution of the cosmological quantities HB, Geff , and weff as a function of the redshift in the baryon frame for κ ¼ 10−3 and
ϵB ¼ 10−3. We zoom in on the late evolution on the right. The values of ϵC and ρ̂Λ for each color are given in Fig. 3.
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deviation shrinks. This can be attributed to the effect of the
cosmological constant which becomes non-negligible at
late times. In the case of the red, orange, and purple curves,
the deviation crosses 0 and becomes positive. They have in
common that their values for the cosmological constant are
stronger than the standard model value: ρ̂Λ ≳ 7=3. Finally,
notice that the evolution of Geff shows a negative deviation
from Newton’s constant in GR. This has two origins which
can be traced to its definition (151). First of all, as the
effective Newtonian constant is normalized with the Planck
normalization for ρ0, the fact that in Fig. 5 we find that there
is less matter in the recent Universe than in ΛCDM implies
that Geff=GN should be less than unity. Another important
effect is that the conformal factors BB;C are less than unity
too, implying a reduction of Geff compared to GN . These
effects could have been compensated by the extra pull
arising from the scalar forces. This is not the case.
Figure 6 also shows weff . It is defined by generali-

zing (158),

weffðzÞ ≔
1

3

�
2qJðzÞ − Ωm;0

ΩΛ;0
− 1

�
: ð164Þ

This can simply be seen as a rescaling of the deceleration
parameter qðzÞ. In ΛCDM it is easy to see that weff goes
from 0 to −1 (and, equivalently, q from 0.5 to −0.55).
Figure 6 shows that for parameters consistent with obser-
vations, the deviations are not drastic.

3. Cosmological constraint on κ

We now concentrate on another scenario where the
coupling of the dilaton is relaxed from its solar system
bound. This is of interest if the dilaton is screened in the
solar system and partially on cosmological scales. The
largest dilaton coupling allowed by cosmological data is
smaller than the supergravity motivated value κ ¼ 1.
We fix ϵB ¼ 10−3, and we look for the highest value of κ

such that there are some values of ϵC and ρ̂Λ such that the

observables are within the observational bounds. We use a
precision of the order 10−3 relative to the order of
magnitude of the parameters. We find that the maximal
order of magnitude of κ is 0.1. More precisely, if we also fix
ϵC and try to find some valid values of ρ̂Λ, we find that for
ϵC ¼ 0.1, κlim ¼ 0.110; and for ϵC ¼ 0.001, κlim ¼ 0.124.
This is illustrated in Fig. 7. Since BAO is the strongest

constraint, we look only at the deviations of the Hubble rate
in the BAO interval. We can see that for favorable values of
the other parameters (ϵC ¼ ϵB ¼ 10−3, ρ̂Λ ¼ 7=3), κ is
allowed at least up to 0.12. However, for κ ¼ 0.13 the BAO
constraint is no longer satisfied. This is of course much less
than unity and signals that the dilaton must be cosmologi-
cally screened.

V. COSMOLOGICAL PERTURBATIONS

In this section, we study the growth of perturbations for
the axio-dilaton models in the matter era in the subhorizon
and quasistatic approximation [38]. We obtain the equation
governing the evolution of the density contrast δρ=ρ [39].

A. Cosmological perturbations

We focus on small perturbations to the background
solutions. We are interested in structure formation, and
we evaluate the time evolution of the baryon and CDM
density contrasts simultaneously [40]. We only consider the
scalar modes of the perturbation of the metric. Using
Newton’s gauge in the Einstein frame, we have

gμνdxμdxν¼R2ðηÞð−ð1þ2ΦNÞdη2þð1−2ΦNÞγijdxidxjÞ
ð165Þ

where γij ¼ δij. The cosmological perturbations are
defined by

ρi ¼ ρ̄iþ δρi ¼ ρ̄ið1þ δiÞ; uμi ¼
1

R
ð1þ δv0; v⃗iÞ ð166Þ

FIG. 7. Deviations of the Hubble rate from ΛCDM for different values of κ, ϵC ¼ ϵB ¼ 10−3 and ρ̂Λ ¼ 7=3, as a function of the
redshift in the baryon frame.
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for each field. We also perturb the fields and the axion-
matter coupling:

φ ¼ φ̄þ δφ; ð167Þ

a ¼ āþ δa; ð168Þ

A ¼ Āþ δA: ð169Þ

All the symbols with a bar denote background values. The
velocity uμi of the two fluids is given by

uμi ¼
1

R
ð1 −ΦN; v⃗iÞ ð170Þ

at linear order. The perturbed Newton’s law becomes, for
each species,

∂ηv⃗i þ ðHþ ∂ηχ̄iÞv⃗i ¼ −
∇!
R2

ðΦN þ δχiÞ: ð171Þ

We recognize the scalar force in the Euler’s equation due to
the interaction with dark matter and the friction term whose
origin is the modified Hubble rate Hi ¼ Hþ ∂ηχ̄i in
conformal time and in the Einstein frame.

B. Density contrast of subhorizon modes
in the quasistatic regime

We focus on subhorizon modes such that k ≫ H, and in
the quasistatic regime, ∂η ∼H. Using the Einstein equation

R00 −
3

2τ2
ð∂ητ∂ητ þ ∂ηa∂ηaÞ −

1

M2
p

�
T00 −

1

2
Tg00

�
¼ 0;

ð172Þ

and the curvature perturbation

δR00 ¼ 3HΦ0
N þ ΔΦN ≈ ΔΦN; ð173Þ

which reduces to the Laplacian of Newton’s potential as
3HΦ0

N ∼H2ΦN ≪ k2ΦN ∼ ΔΦN , the Poisson equation
then becomes

ΔΦN ¼ 1

2M2
p
R2ðρ̄BδB þ ρ̄CδCÞ: ð174Þ

The perturbed Klein-Gordon equation for φ is

Δδφ ¼ −
κ

3M2
p
R2ðρ̄BδB þ ρ̄CδCÞ: ð175Þ

Its structure is similar to the Poisson equation. Similarly, we
obtain, for the axion field,

Δδa ¼ −
e2φ̄

3M2
p
R2ðρ̄BϵBδB þ ρ̄CϵCδCÞ ð176Þ

where we have systematically used the subhorizon and
quasistatic approximations. The conservation equation for
each species implies that ρi ¼ Biρicons where the conserved
density satisfies

dρicon
dτi

þ 3hiρicon ¼ 0: ð177Þ

In the subhorizon limit, we can identify δi ≃ δicons. This is
also the density contrast in the baryon frame as the
contributions of both δa and δϕ to the change of frame
are negligible in the subhorizon limit. This implies that the
perturbed conservation equation becomes

δ0i ¼ −∇!:v⃗i: ð178Þ

Now we apply ∇! to Eq. (171) and obtain

−δ00i − ðHþ χ̄0iÞδ0i ¼ −
Δ
R2

ðΦN þ δχiÞ: ð179Þ

Using the Laplacians from Eqs. (174)–(176), we finally
deduce the growth equation for each species in the
subhorizon limit,

δ00i þ ðHþ χ̄0iÞδ0i −
3

2
ΩBH2

�
1þ κ2 þ e2φ̄ϵ2B

3

�
δB

−
3

2
ΩCH2

�
1þ κ2 þ e2φ̄ϵ2C

3

�
δC ¼ 0 ð180Þ

in terms of the matter fraction Ωi in the Einstein frame. We
find that the deviations from the standard model have two
origins. First, there is the friction term depending on
Hi ¼ Hþ χ̄0i, which is specific to each species as the
two fluids couple differently to the axion. Second, there is a
modification of Newton’s constant for each species on the
two effective couplings

Gi
N ¼ ð1þ 2Q2

i ÞGN ð181Þ

such that the perturbation equations become

δ00i þ ðHþ χ̄0iÞδ0i
−
3

2
ΩBH2ð1þ 2Q2

BÞδB −
3

2
ΩCH2ð1þ 2Q2

CÞδC ¼ 0:

ð182Þ

We have defined the effective couplings
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Q2
i ¼

κ2 þ e2φ̄ϵ2i
6

ð183Þ

which parametrize the deviations from ΛCDM. We retrieve
that, in the absence of the ϵi’s, gravity is modified by a
factor κ2=6 like in the static regime around a compact
object. In the following, we solve these equations numeri-
cally as a way of investigating the growth of structure for
the baryons and CDM.

C. Growth rate

We now focus on the growth rate for small redshifts [41]
as defined by

fi ¼
d ln δi
d lnRB

ð184Þ

where the redshift is deduced from the baryonic scale factor.
We represent the growth rates in Figs. 8 and 9. We choose

as initial conditions δiðziniÞ ≪ 1 and δ0iðziniÞ=δiðziniÞ ∼Hini.
We notice that the growth can be either enhanced or
disfavored at small redshifts depending on ϵC and ρΛ. On
the other hand, the maximal deviation from ΛCDM is at
most five percent. We have also represented the growth
factors when κ is varied and both ϵB;C are small. Notice that
when κ is varied, the growth rate at small redshift becomes
smaller and smaller. This is also the case when κ is fixed and
ϵC is increased. As the effective Newton constants should
increase the growth thanks to the presence of fifth forces
between particles, we conclude that the background evolu-
tion and the effective friction have a drastic effect on the
growth of structure. This can be observed in Fig. 5 where the
matter density in the late Universe decreases compared to
ΛCDM as in [29] where a similar effect was obtained and
used to alleviate the σ8 tension. It would certainly be
interesting to see if this trend is also present in the nonlinear
regime and could have some consequences for the S8 tension
where less matter clustering is observed at late times than
inferred in the ΛCDM scenario [42] from the Planck data

FIG. 8. Growth rate for a few allowed parameters and in ΛCDM, shown for redshifts in the baryon frame z ≤ 3.
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[3]. The analysis of the S8 tension in this scenario is left for
future work.
Finally, let us remark that we have not taken into account

an important effect which would result from both the
fact that the effective equation of state weff (see Fig. 6) is
not strictly equal to zero deep into the matter era for z≳ 2
and that the perturbations do not behave like in the
Einstein–de Sitter universe with f ≠ 1 (see Fig. 8). This
would imply that the Newtonian potential ΦN in (174)
is not strictly constant in the matter era. This could lead
to a large integrated Sachs-Wolfe effect (ISW), which
is tightly constrained and could appear in the galaxy
counts versus the cosmic microwave background cross-
correlations [43–45]. This certainly restricts the available
parameter space and constrains the possible deviations of
the growth factor from ΛCDM. A detailed study of this
effect is left for future work.

VI. CONCLUSION

The axio-dilaton model has a clear origin in string theory.
We have focused on the screening mechanism introduced
in [13] for a constant coupling of the axion to matter,
and we have explicitly shown how it can only be effective
when the field values at infinity are tuned to specific values.
These values should be determined cosmologically. We
have studied the background cosmology of these models
and shown that the cosmological values do not correspond
to the tuned values generically.
In the absence of explicit screening for the axio-dilaton

system, which may require one to introduce nonlinear
couplings to matter and/or new fields [46] whose dynamics
would drive the couplings of the dilaton and the axion to
small values in the solar system and larger values cosmo-
logically, we have employed a simple alternative and
considered two scenarios. In the first one, the coupling
of the dilaton and the axion to baryons is taken to satisfy the

solar system constraints and to remain identical to these
values on large scales. Only the coupling to cold dark
matter is allowed to take much larger values. In this case,
we find that the coupling to cold dark matter must be
bounded. It turns out that the constraints from BAO at small
redshift are the tightest, and the present-day Hubble rate
does not deviate from the Planck normalized one by more
than three percent. This is not enough to account for theH0

tension, which lies at the ten-percent level. Similarly,
the growth of structure is affected at the five-percent
level. Interestingly, in these models growth is not always
enhanced, and effectively, a decrease in the growth rate is
observed for a large part of the parameter space of the
model. This follows from the fact that the growth increase
due to the scalar forces is compensated by the decrease of
the matter density. This could have some relevance to the σ8
tension. We hope to come back to this suggestion in the
near future. We also consider the case where the axion does
not couple significantly to matter and the dilaton couples
with a strength κ reduced from the string theory motivated
example. We find that κ cannot be allowed values of order
unity and must be bounded around 0.1. This entails that
the dilaton must not only be screened locally in the solar
system but also cosmologically.
Of course, our examples can be modified, and the

resulting physics can be very different. For instance, the
couplings to matter of both the axion and the dilaton could
become nonlinear and therefore lead to screening mecha-
nisms akin to the ones of the symmetron model, for
instance. Another possibility would be that other fields
could relax to values whereby the couplings of the dilaton
and the axion would become very small in the solar system
and small cosmologically. The construction of these models
is left for future work.
Phenomenologically, the scenarios we have introduced

fall within the category of late-time dark energy models
where the evolution of the fields at small redshift would

FIG. 9. Growth rate at z ≤ 3 in the baryon frame for different values of κ and ϵC ¼ ϵB ¼ 10−3, ρ̂Λ ¼ 7=3.
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modify both the background cosmology and the growth of
structure. As expected, we find that the BAO bound entails
a tight constraint on both the possible deviations of the
present Hubble rate from its Planck value and the growth
factor from its ΛCDM counterpart. We notice that the
allowed deviations of the growth factor could reach a few
percent and therefore may become detectable by future
large scale surveys. The detailed study of the phenomenol-
ogy of these models is left for future work.
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APPENDIX: VALIDITY OF THE FLAT
BACKGROUND APPROXIMATION

We consider that the conditions for the flat background
approximation used in Sec. III hold. We assume the exterior
solution of Sec. III A and find in which regime the terms
neglected by the approximation are indeed negligible. The
metric of Sec. III can be written as

ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΨÞðdr2 þ r2dΩ2Þ: ðA1Þ

The Christoffel symbols, and the Ricci and Einstein tensors
for this metric can be found in, e.g., Ref. [47], Sec. 7.
The ðttÞ and ðrrÞ equations from Eq. (13) are

ΔΦ ¼ ρ

2M2
p
; ðA2Þ

ðΔ − ∂
2
rÞðΦ −ΨÞ ¼ 3

4

ðτ0Þ2 þ ða0Þ2
τ2

; ðA3Þ

where Δ is the Laplacian. The exterior solution gives

ðτ0Þ2 þ ða0Þ2
τ2

¼ γ2β2

r4
: ðA4Þ

Integration then gives us

Φ ¼ −
GM
r

; Ψ −Φ ¼ 3

16

γ2β2

r2
: ðA5Þ

The deviations from the flat metric are therefore negli-
gible for

jΨj ≪ 1; Φ ≃Ψ: ðA6Þ

This is verified in the regime

r ≫ GM; r ≫ jγβj: ðA7Þ
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