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We consider the screening of the axio-dilaton fields when both the dilaton and the axion couple
to matter with Yukawa couplings. We analyse the screening of the dilaton in the vicinity of a com-
pact object and find that this can only take place when special boundary conditions at infinity are
imposed. We study the cosmological dynamics of the axio-dilaton system when coupled to matter
linearly and find that the special boundary conditions at infinity, which guarantee the screening of
compact objects, do not generically emerge from cosmology. We analyse the background cosmology
and the cosmological perturbations at late time in these models and show that the Baryon Acoustic
Oscillations constrain the coupling of the dilaton to matter to be smaller than in its natural super-
gravity realisation. Moreover we find that the Hubble rate in the present Universe could deviate
from the normalised Planck value, although by an amount too small to account for the H0 tension,
and that the growth of structure is generically reduced compared to ΛCDM.

I. INTRODUCTION

General Relativity (GR) passes all the current gravi-
tational tests in the solar system with flying colours[1].
Yet there are still tensions on larger scales which may
eventually necessitate to challenge Einstein’s theory of
gravity. These are related to two classes of observations.
First, there are long standing astrophysical results that
imply the existence of dark matter [2]. Second, there
is now robust evidence in favour of the acceleration of
the expansion of the Universe [3, 4]. The latter is best
accounted for in GR by adding a cosmological constant
to the Lagrangian of the theory. However, understand-
ing the origin of this constant energy density, e.g. from
quantum field theoretic considerations, has proven to be
fraught with difficulties [5]. Modifying GR is not an easy
task either [6]. We know from Lovelock’s theorem [7] and,
in the effective field theory context, from Weinberg’s the-
orem [8] that GR is unique in four dimensions provided
Lorentz invariance and the masslessness of the graviton
hold [9].

One way to modify GR is to add additional fields. This
is the route taken by scalar-tensor theories [10] in which
one or more additional scalar fields are added to the set-
ting and couple to matter. Such scalar fields appear in
many proposed dynamical models attempting to account
for the late cosmic acceleration [11]. They also find theo-
retical motivation in the fact that they appear naturally
in UV-complete theories such as string theory [12, 13].
In particular, the swampland conjectures favour an ex-
planation of the late-time acceleration of the Universe
resulting from the non-trivial dynamics of string mod-
uli [14]. We will present the axio-dilaton which is one
such scalar-tensor theories whose origin can be traced to
a compactification of ten to four dimensions [13].

Unfortunately, most scalar-tensor theories are typically
ruled out by solar system tests of gravity. In their most
naive form, consistency of scalar-tensor theories either
requires them to have a small coupling to matter or the

scalar must be stabilised with large masses leading to
short ranged interactions [15].

This can be illustrated with the Brans-Dicke theory
(BD) and the action [1, 16]

SBD =

∫
d4x
√
−gM2

p

(
R
2
− 1

2
∂µϕ∂µϕ− V (ϕ)

)
+Sm

(
gJµν , ψm

)
(1)

where ψm represents the ordinary matter fields and the
Jordan frame metric is given by

gJµν = A2(ϕ)gµν with A(ϕ) = egϕ (2)

where g is a coupling constant. The scalar couples to
matter only via the metric gJµν . The metric gµν is the
Einstein metric for which the Einstein equations take
their usual form, i.e. matter “feels” the geometry of the
Jordan frame.

Constraints from solar system tests like those using
measurements by the Cassini probe [17] can be under-
stood using the Parameterized Post-Newtonian (PPN)
formalism. It is enough here to define two important
PPN parameters. We introduce the gravitational mass
of the source M , and the PPN parameters γPPN , βPPN
via the following parameterisation of the Jordan metric
element in isotropic coordinates around a given compact
object

ds2
J = −

(
1− 2GM

r
+ 2βPPN

(
GM

r

)2

+O
(

1

r3

))
dt2

+

(
1 + 2γPPN

GM

r
+O

(
1

r2

))(
dr2 + r2dΩ2

)
.

(3)

In GR γPPN = βPPN = 1 whilst for the Brans-Dicke
theory the deviation from GR is captured by γPPN , i.e.
βPPN = 1 and [13]

γPPN =
1− 2g2

1 + 2g2
. (4)
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2

The Cassini probe on the other hand gives [17]

|γPPN − 1| < 2.3× 10−5 . (5)

This constrains the coupling g2 to be less than 10−5.
Larger deviations from GR can be reached in certain

regimes when the theories are subject to a screening
mechanism, i.e. a modification which allows the the-
ory to evade solar system tests while having an order
unity coupling to matter whose role is important on large
scales. There are now at least three types of screening
mechanisms for single field models, i.e. the chameleon,
K-mouflage and Vainshtein mechanisms [18–20]. They
all rely on higher derivatives and/or non-linearities of
the kinetic terms and interacting potentials of the mod-
els [15]. In [13], a new screening mechanism was intro-
duced, which relies on a second field that has a non-zero
but small coupling to matter. The mechanism depends
crucially on the interplay between the scalar profiles in-
side and outside matter [21, 22]. Here, we consider the
situations where the two fields, the dilaton and the ax-
ion, have a linear coupling to matter that we denote by
κ and ε. We focus on the small ε regime and vary κ
from small values up to unity which corresponds to its
value in supergravity where the dilaton plays the role
of the volume modulus of string compactifications [23].
We find that for κ = 1, screening of the dilaton around
compact objects only takes place when the fields take
particular values at infinity. These values should emerge
from the cosmological dynamics. We then focus on the
cosmology of these values where both κ and the values of
the coupling ε to both baryons and cold dark matter are
varied. Generically, the field values in the present Uni-
verse do not satisfy the screening conditions. In fact, one
must resort to yet unknown screening mechanisms for the
axio-dilaton system in order to accommodate both local
solar system tests and cosmological constraints such as
the Baryon Acoustic Oscillations [24].

The coupling of the axion to dark matter εC plays a
crucial role cosmologically and can be of order unity. On
the other hand, we find that the coupling of the dila-
tion κ must be reduced locally to small values in order
to pass solar system tests. In this paper, we will consider
two likely scenarios. The first one is that the coupling κ
is determined locally to be extremely small, of the order
of 10−3, and that most of the cosmological dynamics are
due to the coupling of the axion εC in a manner reminis-
cent of coupled quintessence [25] although in a multi-field
setting here [26]. This could be achieved if another field
χ drove the coupling κ to such values dynamically in
the whole Universe. Another possibility could be that
the coupling κ is small locally but allowed to take larger
values cosmologically. This could happen if the field χ
only made κ small locally. In this second scenario, we
find that the BAO constraints on late time cosmology
are so stringent that κ cannot be taken of order unity
as in the original supergravity model. In this setting, we
consider the allowed deviations of H0 from their values
as calibrated by the Planck satellite experiment and find

that only a few percent of discrepancy are allowed. This
is much less than the current H0 tension [27, 28]. Fi-
nally, we notice that the linear growth in these models is
reduced compared to the ΛCDM case, despite the exis-
tence of attractive fifth forces due to the dilaton and the
axion. This could provide a solution to the σ8 tension
[29] where the observed amount of clustering is reduced
compared to the expected one from early times [30, 31].
The precise study of this possibility is left to future work.

The scenario that we present here enlarges the usual
single-field class of models for late time cosmology. Such
multi-field generalisations could prove useful in view of
future measurement and present cosmological tensions
[32].

The paper is arranged as follows. In section II, we
present the axio-dilaton model. In section III, we con-
sider the screening of a compact objects. We then discuss
the cosmology of these models in section IV.

II. THE AXIO-DILATON THEORY

A. The Lagrangian

The axio-dilaton theory contains two scalar fields, the
dilaton τ > 0 and the axion a. The dilaton τ couples
to matter only through the Jordan frame metric while
a is directly coupled to matter. The difference will be
made clear below where we will construct an effective
metric which will mediate the coupling of both scalars to
matter. The action of the theory is

S =

∫
d4x
√
−gM2

p

[
R
2
− 3

4

(
∂µτ∂µτ + ∂µa∂µa

τ2

)]
+Sm ,

(6)
with

Sm = Sm(gJµν , a, ψm), gJµν = A(τ)2gµν

A(τ) = τ−κ/2.

(7)

κ is a coupling constant. The theory studied in [13] cor-
responds to κ = 1 and is associated to a supergravity
model of string theory origin with a Kähler potential
K = −3 ln

(
T + T

)
and a coupling to matter determined

by A = eK/6. In this setting, the dilaton can be seen
as the volume modulus of a 6d compatification of string
theory from 10d to 4d. Introducing κ enables one to tune
the matter-dilaton coupling and make the solar system
tests of gravity easier to satisfy. We will see that screen-
ing is compulsory for the model to pass the solar system
tests of gravitation.

The two fields can be viewed as the real and imaginary
parts of a complex field T = 1

2 (τ + ia) whose Lagrangian
is

L =
√
−gM2

p

(
R
2
− 3∂µT ∂µT

(T + T )2

)
+ Lm . (8)
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In this model, we define the usual stress-energy tensor
and the coupling of a to matter

Tµν ≡ − 2√
−g

δSm
δgµν

, A ≡ − 2√
−g

δSm
δa

. (9)

We will use for the trace the notation T ≡ gµνT
µν . No-

tice that the matter action depends on the axion field
in a non-trivial manner and not via the Jordan metric.
This will have drastic consequences that we will unravel
below.

There are two Klein-Gordon equations for the two
scalar fields, i.e.

�τ − 1

τ
(∂µτ∂

µτ − ∂µa∂µa)− κ τ

3M2
p

T = 0 , (10)

and

�a− 2

τ
∂µτ∂

µa+
τ2

3M2
p

A = 0 . (11)

It is convenient to introduce the dilaton field ϕ such that
τ = eϕ leading to

�ϕ+ (∂µa∂
µa)e−2ϕ − κ

3M2
p

T = 0 . (12)

The Einstein equation is simply

Rµν −
3

2τ2
(∂µτ∂ντ + ∂µa∂νa)− 1

M2
p

(Tµν −
1

2
Tgµν) = 0 .

(13)
where we have separated the matter energy momentum
tensor from the scalar one.

B. The symmetries

In the absence of matter, the theory is invariant un-
der a SL(2,R) group whose origin can be traced back
to supergravity. Indeed, the kinetic term of the fields is
invariant under

T −→ aT − ib
icT + d

provided ad− bd = 1 (14)

corresponding to a Kähler transformation of the theory.
There are thus three conserved currents, corresponding
to the dimension of the symmetry group in the absence
of matter. We can choose as a basis for these currents

• The axion shift symmetry T → T − ib (a = c = 0,
d = 1):

JµA =
∂µa

τ2
. (15)

• The rescaling symmetry T → aT (b = c = 0, d =
1):

JµS =
∂µτ

τ
+
a∂µa

τ2
. (16)

• The non-linear symmetry T → T − icT 2 (a = d =
1, b = 0, c� 1):

JµN =
τ2 − a2

τ2
∂µa− 2a

∂µτ

τ
. (17)

From the Klein-Gordon equations we can directly obtain
the (non-)conservation laws

∇µJµA = − A
3M2

p

, ∇µJµS =
κT − aA

3M2
p

,

∇µJµN =
(a2 − τ2)A− 2aκT

3M2
p

.

(18)

As can be seen, matter breaks the whole symmetry group
as none of the three currents is conserved anymore.

When Sm does not depend on a, i.e. A = 0, the axio-
dilation theory is equivalent to a Brans-Dicke theory. In-
deed when A = 0 we have the axion solution a = cste,
and so Eq.(12) becomes

�ϕ− κ

3M2
p

T = 0 . (19)

Similarly, the BD Lagrangian (50) gives the Klein-
Gordon equation

�ϕBD +
g

M2
p

T = 0 . (20)

Matching the two Weyl factors e−κϕ/2 = egϕBD we get
ϕBD = (−κ/2g)ϕ. Combining the two Klein-Gordon
equations(

−κ
2g

+
3g

κ

)
�ϕ = 0 =⇒ g2 = κ2/6 . (21)

When κ = 1, we find that the coupling reduces to 1/
√

6,
i.e. the same as for f(R) and massive gravity.

III. NON-RELATIVISTIC SOURCE AND
SCREENING

Screening requires to study the gravitational physics
around objects like the Sun. We model the Sun and
other compact objects such as the Earth or the Moon as
non-relativistic sources, i.e the only non-zero component
of their stress-energy tensor is T00 ≡ ρ. We also assume
that they are static and spherically symmetric. We look
for space-time solutions with the same symmetries that
we chart with isotropic coordinates

gµνdx
µdxν = −e2u(r)dt2 + e2w(r)

(
dr2 + r2dΩ2

)
. (22)

The Jordan metric is obtained by multiplying this line
element by the coupling function A2.
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A. Exterior solution

We will simplify the setting by considering non-
relativistic objects with a small Newtonian potential. As
a result, we will approximate the Klein-Gordon equations
using a flat background g = η where ηµν is the Minkowski
metric tensor. The validity of the approximation is eval-
uated a posteriori.

In the following, primes will refer to derivatives with
respect to r. We assume spherical symmetry. The result-
ing Klein-Gordon equations are

τ ′′ +
2τ ′

r
− τ ′2 − a′2

τ
+ κ

τρ

3M2
p

= 0 , (23)

and

a′′ +
2a′

r
− 2τ ′a′

τ
+
τ2A
3M2

p

= 0 . (24)

Here ρ is the matter density inside or outside the object.
Instead of using these equations directly, we can use the
equations for the currents (18). In the absence of matter,
i.e. outside the objects, the currents are conserved

r2 a
′

τ2
= CA , (25)

r2

(
τ ′

τ
+
aa′

τ2

)
= CS , (26)

r2

(
(τ2 − a2)a′

τ2
− 2aτ ′

τ

)
= CN . (27)

These constants are fixed by the conditions inside the
source.

We are interested in the case where a 6= cste. So CA 6=
0. Defining γ ≡ CA, α ≡ CS/CA, β ≡ (CS/CA)2 +
CN/CA, we obtain

τ2 + (a− α)2 = β2 . (28)

where τ and a thus evolve on a circle in the τ − a plane.
We can thus eliminate τ in Eq.(25) and get

a′ =
γ

r2
(β2 − (a− α)2) . (29)

We integrate this to obtain the axion profile

a = α− β tanhX(r) with X(r) =
γβ

r
+ δ , (30)

where δ is a new integration constant. Using again
Eq.(25) we finally get

τ =
β

coshX(r)
. (31)

Some of the integration constants are fixed by the bound-
ary conditions inside the source. Indeed, from the cur-
rents (18), we see that

γ = CA = − 1

3M2
p

∫ R

0

drr2A(r) , (32)

γα = CS = − 1

3M2
p

∫ R

0

drr2(κρ(r) + a(r)A(r)) . (33)

On the other hand, β and δ can only be fixed by the
values of the fields at infinity

a∞ = α− β tanh δ, β = τ∞ cosh δ =
√
τ2
∞ + (α− a∞)2 .

(34)
As shown in appendix A, these solutions in the flat back-
ground approximation are valid as long as

r � GM and r � |γβ| . (35)

The first condition corresponds to being far from the
Schwarzschild radius.

B. Screening

We first investigate screening in the Jordan frame
where we will extract the PPN parameters from the Jor-
dan metric

gJµνdx
µdxν = A2gµνdx

µdxν

= −

(
1− 2GMg

r
+ 2βPPN

(
GMg

r

)2

+O
(

1

r3

))
dt2

+

(
1 + 2γPPN

GMg

r
+O

(
1

r2

))
(dr2 + r2dΩ2) .

(36)
where A2 = 1/τκ and gµν is given by (22). Mg is the
gravitational mass as defined in the PPN formalism. We
have that Mg 6= M =

∫
source

ρ, i.e. the mass of the object
in the Jordan frame is renormalised by the presence of
the scalar fields.

In the absence of fields, the Einstein frame metric gµν
is the Schwarzschild metric. In the presence of the fields
the Einstein equations are modified and we expand

e2u = 1− 2l

r
+

2l2

r2
+O

(
1

r3

)
, (37)

e2w = 1 +
2l

r
+O

(
1

r3

)
. (38)

where l = GM . Expanding the conformal factor A2 in
inverse powers of the distance, we have

A2 = A2
∞

(
1− α1/r + α2/r

2 +O
(

1

r3

))
, (39)

from which we deduce that

γPPN =
1− α1

2l

1 + α1

2l

, (40)

βPPN =
l2 + lα1 + 1

2α2

(l + 1
2α1)2

. (41)
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For the axio-dilaton theory the conformal factor is given
by

A2 = τ−κ =

cosh
(
βγ
r + δ

)
β

κ

(42)

where we have used the explicit solution for τ(r). Ex-
panding in 1/r we find the coefficients

α1 = −κβγ tanh δ ,

α2 =
κβ2γ2

2
((κ− 1) tanh2 δ + 1) . (43)

In the following, we will always choose the following
ansatz following [13]

A = −εT , (44)

where ε is a small constant and T the trace of the en-
ergy momentum tensor. In the case of static sources this
reduces to A = ερ. As we shall see, this choice is not in-
nocent as this will bring back the two-field model within
the realm of the scalar-tensor theories with an effective
coupling to both the dilaton and the axion. We will make
this explicit in the following. From Eq.(32) we obtain

γ = −2εGM

3
= −2εl

3
. (45)

and in the Jordan frame the PPN parameters become

γPPN =
3− εκβ tanh δ

3 + εκβ tanh δ
, (46)

and

βPPN = 1 +
κε2β2(1− tanh2 δ)

(3 + κεβ tanh δ)2
.

Hence by taking ε small GR is recovered as long as β does
not increase accordingly. This is the essence of this new
type of screening which corresponds to a non-uniform
limit ε → 0. Indeed, when ε = 0 the model is equiva-
lent to a Brans-Dicke model with a coupling κ/

√
6 which

needs to be small enough to satisfy the solar system tests
of gravity. But it turns out that the non-uniform limit
ε → 0 requires a particular choice of the boundary con-
ditions at infinity which are not generic. We will come
back to this point in the next section.

C. The interior solution

We now solve Eq.(23) and Eq.(24) inside the source of
radius R, with the boundary conditions τ ′(0) = a′(0) = 0
at the origin. We assume a uniform density inside the
body as a simplifying assumption and a coupling A with
the same profile as ρ ρ ≡ ρ0 =

M
4
3πR

3

A = ερ0

. (47)

The dynamical equations cannot be solved exactly. We
will get perturbative solutions in ε as we have seen that
a small coupling ε is required to screen in the Jordan
frame.

1. The dilaton dynamics

The equation for the current JµA from Eq.(18) gives(
r2 a

′

τ2

)′
= − r

2A
3M2

p

. (48)

Assuming regularity for the fields at the origin, we obtain

a′(r)

τ2(r)
= − ερ0

3M2
p r

2

r3

3
. (49)

We define m2 = ρ0/3M
2
p leading to

a′ = −εm
2

3
rτ2 . (50)

We can substitute this expression in Eq.(23) to get

τ ′′ +
2τ ′

r
− (τ ′)2

τ
+
ε2m4

9
r2τ3 + κm2τ = 0 . (51)

In terms of the dilaton ϕ = ln τ , the Klein-Gordon equa-
tion Eq.(12) then becomes

ϕ′′ +
2

r
ϕ′ +

ε2m4

9
r2e2ϕ + κm2 = 0 (52)

where we impose the boundary equation ϕ′(0) = 0.

2. Perturbative expansion in ε

Up to now, everything is exact. We now expand in
powers of ε:

ϕ = ϕ(0) + εϕ(1) + . . . , (53)

a = a(0) + εa(1) + . . . , (54)

and impose the boundary conditions at each order.
The advantage of this perturbative method is that the

problematic term e2ϕ in Eq.(52) appears only at second
order in ε. Indeed we get at orders 0 and 1

ϕ(0)′′ +
2

r
ϕ(0)′ + κm2 = 0 , (55)

ϕ(1)′′ +
2

r
ϕ(1)′ = 0 . (56)

The solution for ϕ(1) is then

ϕ(1) = c0 +
c1
r
. (57)
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For ϕ(0) we have

ϕ(0) = d0 +
d1

r
− κm2

6
r2 . (58)

The boundary conditions ϕ(n)′(0) = 0, impose that the
fields are regular at 0, and so we have no 1/r term, i.e.
c1 = d1 = 0, and finally

τ = (τ0 + ετ1)e−
κm2

6 r2 + . . . (59)

where we have redefined the constants of integration. In-
side the source and for small ε, τ decreases exponentially
fast.

We can now obtain a. Using Eq.(50) we have

a(0)′ + εa(1)′ = ε
τ2
0

2

(
e−

κm2

3 r2
)′

, (60)

and therefore

a(0) = cste , (61)

a(1) =
τ2
0

2
e−

κm2

3 r2 + cste . (62)

The axion field is then given by

a = a0 + ε

(
a1 +

τ2
0

2
e−

κm2

3 r2
)

+ . . . . (63)

We see that the axion and dilaton fields only evolve when
ε 6= 0.

3. Matching to the exterior solution

The continuity of τ and a at r = R reads

(τ0 + ετ1)e−
κm2

6 R2

=
β

cosh
(
βγ
R + δ

) , (64)

a0 + ε

(
a1 +

τ2
0

2
e−

κm2

3 R2

)
= α− β tanh

(
βγ

R
+ δ

)
.

(65)

We use the continuity equations for ϕ′ = τ ′/τ and a′/τ2

−κm
2

3
R = tanh

(
βγ

R
+ δ

)
βγ

R2
, (66)

− εκτ2
0m

2

3(τ0 + ετ1)2
R =

γ

R2
. (67)

We have thus eight integration constants, i.e. α, β, γ, δ
for the exterior solution and τ0, τ1, a0, a1 for the interior
solution. Recall that

γ = −εm
2

3
R3 , (68)

γα = −m2

∫ R

0

drr2(κ+ εa(r)) . (69)

So γ is fixed independently of the others and α depends
on a0 and a1. We are left with 6 parameters. With a sys-
tem of 4 continuity constraints as given above, we end up
with 2 degrees of freedom. These can be parameterised
by the values of the fields at infinity τ∞ and a∞ which
determine the full solution.

D. Screening revisited

We can now revisit the conditions under which the
gravitational deviation from GR in the Jordan frame is
small. Using

γα = − 1

3M2
p

∫ R

0

drr2(κρ(r) + a(r)A(r)) , (70)

and γ = −εm2R3/3 we obtain the identity

−εm2R3

3
α = −m2

(
κ
R3

3
+ ε

∫ R

0

drr2a(0)(r)

+ ε2
∫ R

0

drr2a(1)(r)

)
. (71)

As a result, the expansion of α is singular in the limit
ε� 1 and becomes

α =
κ

ε
+ a0 + εa1 + . . . (72)

implying that the outside solution is very sensitive to
small values of ε. In particular, we see that the limit of
small ε � 1 leads to a large value for the exterior axion
field. Using Eq.(34) we obtain

β =

√
τ2
∞ +

(κ
ε

+ a0 − a(0)
∞

)2

(73)

where we have neglected the terms of order ε. Now unless
a∞ turns out to be of order 1/ε and cancels exactly the
term in κ/ε, we find that for generic boundary values at
infinity

β =
κ

ε
+ a0 − a(0)

∞ + . . . (74)

when κ = O(1) and ε � 1. The matching conditions at
r = R simplify as we notice that m2R2/2 = GNM/R
where M is the mass of the object. This is nothing but
the Newtonian potential of the compact object at its sur-
face which is always small in our Newtonian approxima-
tion, its value being close to 10−6 for the Sun. We then

deduce using (65) that a0 = a
(0)
∞ to leading order and

similarly

tanh δ = 1− ε2

κ

τ2
0

2
+ . . . (75)

implying that δ is always large. As a result we have
εβ tanh δ = κ+ . . . . and the PPN parameters are simply
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the ones of a scalar tensor theory with a coupling κ/
√

6

γPPN =
3− κ2

3 + κ2
+O(ε) , (76)

and

βPPN = 1 +O(ε2) . (77)

In this limit βPPN can be arbitrarily close to 1 for small
ε, but not γPPN . Small deviations of γPPN from unity
are only achieved for very small κ, a result which does
not differ from Brans-Dicke’s and signals that screening
does not take place. Screening can only take place when

a(0)
∞ − a0 =

κ

ε
. (78)

which corresponds to a specific choice for the axion field
at infinity. As the theory has no scalar potential, the
value of the axion field at infinity is not obtained by
minimising an effective potential like in the chameleon
mechanism. Hence, the boundary value of the axion field
must emerge from the cosmological dynamics. We will
study this below.

Our analysis has assumed that A = ερ. As soon as the
dependence of the matter action on the axion is weak,
i.e. A/ρ ∼ ε � 1, the same qualitative results follow as
γ will be of order ε and γα of order κ. This reasoning is
independent of the details of the model inside the source.

E. The effective metric

As we have seen, the generic absence of screening leads
to the coupling of a compact of object to be equivalent
to the one of a point particle with coupling κ/

√
6. This

is the coupling of matter to the dilaton. The fact that
the axion couples to the matter action too implies that
compact objects do not follow the geodesics of the Jordan
metric but the ones of an effective metric whose presence
can be inferred from the small field expansion

δSm = −
∫
d4x
√
−g
(
∂ lnA

∂ϕ
δϕ− ε

2
δa

)
T (79)

where the variation of the fields is taken around the back-
ground values for the dilaton and the axion. Notice that
the axion and the dilaton fields both couple to the trace
of the energy momentum tensor. Let us define

B(ϕ, a) = A(ϕ)e−εa/2 (80)

then the coupling to matter can be written as

δSm = −
∫
d4x
√
−g
(
∂ lnB

∂ϕ
δϕ+

∂ lnB

∂a
δa

)
T (81)

corresponding to the coupling of a two-field scalar-tensor
theory where the effective metric is

geff
µν = B2(ϕ, a)gµν . (82)

As a result, compact objects evolve along the geodesics
of the effective metric and not the Jordan metric.

This can be confirmed by analysing the geodesic equa-
tions for pressureless matter for the axio-dilaton theo-
ries. Indeed the Klein-Gordon equations and the Bianchi
identity ∇µ(Rµν− R

2 gµν) = 0 imply the non-conservation
equation

∇µTµν =
1

2
(κT∂νϕ−A∂νa) . (83)

For non-relativistic matter, the energy momentum tensor
is simply

Tµν = ρuµuν with uµu
µ = −1 . (84)

In this section, dots will be denoting the time derivative
along the particle lines defined by uµ, i.e. Ẋ ≡ ∇uX =
uµ∇µX . For scalar quantities X, this also corresponds to
the derivative with respect to the proper time of a particle
moving with velocity uµ. We define the local Hubble
rate as 3h ≡ ∇µuµ . The non-conservation equation then
becomes

ρ̇uµ + 3hρuµ =
1

2
(κρ∂µϕ+A∂µa) . (85)

Contracting with uµ and using uµuµ = −1 we get the
generalised continuity equation

ρ̇+ 3hρ = −1

2
(κρϕ̇+Aȧ) . (86)

We recognise the coupling function B

B ≡ e− 1
2 (κϕ+εa) (87)

when ε = cste. We can define a conserved density ρcon

in the Einstein frame such that

ρ = Bρcon (88)

as

ρ̇con + 3hρcon = 0 . (89)

This is the conserved matter density in the axion-dilaton
setting. Combining Eq.(85) and Eq.(86), we obtain the
modified Newton’s Law

u̇µ − 1

2
(κϕ̇+ εȧ)uµ =

1

2
(κ∂µϕ+ ε∂µa) . (90)

This reads

u̇µ +
d lnB

dη
uµ = −∂µ lnB. (91)

where η is the proper time. Defining by m0 the mass
of the particles, we find that the effective mass of these
particles in the Einstein frame is dressed by the scalar
field and becomes

m = B(ϕ, a)m0. (92)
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This follows from the identification ρ = mδ(4)(xµ−xµ(τ))
along the particle’s trajectory and ρcon = m0δ

(4)(xµ −
xµ(τ)). The momentum of each particle becomes

pµ = muµ. (93)

Newton’s law then becomes

ṗµ = −m∂µ lnB. (94)

As a result, a force deriving from the potential lnB is
exerted on each particle whose mass is also field depen-
dent. For instance in the non-relativistic limit and in the
presence of gravity, Newton’s law becomes

dpi

dt
= −m∂iΦ (95)

where ΦN is Newton’s potential and

Φ = ΦN + lnB (96)

combines the effects of gravity and the scalar field. This
modification of Newton’s law is nothing but the one
which can be derived from the coupling of matter to the
effective metric geff

µν . As a result we have confirmed that
compact objects do not follow the geodesics of the Jor-
dan metric but the one of the effective metric. We will
analyse the cosmological consequences of this result be-
low.

F. The effective charge

Let us come back to the effective scalar charge carried
by a compact object. We have seen that in the ε � 1
limit and unless the fields at infinity take special values,
which should be adjusted cosmologically, the objects are
not screened. Far away from a given object we expect
the acceleration of another object due to the scalar field
to fall off as

ai ' −2Q2GNM

r3
ri (97)

where Q is the scalar charge of both objects. Here M is
the mass of the object responsible for the acceleration of
the second body. The charges of both objects are equal
as no screening takes place. Using

lnB = −1

2
(κϕ+ εa) ⊃ 1

2
(κ ln coshX(r) + εβ tanhX(r))

(98)
and identifying this to −2Q2GNM/r at large distance we
find that far away from the object

2Q2GNM = −γβ
2

(κ tanh δ + εβ(1− tanh2 δ)) (99)

and for ε� 1 we retrieve that

Q =
κ√
6

(100)

up to corrections of order ε2. The resulting interaction
including gravity is equivalent to rescaling Newton’s con-
stant as

Geff = (1 + 2Q2)GN (101)

with Φ = −GeffM/r. As expected in this limit corre-
sponding to ε � κ, the coupling of the axion field to
matter becomes negligible for far-away objects and the
coupling is the same as in the Jordan frame.

In conclusion, we find that κ <∼ 10−3 for the Cassini
test to be evaded. This is a very small value which could
only be avoided if the cosmological values of the axion
and dilaton fields were tuned cosmologically.

G. Numerical integration

In this section, we will find numerical solutions of the
equations around a massive sphere.

1. Setting the numerical problem

The Klein-Gordon equations with the constant source
inside a ball of radius R have the form

τ ′′ +
2τ ′

r
− (τ ′)2

τ
+

(a′)2

τ
+
κρ0τ

3M2
p

θ(r) = 0 , (102)

a′′ +
2a′

r
− 2a′τ ′

τ
+
ερ0τ

2

3M2
p

θ(r) = 0 , (103)

where θ(r) is the step function that goes from 1 to 0 at the
radius of the source R. We introduce the characteristic

length L =
√

3M2
p/ρ0 = m−1, and write r = r̂L. We

obtain the dimensionless equations:

τ ′′ +
2τ ′

r̂
− (τ ′)2

τ
+

(a′)2

τ
+ κθ(r̂)τ = 0 , (104)

a′′ +
2a′

r̂
− 2a′τ ′

τ
+ εθ(r̂)τ2 = 0 , (105)

which we solve with the initial conditions τ ′(0) = a′(0) =

0. We also regularise the step function, e.g.: θ̂(r̂) =
1
2 (tanh

(
N R̂−r̂

R̂

)
+1) to have a transition of width∼ R̂/N .

Notice that R̂ = R/L =
√

2GM/R, i.e the square root
of the ratio of the Schwarzschild radius to the radius of
the source. For the Sun R̂� = 2.05× 10−3.

2. Results

We see in the example in Fig.1 that we obtain a perfect
match with the exterior solution, but also with the first
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order interior solution. The variations of the fields are
relatively small, i.e. of order 10−6 relative to the value
at the centre. For other sets of parameters the variation
increases with the initial value at the centre and of course
the value of κ and ε.

0.000 0.005 0.010 0.015 0.020
r̂

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

[×
1
0
−

6
]

τ− τ0 numerical
τ− τ0 analytic 
a− a0 numerical
a− a0 analytic
r̂= R̂ ¯

FIG. 1: The field profiles for R̂ = R̂�, κ = 1 and
ε = 0.5. The initial values are taken such that

τ0 = a0 = 1, τ ′(0) = a′(0) = 0.

The equations that we have used in the flat metric
approximation are valid only for

r � GM , r � |γβ| . (106)

With R = R̂L, we have

r � GM ⇐⇒ r̂ � R̂3

2
. (107)

For the Sun, R̂3
� ∼ 10−8. One can trust our description

of the static solution apart from a small region around
the origin. Similarly, we have γ = −εR̂3L/3, so we get

r � |γβ| ⇐⇒ r̂ � R̂3 εβ

3
, (108)

which excludes a very small region around the origin.

IV. AXIO-DILATON COSMOLOGY

A. Two fluid model

In the following, we will concentrate on models where
two fluids are present, i.e. the baryons and Cold Dark
Matter (CDM) with couplings determined by κ to the
dilaton and εB,C to the axion. We have seen that κ and
εB , i.e. the coupling of the baryons to the axion, must
be small to comply with the solar system tests unless
the fields take special values at infinity. This translates

into a choice of boundary conditions for the fields on
cosmological scales now. We will see that this situation
is not generic and that starting from initial conditions in
the radiation era which do not perturb the background
cosmology, the cosmological dynamics do not drive the
fields to special values now.

The energy-momentum tensor of matter is taken to be

TB,Cµν = ρB,Cu
B,C
µ uB,Cν (109)

corresponding to the baryons B and CDM C. We will
also assume here for definiteness

A = −εCTC − εBTB (110)

where TB,C = −ρB,C are the baryonic and CDM densi-
ties respectively. The matter energy momentum tensors
are not conserved but satisfy the non-conservation equa-
tions

∇µTµνi =
1

2
(κTi∂

νϕ+ εiTi∂
νa) (111)

where i = B,C. This implies that the total energy mo-
mentum tensor

Tµν = TµνB + TµνC (112)

satisfies the non-conservation equation

∇µTµν =
1

2
(κT∂νϕ−A∂νa) (113)

which is a consequence of the Bianchi identity.
In this section, we will denote the time derivative along

the particle lines, defined by uµi , by d/dτi = uµi ∇µ We
define the local Hubble rate as 3hi ≡ ∇µuµi . Notice that
the covariant derivatives are calculated in the Einstein
frame, hence this is the local Hubble rate along the par-
ticle lines as measured using the geometry of the Einstein
frame. The non-conservation equations for each species
then become

dρi
dτi

+ 3hiρi = −1

2
(κϕ̇+ εiȧ)ρi . (114)

We define the coupling function Bi

Bi ≡ e−
1
2 (κϕ+εia) (115)

when εi = cste. We can now introduce a conserved den-
sity ρcon,i in the Einstein frame such that

ρi = Biρcon,i (116)

and

dρcon,i

dτi
+ 3hiρcon,i = 0 . (117)

This is the conserved matter density in the axio-dilaton
setting. Similarly we obtain the modified Newton’s Law

duµi
dτi

+
dχi
dτi

uµi = −∂µχi (118)
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where

χi ≡ lnBi. (119)

For each species, we can define an effective metric

giµν = B2
i gµν (120)

which corresponds to the Jordan frame for the given
species. As BB 6= BC , we see that the Jordan frames
for CDM and the baryons do not coincide.

We will apply this formalism first to the background
cosmological case and then to the cosmological perturba-
tions.

B. Spatially flat cosmology

We are interested in the cosmology of a homoge-
neous and isotropic Universe in the presence of the
axio-dilaton fields. The FLRW (Friedmann-Lemâıtre-
Robertson-Walker) metric reads

gµνdx
µdxν = −dt2 +R2(t)γijdx

idxj

= −dt2 +R2(t)(
dr2

1− kr2
+ r2dΩ2)

(121)

where R is the scale factor. We define as usual the Hubble
rate as H = Ṙ/R. In the following we will focus on the
spatially flat case k = 0.

We assume that the fields are irrelevant in the early
Universe up until some redshift zi which will be typi-
cally the matter-radiation equality. Indeed, in the radi-
ation era the matter density is negligible and therefore
the fields are hardly influenced by their matter couplings.
As a result they remain constant if their initial velocities
vanish. This also guarantees that the influence of the
axio-dilaton system on Big Bang Nucleosynthesis (BBN)
is minimal. We will choose the initial conditions for the
fields ϕ , a and their derivatives such that they vanish at
zi. This does not correspond to the values of the fields
for which screening takes place. On the other hand, this
entails a vanishing energy density for the axion and dila-
tons initially.

Each species has its own Jordan frame with the back-
ground metric

giµνdx
µdxν = −dt2i +R2

i dx
idxi (122)

where the cosmic time and the scale factor are defined
by

dti = Bidt, Ri = BiR. (123)

As CDM is not subject to the precision tests in the solar
system, we will allow for large values of εC . Moreover
we will consider the effects on the scale factor in the
Jordan frame of the baryons RB = BBR corresponding
to the conservation of baryonic matter. We will use the

convention that RB = 1 today and identify the redshift
as detected from transition lines of atoms by

1 + z = R−1
B . (124)

Although we will focus on the dynamics in the baryon
frame, we will first study the equations of motion in the
Einstein frame.

C. The Klein-Gordon equations

We look for time-dependent solutions for the scalar
fields τ(t) and a(t) of the Klein-Gordon equations

τ̈ + 3Hτ̇ − τ̇2 − ȧ2

τ
− κτρ

3M2
p

= 0 , (125)

and

ä+ 3Hȧ− 2τ̇ ȧ

τ
− τ2A

3M2
p

= 0 . (126)

Here the total matter density is ρ = ρB + ρC and
A = εBρB + εCρC . Notice that these equations are valid
both in the radiation and matter eras. In the radiation
era, the source terms depend on the matter density only
as the trace of the radiation energy momentum tensor
vanishes. As a first approximation, we will neglect the
source terms in the radiation era. This implies that ȧ ≈ 0
and φ̇ ≈ 0 and the field hardly move during the radiation
era. In our numerical analysis, we will be interested in
the physics in the matter era and will fix the initial con-
ditions at matter-radiation equality. A detailed analysis
of the model from the end of inflation through the radi-
ation to the matter era is left for future work. We will
consider that the fields start evolving significantly when
the matter era begins.

D. The continuity equations

The energy density and pressure carried by the two
scalar fields are given by

ρf =
3M2

p

4
(
τ̇2 + ȧ2

τ2
) , (127)

and

pf =
3M2

p

4
(
τ̇2 + ȧ2

τ2
) , (128)

corresponding to a perfect fluid with equation of state
ωf = 1. Using the Bianchi identity and the Einstein
equation in the Einstein frame, we obtain that the total
energy is conserved, i.e.

ρ̇+ ρ̇f + 3H(ρ+ ρf + P + Pf ) = 0 , (129)
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where the pressure terms have been included. This leads
to

ρ̇+ ρ̇f + 3H(ρ+ 2ρf ) = 0 . (130)

Using the identity

ρ̇f =
3M2

p

4

2

τ3
(τ τ̇ τ̈ + τ ȧä− τ̇3 − τ̇ ȧ2) (131)

and the expression of τ̈ and ä in the Klein-Gordon equa-
tions Eq.(125) and Eq.(126), we get

ρ̇f + 6Hρf =
1

2

(
κρ
τ̇

τ
+Aȧ

)
. (132)

Finally using the continuity equation we obtain

ρ̇+ 3Hρ+
1

2
(κρϕ̇+Aȧ) = 0 (133)

as we have argued previously. This is associated to the
non-conservation equations per species

ρ̇i + 3Hρi +
1

2
ρi(κϕ̇+ εiȧ) = 0. (134)

This can be integrated exactly and leads to

ρ = ρB + ρC = BB
ρ0B

R3
+BC

ρ0C

R3
. (135)

Notice that if we define

ρ = B
ρ0

R3
(136)

then B = λBBB + λCBC where the fraction of baryons
and CDM are λi = ρ0i

ρ0
where ρ0 = ρ0B+ρ0C . In practice

we have λB = Ω0B

Ω0B+Ω0C
where Ω0B ' 0.022 and Ω0C '

0.12 from the Planck experiment [3]. Here and in the
following we normalise the density ρ0 to the Planck value
as deduced from early time physics compared to the late
time effects on the matter density that we will study
below.

E. The Friedmann equations

The Friedmann equation is obtained from the (00)
component of the Einstein equation and becomes

H2 =
ρ

3M2
p

+
ρf

3M2
p

+
ρΛ

3M2
p

, (137)

where we have introduced a cosmological constant as-
sociated to the energy density ρΛ. The Raychaudhuri
equation from the (ii) Einstein equation reads

R̈

R
= − 1

6M2
p

(ρ+ ρf + ρΛ + 3(P + Pf + PΛ)) , (138)

leading to

R̈

R
= − 1

6M2
p

(ρ+ 4ρf − 2ρΛ) . (139)

These equations are defined in the Einstein frame and
will be transformed into the effective frame for baryons
below.

We thus have the following system of differential equa-
tions for R, τ and a only:

τ̈ + 3Hτ̇ − τ̇2 − ȧ2

τ
− κρ(τ, a)

3M2
p

τ = 0 ,

ä+ 3Hȧ− 2τ̇ ȧ

τ
− ερ(τ, a)

3M2
p

τ2 = 0 ,

Ṙ = H(τ, a)R ,

(140)

with the Friedmann equation

H2 =
ρ

3M2
p

+
ρf

3M2
p

+
ρΛ

3M2
p

,

ρ = BB
ρ0B

R3
+BC

ρ0C

R3
, ρf =

3M2
p

4

(
τ̇2 + ȧ2

τ2

)
,

d lnBi
dt

= −1

2
(κϕ̇+ εiȧ) .

(141)

We will solve these equations numerically for different
values of ε and κ.

F. Dynamics in the effective baryon frame

In the baryon frame, the Hubble rate is

HB ≡
d lnRB
dtB

=
H

BB
+
dχB
dtB

. (142)

The conserved baryon density in the baryon frame is sim-
ply

ρ̃B ≡ ρconB =
ρ0B

R3
B

. (143)

In this frame, CDM is not conserved but an observer
fitting the evolution of the Universe with a prior that
CDM is also conserved in the same frame as the baryons
would identify the conserved CDM density as

ρ̃C =
ρ0C

R3
B

, (144)

and would write an effective Friedmann equation in the
baryonic frame

H2
B ≡

8πGB
3

ρ̃B +
8πGC

3
ρ̃C +

8πGN
3

ρ̃Λ , (145)

where we have used 8πGN = 1/M2
p . This allows one

to identify the effective Newton constants GB,C and the
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dark energy component ρ̄Λ. None of these constants are
constant in the baryon frame. In practice, the effective
Newton constants are determined by

GB = B2
BGN , GC = BBBCGN (146)

i.e. the two Newtonian constants evolve differently. The
dark energy component is simply defined as the com-
plement to the baryon and CDM contributions in the
baryonic Friedmann equation.

As long as the fields do not evolve rapidly, i.e. at the
beginning of the matter era we have HB ≈ H/BB . The
dark energy component becomes

ρ̃Λ =
ρf + ρΛ

B2
B

. (147)

In the late Universe, this identification is not valid any-
more and a numerical integration of the equations of mo-
tion is necessary.

The same Friedmann equation in the baryon frame can
be written as

ΩBB + ΩBC + ΩBΛ = 1 (148)

where the energy fractions ΩBi , i = B,C,Λ are identified
in the baryon frame and are such that

ΩBB,C =
8πGB,C ρ̃B,C

3H2
B

, ΩBΛ =
8πGN ρ̃Λ

3H2
B

. (149)

The deviations of the energy fractions from ΛCDM are
represented in Fig. 5.

G. Deviations from ΛCDM and observational
constraints

We will first define the effective gravitational constant
that an observation would measure. For example, Big
Bang Nucleosynthesis (BBN) puts constraints on the
variation of such a Geff [33, 34]:

|∆G/G| ≡

∣∣∣∣∣Gtoday
eff −GBBN

eff

GBBN
eff

∣∣∣∣∣ < 0.4 . (150)

This assumes a Hubble evolution similar to that of
ΛCDM in the matter-dominated era. In our model, since
observations are made in the baryon frame, the corre-
sponding Geff satisfies

H2
B =

8π

3
Geff

[
cρ
R3
B

+ ρΛ,B

]
, (151)

for some cρ. In order to have Geff(zi) = GN initially,
we set cρ = ρ0, as defined by Eq.(136), i.e we normalise
Newton’s constant by using the Planck normalisation in
the early Universe. Since the physics between BBN and
z = zi is the same as in the standard model, Geff = GN
till z = zi. Later the relative variation of the effective

coupling to baryons can be computed between z = zi
and today:

∆GB
GB

∣∣∣∣
BBN→today

=
∆GB
GB

∣∣∣∣
zi→today

. (152)

We can further constrain the possible deviations of the
Hubble rate from the standard model by imposing that
this should be less than the discrepancy appearing in the
H0 tension. Indeed, there are two diverging determina-
tions of the present time Hubble rate H0 with a relative
difference of order 10% [28]. In the axio-dilaton theory,
the fact that Newton’s constant varies implies that the
Hubble now differs from the corresponding Hubble rate
in the standard model . We have normalised the Hubble
rates to coincide at the beginning of the matter era. This
motivates looking for parameters that satisfy∣∣∣∣∆HB

HB

∣∣∣∣
tension

≡
∣∣∣∣HB(z = 0)−HSM(z = 0)

HSM(z = 0)

∣∣∣∣ < 0.1 ,

(153)
where HSM is the Hubble rate in the standard model.
Another stringent constraint comes from BAO (Baryon
Acoustic Oscillations) [24] which specify that the devia-
tions of HB(z) for 0.2 <∼ z <∼ 2.5 should less than around
3 percent [24]∣∣∣∣∆HB

HB

∣∣∣∣
BAO

≡∣∣∣∣HB(z ∈ [0.2, 2.5])−HSM
B (z ∈ [0.2, 2.5])

HSM
B (z ∈ [0.2, 2.5])

∣∣∣∣ < 0.03 .

(154)

This implies that the differences between Λ-CDM and the
axio-dilaton models must appear late in the evolution of
the Universe. We will see that the BAO constraint is the
most stringent one amongst the ones we have selected. Of
course a much more precise numerical study is required
to constrain the parameter space. This is left to future
work.

We also consider the effective equation of state of dark
energy. In GR with matter in addition to a fluid X with
equation of state w, the deceleration parameter

q0 := −

∣∣∣∣∣ R̈

RH2

∣∣∣∣∣
today

. (155)

is given by

q0 =
1

2
(Ωm,0 + (1 + 3ω)ΩX,0) (156)

where Ωi,0 = ρi(z = 0)/3M2
pH

2
0 . Observations give thus

an estimate for w depending on Ωm,0. For Ωm,0 ∼ 0.3,
which can be obtained independently, this leads to [35,
36]

w ∼ −1± 0.1 . (157)
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Recent constraints and future prospects can be found in
[37]. We now define the effective equation of state

weff ≡
1

3

2qB,0 − Ωm,0
ΩΛ,0

− 1 , (158)

where:

qB,0 = −
∂2
tBRB

RBH2
B

∣∣∣∣
today

. (159)

Taking Ωm,0 ' 0.3, we must impose the constraint

|∆w| ≡ |weff + 1| <∼ 0.1 . (160)

We will use this bound in what follows as a guiding princi-
ple. We are not trying to give a precise fit to the data but
an indication on the parameter space compatible with
cosmology.

H. Numerical integration

1. Dimensionless equations

In the following, we will use L =
√

3M2
P /ρ0 as the

unit of time and length. Here ρ0 is defined via Eq.(135).
We will obtain quantities as functions of redshift starting
at matter-radiation equality. We define the system of
dynamical equations with the number of efolds N and ϕ
such that R = eN and τ = eϕ. We get

ϕ̈ = −3Ĥϕ̇− ȧ2e−2ϕ + κρ̂

ä = −3Ĥȧ+ 2ϕ̇ȧ+ ερ̂e2ϕ

Ṅ = Ĥ

with

Ĥ2 = ρ̂+ ρ̂f + ρ̂Λ, ρ̂ = Be−3N ,

ρ̂f =
1

4
(ϕ̇2 + ȧ2e−2ϕ) .

(161)

Here ρ̂Λ corresponds to ρΛ/ρ0 where ρΛ is the density
associated to the cosmological constant. In ΛCDM, ρ0

is also the value of the matter density today, so that
ρ̂Λ = ΩΛ,0/Ωm,0 ' 7/3 in ΛCDM. It is convenient to
work in conformal time η, such that Rdη = dt, implying
that

ϕ′′ = −2Ĥϕ′ − a′2e−2ϕ + κρ̃

a′′ = −2Ĥa′ + 2ϕ′a′ + ερ̃e2ϕ

N ′ = Ĥ
(162)

with

Ĥ2 = ρ̌+ ρ̌f + ρ̌Λ , (163)

where the derivatives are now with respect to η. We have
rescaled all the densities as ρ̌ = e2N ρ̂ and similarly for
the scalar and dark energy parts.

2. Results

There are four main parameters: κ, εB , εC and ρ̂Λ. Fol-
lowing our discussion about screening in §III D and our
identification of the effective metric in §IV A, we will first
take κ and εB small. Taking κ = εB = 10−3 turns out to
be enough to satisfy solar system constraints. Taking one
of them to be one order of magnitude higher leads to a
violation of the cosmological constraints when εC is large
enough. Numerically we study the cosmological evolu-
tion for a large range of values of εC and ρ̂Λ. We always
start the cosmological evolution at zi = 3400 ≈ zeq.

A first picture of the deviations from ΛCDM can be ob-
tained by focusing on the cosmological tests (Newton’s
constant, the equation of state, the Hubble parameter
today and in z ∈ [0.2, 2.5] relative to that of the stan-
dard model) we defined above and their consequences as
viewed in the ε − ρ̂Λ plane. This is shown in Fig.2. We
show their values only for the region in which the four of
them satisfy the observational constraints. It turns out
that the constraint from BAO is always the strongest.
We illustrate the cosmological evolution using five sets
of parameters in Figs.(4,6,5). Standard model quantities
are computed analytically from the ΛCDM solutions in
the matter dominated era with ΩΛ,0/Ωm,0 = 7/3.

We recover that the smallest deviations to ΛCDM are
for εC = 0, ρ̂Λ ' 7/3. We observe that deviations of H0

depend mostly on ρ̂Λ while deviations of G are essentially
given by εC . Additionally, we see deviations which are
both positive and negative for H0, the sign depending on
the sign of the deviation of ρ̂Λ compared to ≈ 7/3. On
the other hand, there are only negative deviations of G.
As we observe in Fig.4, εa increases and so GB decreases.

For both H0 and weff , the deviations due to εC tend
to be compensated by deviations of ρ̂Λ. This can be un-
derstood from the fact that the fields act as a fluid of
equation of state wf = 1 opposite to that of the cosmo-
logical constant wΛ = −1. They have opposite effects on
the cosmic acceleration.

Moving on to the dynamical curves, we see in Fig.4
the evolution of the fields. The axion a increases with z,
which can be expected as the source term in its Klein-
Gordon equation (126) has a factor ε > 0 and initially
dominates. On the other hand, ϕ slightly increases at
first but eventually decreases much more. This can be
expected, as the source term in its Klein-Gordon equation
has a factor κ > 0 which initially dominates, and later the
source term is dominated by the axion term proportional
to −ȧ2. The deviation from the constant and vanishing
fields increases with ε as we can expect.

Fig.5 shows that the evolution of the energy content
of the Universe in both the Einstein and baryon frames.
As the couplings κ and εB are small, the difference be-
tween the Einstein and the baryon frame quantities is
negligible. In the matter-dominated era we have a slight
increase in the field density and a corresponding decrease
of the matter density. In the very late Universe close to
a vanishing redshift the proportion of the cosmological
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FIG. 2: We show the values of the parameters which satisfy the cosmological tests for κ = 10−3 and εB = 10−3.
602× 602 points are plotted. The coloured regions satisfy the four constraints: |∆H0/H0| < 0.1, |∆w| < 0.1,

|∆G/G| < 0.4, |∆H/H|BAO < 0.03.

constant increases and we get the usual values 0.3 and
0.7 for matter and Λ with some deviations of the order
of 0.01.

As a result we can see that generically the matter con-
tents of the Universe are modified. First of all, the axion
and dilaton energy densities evolve from being negligible
initially to a long phase in the matter era where they re-
main nearly constant before dropping to lower values in
the last few efoldings of the Universe. This has impor-
tant consequences as the dynamics of the axio-dilaton
system, and in particular the variation of the conformal
factors BB,C imply that the matter fractions of the Uni-
verse deviate from their ΛCDM values. We also notice
that the deviation can be negative by a few percent. This
is important as this will hamper the growth of structure
and entail a compensation of the extra growth due to the
attractive scalar forces by the lower amount of matter
in the Universe. This will result in a reduced growth of
structure in these models.

Fig.6 shows the evolution for the cosmological quan-

tities of interest. In ΛCDM, both ∆H0/H0 and ∆G/G
vanish. We observe deviations that gets stronger as the
parameters move away from the light regions and into
the darker ones of Fig.2. Both also present a maximal
negative deviation around z ∼ 2. At smaller redshifts the
deviation shrinks. This can be attributed to the effect of
the cosmological constant which becomes non-negligible
at late times. In the case of the red, orange and pur-
ple curves, the deviation crosses 0 and becomes positive.
They have in common that their values for the cosmo-
logical constant are stronger than the standard model
value: ρ̂Λ

>∼ 7/3. Finally, notice that the evolution of
Geff shows a negative deviation from Newton’s constant
in GR. This has two origins which can be traced to its
definition (151). First of all, as the effective Newtonian
constant is normalised with the Planck normalisation for
ρ0, the fact that in Fig. 5 we find that there is less mat-
ter in the recent Universe than in ΛCDM implies that
Geff/GN should be less than unity. Another important
effect is that the conformal factors BB,C are less than
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FIG. 4: The Field evolutions for κ = 10−3 and εB = 10−3 as a function of the redshift z defined in the baryon frame.
The values of εC and ρ̂Λ for each colour are given in Fig.3.

unity too, implying a reduction of Geff compared to GN .
These effects could have been compensated by the extra
pull arising from the scalar forces. This is not the case.

Fig.6 also shows weff . It is defined by generalizing (158)

weff(z) :=
1

3

(
2qJ(z)− Ωm,0

ΩΛ,0
− 1

)
. (164)

This can simply be seen as a rescaling of the deceler-
ation parameter q(z). In ΛCDM it is easy to see that
weff goes from 0 to −1 (and equivalently, q from 0.5 to
−0.55). Fig.6 shows that for parameters consistent with
observation the deviations are not drastic.

3. Cosmological constraint on κ

We now concentrate on another scenario where the
coupling of the dilaton is relaxed from its solar system
bound. This is of interest if the dilaton is screened in the
solar system and partially on cosmological scales. The
largest dilaton coupling allowed by cosmological data is
smaller than the supergravity motivated value κ = 1.

We fix εB = 10−3, and we look for the highest value of
κ such that there are some values of εC and ρ̂Λ such that
the observables are within the observational bounds. We
use a precision of the order 10−3 relative to the order of
magnitude of the parameters. We find that the maximal
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order of magnitude of κ is 0.1. More precisely, if we fix
also εC and try to find some valid values of ρ̂Λ, we find
that for εC = 0.1, κlim = 0.110; and for εC = 0.001,
κlim = 0.124.

This is illustrated in Fig.7. Since BAO is the strongest
constraint, we look only at the deviations of the Hubble
rate in the BAO interval. We can see that for favourable

values of the other parameters (εC = εB = 10−3, ρ̂Λ =
7/3), κ is allowed at least up to 0.12. But for κ = 0.13 the
BAO constraint is no longer satisfied. This is of course
much less than unity and signals that the dilaton must
be cosmologically screeened.
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V. COSMOLOGICAL PERTURBATIONS

In this section, we study the growth of perturbations
for the axio-dilaton models in the matter era in the sub-
horizon and quasi-static approximation [38]. We will ob-
tain the equation governing the evolution of the density
contrast δρ/ρ [39].

A. Cosmological perturbations

We focus on small perturbations to the background
solutions. We are interested in structure formation and
will evaluate the time evolution of the baryon and CDM
density contrasts simultaneously [40]. We only consider
the scalar modes of the perturbation of the metric. Using
Newton’s gauge in the Einstein frame we have

gµνdx
µdxν = R2(η)(−(1 + 2ΦN )dη2+(1−2ΦN )γijdx

idxj)
(165)

where γij = δij . The cosmological perturbations are de-
fined by

ρi = ρi + δρi = ρi(1 + δi), u
µ
i =

1

R
(1 + δv0 , ~vi) (166)

for each field. We also perturb the fields and the axion-
matter coupling:

ϕ = ϕ+ δϕ , (167)

a = a+ δa , (168)

A = A+ δA . (169)

All the symbols with a bar denote background values.
The velocity uµi of the two fluids are given by

uµi =
1

R
(1− ΦN , ~vi) . (170)

at linear order. The perturbed Newton’s law becomes for
each species

∂η~vi + (H+ ∂ηχi)~vi = −
~∇
R2

(ΦN + δχi). (171)

We recognise the scalar force in the Euler’s equation due
to the interaction with dark matter and the friction term
whose origin is the modified Hubble rate Hi = H+ ∂ηχi
in conformal time and in the Einstein frame.

B. Density contrast of sub-horizon modes in
quasi-static regime

We focus on sub-horizon modes such that k � H and
in the quasi-static regime ∂η ∼ H. Using the Einstein
equation

R00 −
3

2τ2
(∂ητ∂ητ + ∂ηa∂ηa)− 1

M2
p

(T00 −
1

2
Tg00) = 0 ,

(172)
and the curvature perturbation

δR00 = 3HΦ′N + ∆ΦN ≈ ∆ΦN , (173)

which reduces to the Laplacian of Newton’s potential as
3HΦ′N ∼ H2ΦN � k2ΦN ∼ ∆ΦN , the Poisson equation
then becomes

∆ΦN =
1

2M2
p

R2(ρ̄BδB + ρ̄CδC) . (174)

The perturbed Klein-Gordon equation for ϕ is

∆δϕ = − κ

3M2
p

R2(ρ̄BδB + ρ̄CδC) . (175)

Its structure is similar to the Poisson equation. Similarly
we obtain for the axion field

∆δa = − e2ϕ

3M2
p

R2(ρ̄BεBδB + ρ̄CεCδC) (176)
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FIG. 8: Growth rate for a few allowed parameters and in ΛCDM shown for redshifts in the baryon frame z ≤ 3.
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where we have systematically used the sub-horizon and
quasi-static approximations. The conservation equation
for each species implies that ρi = Biρicons where the
conserved density satisfies

dρicon

dτi
+ 3hiρicon = 0. (177)

In the subhorizon limit, we can identify δi ' δicons. This
is also the density constrast in the baryon frame as the
contributions of both δa and δφ to the change of frame
are negligible in the subhorizon limit. This implies that
the perturbed conservation equation becomes

δ′i = −~∇.~vi . (178)

Now we apply ~∇ to Eq.(171) and obtain

− δ′′i − (H+ χ′i)δ
′
i = − ∆

R2
(ΦN + δχi) . (179)

Using the Laplacians from Eq.(174), Eq.(175), and
Eq.(176) we finally deduce the growth equation for each
species in the subhorizon limit

δ′′i + (H+ χ′i) δ
′
i −

3

2
ΩBH2

(
1 +

κ2 + e2ϕε2B
3

)
δB

−3

2
ΩCH2

(
1 +

κ2 + e2ϕε2C
3

)
δC = 0

(180)

in terms of the matter fraction Ωi in the Einstein frame.
We find that the deviations from the standard model have
two origins. First there is the friction term depending on
Hi = H + χ′i which is specific to each species as the
two fluids couple differently to the axion. There is also
a modification of Newton’s constant for each species on
the two effective couplings

GiN = (1 + 2Q2
i )GN (181)

such that the perturbation equations become

δ′′i + (H+ χ′i)δ
′
i

−3

2
ΩBH2(1 + 2Q2

B)δB −
3

2
ΩCH2(1 + 2Q2

C)δC = 0 .

(182)

We have defined the effective couplings

Q2
i =

κ2 + e2ϕε2i
6

(183)

which parameterise the deviations from ΛCDM. We re-
trieve that in the absence of the εi’s, gravity is modified
by a factor κ2/6 like in the static regime around a com-
pact object. In the following, we will solve these equa-
tions numerically as a way of investigating the growth of
structure for the baryons and CDM.

C. Growth rate

We now focus on the growth rate for small redshifts
[41] as defined by

fi =
d ln δi

d lnRB
(184)

where the redshift is deduced from the baryonic scale fac-
tor. We represent the growth rates in Fig.8. We choose
as initial conditions δi(zini) � 1 and δ′i(zini)/δi(zini) ∼
Hini. We notice that the growth can be either enhanced
or disfavoured at small redshifts depending on εC and ρΛ.
On the other hand, the maximal deviation from ΛCDM
is at most five percent. We have also represented the
growth factors when κ is varied and both εB,C are small.
Notice that when κ is varied, the growth rate at small
redshift becomes smaller and smaller. This is also the
case when κ is fixed and εC is increased. As the effective
Newton constants should increase the growth thanks to
the presence of fifth forces between particles, we conclude
that the background evolution and the effective friction
have a drastic effect on the growth of structure. This can
be observed in Fig.5 where the matter density in the late
Universe decreases compared to ΛCDM as in [29] where
a similar effect was obtained and used to alleviate the σ8

tension. It would certainly be interesting to see if this
trend can be also present in the non-linear regime and
could have some consequences for the S8 tension where
less matter clustering is observed at late time than in-
ferred in the ΛCDM scenario [42] from the Planck data
[3]. The analysis of the S8 tension in this scenario is left
for future work.

Finally let us remark that we have not taken into ac-
count an important effect which would result from both
the fact that the effective equation of state weff (see Fig.
6) is not strictly equal to zero deep into the matter era for
z >∼ 2 and that the perturbations do not behave like in the
Einstein-de Sitter Universe with f 6= 1 (see Fig. 8). This
would imply that the Newtonian potential ΦN in (174) is
not strictly constant in the matter era. This could lead
to a large Integrated Sachs Wolfe effect (ISW) which is
tightly constrained and could appear in the galaxy counts
versus the CMB (Cosmic Microwave Background) cross-
correlations [43–45]. This will certainly restrict the avail-
able parameter space and constrain the possible devia-
tions of the growth factor from ΛCDM. A detailed study
of this effect is left for future work.

VI. CONCLUSION

The axio-dilaton model has a clear origin in string the-
ory. We have focused on the screening mechanism in-
troduced in [13] for a constant coupling of the axion to
matter and explicitly shown how it can only be effec-
tive when the field values at infinity are tuned to specific
values. These values should be determined cosmolog-
ically. We have studied the background cosmology of
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these models and shown that the cosmological values do
not correspond to the tuned values generically.

In the absence of explicit screening for the axio-dilaton
system which may require to introduce non-linear cou-
plings to matter and/or new fields [46] whose dynamics
would drive the couplings of the dilaton and the axion
to small values in the solar system and larger values cos-
mologically, we have employed a simple alternative and
considered two scenarios. In the first one, the coupling
of the dilaton and the axion to baryons is taken to sat-
isfy the solar system constraints and remain identical to
these values on large scales. Only the coupling to cold
dark matter is allowed to take much larger values. In this
case, we find that the coupling to cold dark matter must
be bounded. It turns out that the constraints from Bary-
onic Acoustic Oscillations (BAO) at small redshift are the
tightest and the present day Hubble rate does not deviate
from the Planck normalised one by more than three per-
cent. This is not enough to account for the H0 tension,
which lies at the ten percent level. Similarly, the growth
of structure is affected at the five percent level. Interest-
ingly, in these models growth is not always enhanced and
effectively a decrease in the growth rate is observed for
a large part of the parameter space of the model. This
follows from the fact that the growth increase due to the
scalar forces is compensated by the decrease of the mat-
ter density. This could have some relevance to the σ8

tension. We hope to come back to this suggestion in the
near future. We also consider the case where the axion
does not couple significantly to matter and the dilaton
couples with a strength κ reduced from the string theory
motivated example. We find that κ cannot be allowed
values of order unity and must be bounded around 0.1.
This entails that the dilaton must not only be screened
locally in the solar system, but also cosmologically.

Of course, our examples can be modified and the re-
sulting physics very different. For instance, the couplings
to matter of both the axion and the dilaton could become
non-linear and therefore lead to screening mechanisms
akin to the ones of the symmetron model for instance.
Another possibility would be that other fields could re-
lax to values whereby the couplings of the dilaton and the
axion would become very small in the solar system and
small cosmologically. The construction of these models
is left for future work.

Phenomenologically, the scenarios we have introduced
fall within the category of late time dark energy models
where the evolution of the fields at small redshift would
modify both the background cosmology and the growth
of structure. As expected, we find that the BAO bound
entails a tight constraint on both the possible deviations
of the present Hubble rate from its Planck value and the
growth factor from its ΛCDM counterpart. We notice
that the allowed deviations of the growth factor could

reach a few percent and therefore may become detectable
by future large scale surveys. The detailed study of the
phenomenology of these models is left for future work.
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Appendix A: Validity of the flat background
approximation

We consider here the conditions for the flat background
approximation used in §III to hold. We assume the ex-
terior solution of §III A and find in which regime the
terms neglected by the approximation are indeed neg-
ligible. The metric of §III can be written:

ds2 = −(1 + 2Φ)dt2 + (1− 2Ψ)(dr2 + r2dΩ2) . (A1)

The Christoffel symbols, the Ricci and Einstein tensors
for this metric can be found in e.g. [47] §7. The (tt) and
(rr) equations from Eq.(13) are

∆Φ =
ρ

2M2
p

, (A2)

(∆− ∂2
r )(Φ−Ψ) =

3

4

(τ ′)2 + (a′)2

τ2
, (A3)

where ∆ is the Laplacian. The exterior solution gives

(τ ′)2 + (a′)2

τ2
=
γ2β2

r4
. (A4)

Integration gives us then

Φ = −GM
r

, Ψ− Φ =
3

16

γ2β2

r2
. (A5)

The deviation from the flat metric are therefore negligible
for

|Ψ| � 1 , Φ ' Ψ . (A6)

This is verified in the regime

r � GM , r � |γβ| . (A7)
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