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The maximal cut of the nonplanar crossed box diagram with all massive internal propagators was long
ago shown to encode a hyperelliptic curve of genus 3 in momentum space. Surprisingly, in Baikov
representation, the maximal cut of this diagram only gives rise to a hyperelliptic curve of genus 2. To show
that these two representations are in agreement, we identify a hidden involution symmetry that is satisfied
by the genus 3 curve, which allows it to be algebraically mapped to the curve of genus 2. We then argue that
this is just the first example of a general mechanism by means of which hyperelliptic curves in Feynman
integrals can drop from genus g to ⌈g=2⌉ or bg=2c. We find an algorithm to test for the presence of genus
drop, and highlight further instances of this mechanism in Feynman integrals.
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Introduction. The immense amount of data collected at the
LHC provides us with a unique opportunity to search for
hints of new physics beyond the Standard Model. In the
coming years, a number of observables will be measured
with percent-level precision that probe the properties of the
Higgs and electroweak symmetry breaking. Making use of
these measurements crucially requires Standard Model
predictions with the same level of precision. This presents
an immense theoretical challenge, especially near the electro-
weak scale where finite-mass effects related to top quarks,
vector bosons, and the Higgs become relevant. Even at two
loops, the scattering amplitudes that encode these finite-mass
corrections remain well beyond the state of the art.
The difficulty of computing amplitudes involving mas-

sive virtual particles comes in large part from the types of
special functions these amplitudes evaluate to. While a
great deal of technological progress has been made by
focusing on amplitudes that evaluate to multiple polylo-
garithms [1–19], amplitudes with internal masses are
known to give rise to integrals over nontrivial curves
and K3 surfaces already at two loops [20–22]. It is thus
important to characterize the types of integrals that can
appear, and the simplest class of special functions a given
Feynman integral can be evaluated in terms of.

One of the types of functions that are known to arise
starting at two loops are integrals over hyperelliptic curves
[22–24]. Hyperelliptic curves are algebraic curves of genus
g > 1whose defining equation takes the form y2 ¼ PðzÞ, for
some polynomial PðzÞ of degree (2gþ 1) or (2gþ 2). They
generalize elliptic curves, whose defining equation takes the
same form when g ¼ 1. Feynman diagrams that give rise to
elliptic curves have received significant attention in recent
years [20,25–66], as have diagrams that give rise to integrals
over higher-dimensional varieties [39,55,67–80]. In contrast,
Feynman diagrams that give rise to curves with genus g > 1
have received little attention. A more in-depth study of these
integrals is long overdue.
The types of integrals that appear in Feynman diagrams

can be diagnosed by studying their maximal cut, in which
all propagators are put on-shell. In this paper, we focus on
diagrams whose maximal cut is given by a one-fold integral
of the form

Z
dzNðzÞffiffiffiffiffiffiffiffiffi

PðzÞp ; ð1Þ

where NðzÞ and PðzÞ are polynomials of z [81], as these
diagrams are expected to give rise to iterated integrals
involving differential one-forms related to the curve y2 ¼
PðzÞ [82]. In this paper we highlight that the curve one
associates with a given Feynman diagram in this way can
have different genus depending on the chosen integral
representation. We illustrate this with the example of the
massive nonplanar crossed box diagram shown in Fig. 1;
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while its maximal cut in momentum space involves a curve
of genus 3 [24], in Baikov representation it involves a curve
of genus 2.
In order to make sense of this discrepancy, we analyze

the properties of these curves in more detail. We find that
the genus 3 curve has an extra involution symmetry, which
can be made manifest through a change of variables that
brings its defining equation into a form that only depends
on z2 (whereupon the action of the involution is simply
z → −z). Through the change of variables w ¼ z2, this
genus 3 curve can then be mapped to a curve of genus 2 that
is isomorphic to the curve that appears in the Baikov
representation.
More generally, we show that any genus g hyperelliptic

curve that enjoys an extra involution symmetry can be
related to a pair of hyperelliptic curves of genus ⌈ g

2
⌉ and

bg
2
c. After constructing the explicit mappings between these

curves, we present an algorithm for detecting the existence
of such an involution and constructing the change of
variables that makes this involution manifest. Finally, we
describe the implications that this extra involution has for
the period matrices of these hyperelliptic curves, and show
that the entries of this matrix satisfy linear relations among
themselves. We conclude by pointing to additional exam-
ples of Feynman integrals whose maximal cuts in momen-
tum space experience similar genus drops.

The nonplanar crossed box. The main example we focus on
in this paper is the nonplanar crossed box diagram with
equal internal masses in four dimensions, shown in Fig. 1.
It can be written as

INPCB ¼
Z

d4l1

iπ2
d4l2

iπ2
1Q

7
i¼1Di

; ð2Þ

where the propagators are given by

D1 ¼ l2
1 −m2; D2 ¼ ðl1 − p1Þ2 −m2;

D3 ¼ ðl1 − p1 − p2Þ2 −m2; D4 ¼ l2
2 −m2;

D5 ¼ ðl2 − p3Þ2 −m2; D6 ¼ ðl1 þ l2Þ2 −m2;

D7 ¼ ðl1 þ l2 − p1 − p2 − p3Þ2 −m2: ð3Þ

With the external momenta massless p2
i ¼ 0, the integral

depends on three kinematic variables, s ¼ ðp1 þ p2Þ2,
t ¼ ðp2 þ p3Þ2, and m2.
In [23,24], the maximum cut of this diagram was

computed directly in momentum space, and was found
to take the form

MaxCutMOMðINPCBÞ ∼
Z

dzzffiffiffiffiffiffiffiffiffiffiffi
P8ðzÞ

p ; ð4Þ

where P8ðzÞ is a polynomial of degree eight in the variable
z ¼ tr−ðp4p2l1p1Þ=s2 whose coefficients depend on s, t,
and m2 [83]. The maximal cut thus defines a period of a
hyperelliptic curve of genus 3 [84]. This implies the full
integral should be expressible in terms of iterated integrals
involving one-forms related to the genus 3 curve defined
by P8ðzÞ.
We can also compute the maximal cut of this integral

using a loop-by-loop Baikov parametrization. In this
representation, the maximal cut takes the form

MaxCutLBLðINPCBÞ ∼
Z

dzffiffiffiffiffiffiffiffiffiffiffi
P6ðzÞ

p ; ð5Þ

where now the integration variable z ¼ ðl1 · p3Þ is an
irreducible scalar product that was introduced when real-
izing the Baikov representation, and P6ðzÞ is a degree-six
polynomial in z. This form of the maximal cut therefore
seems to imply that the nonplanar crossed box can be
expressed in terms of iterated integrals involving one-
forms related to a curve of genus 2. We verified that the
Picard-Fuchs operator of the maximal cut on generic one-
dimensional kinematic slices has order 4, consistent with a
curve of genus 2.
This leaves us in a perplexing situation, as our expectation

for the types of iterated integrals that will appear in the
nonplanar crossed box depends on which representation of
the integral we start from. The polynomials P6ðzÞ and P8ðzÞ
define curves of different genus, between which there can
exist no birational transformation. Their explicit forms are

P6ðzÞ ¼ sð2zðsþ 2zÞ − 3m2sÞðm2sþ 2zðsþ 2zÞÞðsðsþ tþ 2zÞ2 − 4m2tðsþ tÞÞ;
P8ðzÞ ¼ ðsþ tÞ2ðt2m2 þ s2zðszþ tÞÞðm2ðsþ tÞ2 þ s2zðszþ sþ tÞÞ

× ðs2zm2ð−3s3zþ s2ð2tzþ tÞ þ st2ð2zþ 3Þ þ 2t3Þ þ t2ðm2Þ2ðsþ tÞ2 þ s4z2ðszþ tÞðszþ sþ tÞÞ; ð6Þ

FIG. 1. The nonplanar crossed box diagram, with massive
internal propagators.
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A mechanism for genus drop. The resolution of this
apparent discrepancy turns out to be related to the group
of automorphisms that we can associate to the genus 3
curve. In particular, this curve has an additional involution
symmetry that allows it to be algebraically mapped to a pair
of curves of lower genus. To see how this comes about, we
now review some properties of hyperelliptic curves.
A hyperelliptic curve of genus g is defined by the (affine)

equation

H∶ y2 ¼ PðzÞ; ð7Þ

where PðzÞ is a polynomial of degree 2gþ 1 or 2gþ 2. We
denote the roots of PðzÞ as αi ∈P1, and without loss of
generality we specialize to the case where the degree is
2gþ 2. We can find new, equivalent representations of the
curve via Möbius transformations. For γ ¼ ðac b

dÞ∈C2×2

with det γ ≠ 0, the new representation of the curve has the
form H∶ŷ2 ¼ P̂ðẑÞ, where

z ¼ γ½ẑ�≡ aẑþ b
cẑþ d

; y ¼ ŷ
1

ðcẑþ dÞ2gþ2
; ð8Þ

and

P̂ðẑÞ ¼ ðcẑþ dÞ2gþ2Pðγ½ẑ�Þ; ð9Þ

with roots α̂i ¼ γ−1½αi�.
We consider the automorphism group AutðHÞ of the

curve H [85]. For (hyper)elliptic curves, this group always
includes the involution

e0∶ y → −y: ð10Þ

The reduced automorphism group AutðHÞ≡ AutðHÞ=he0i
consists of Möbius transformations that permute the roots
of the polynomial PðzÞ [86,87].
A hyperelliptic curve is said to possess an extra invo-

lution e1 ∈AutðHÞ if there exists a Möbius transformation,
such that

P̂ðẑÞ ¼ Qðẑ2Þ≡ cðẑ2 − α̂21Þ…ðẑ2 − α̂2gþ1Þ; ð11Þ

where c∈C is a constant [88]. The roots thus come in pairs
�α̂i, and the extra involution acts as

e1∶ ẑ → −ẑ: ð12Þ

We can then define another involution by composition,

e2 ¼ e1 ∘ e0∶ ðŷ; ẑÞ → ð−ŷ;−ẑÞ: ð13Þ

To our curve H, we can associate the two curves

H1∶ v21 ¼ QðwÞ ¼ cðw − α̂21Þ…ðw − α̂2gþ1Þ;
H2∶ v22 ¼ wQðwÞ ¼ cwðw − α̂21Þ…ðw − α̂2gþ1Þ: ð14Þ

We can recover H via the maps

ρ1∶ ðv1; wÞ → ðŷ; ẑ2Þ; ρ2∶ ðv2; wÞ → ðŷ ẑ; ẑ2Þ; ð15Þ

which are invariant under e1 and e2, respectively. From the
degree of their defining polynomial in w, the curvesH1 and
H2 have genera g1 ¼ bg

2
c and g2 ¼ bgþ1

2
c ¼ ⌈ g

2
⌉. Note that,

in addition to the roots at α̂2i , the curve H2 has a branch
point at 0; moreover, depending on whether bg

2
c is even or

odd, either H1 or H2 will have a branch point at ∞.
In the Supplementary Material [89], we provide a

reference implementation of an algorithm that tests for
the presence of an extra involution, and if it exists, provides
the required transformation γ.

Genus drop in the maximal cut.We now illustrate how this
genus drop mechanism works for the case of the nonplanar
crossed box. Starting from a general Möbius transformation
z ¼ γ1½ẑ� and solving for its parameters such that the
coefficients of odd power monomials in ẑ vanish, we find
a transformation

γ1 ¼
�
1 −1
r r

�
; z ¼ γ1½ẑ� ¼

1

r
ẑ − 1

ẑþ 1
; ð16Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3=ðm2tðsþ tÞÞ

p
. The polynomial

Q4ðẑ2Þ ¼ ðrẑþ rÞ8P8

�
1

r
ẑ − 1

ẑþ 1

�
; ð17Þ

then only depends on powers of ẑ2. [Note that Q4ðẑ2Þ is of
degree 4 in ẑ2, and therefore of degree 8 in ẑ.] In this case,
the extra involution maps

e1½tr−ðp4p2l1p1Þ� ¼ trþðp4p2l1p1Þ: ð18Þ
Hence, the extra involution can be associated to parity.
Following the notation of the previous section, we define

w≡ ẑ2, v1 ≡ y, and v2 ≡ yw. We can then associate two
curves with the original genus 3 curve; the elliptic curve

v21 ¼ Q4ðwÞ; ð19Þ
and the genus 2 hyperelliptic curve

v22 ¼ wQ4ðwÞ≡Q5ðwÞ: ð20Þ

Comparing the period matrices of the latter curve and the
curve found from the Baikov representation, we see that they
generate the same lattice. The curves are therefore isomor-
phic. Equivalently, we find that they have the same absolute
invariants (as defined by Clebsch or Igusa [90–92]), which
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characterize curves of genus 2 [93]. We find the explicit
transformation,

γ2 ¼
�
a b

c d

�
¼ m4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s5ðsþ tÞ3
p

0
B@1 sþt

2m2 −
ffiffiffiffiffiffiffiffiffi
ðsþtÞt
sm2

q

1 sþt
2m2 þ

ffiffiffiffiffiffiffiffiffi
ðsþtÞt
sm2

q
1
CA; ð21Þ

relating these curves via

ðcwþ dÞ6Q5ðγ2½w�Þ ¼ P6ðwÞ: ð22Þ

Additional period relations. The presence of the extra
involution also has consequences for the periods of a
hyperelliptic curve. We recall that the periods of a genus
g curve correspond to the different possible pairings
between a basis of g holomorphic differentials ωi and 2g
integration contours Γj. For a hyperelliptic curve of genus g
defined by the polynomial P2gþ2ðzÞ, a basis of holomorphic
differentials is given by zi−1dz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2gþ2ðzÞ

p
for i ¼ 1;…; g.

An example of a basis of contours for a genus 3 hyper-
elliptic curve with real roots is shown in Fig. 2. The entries
of the (g × 2g)-dimensional period matrix P of the curveH
are given by

Pij ¼
Z
Γj

zi−1dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2gþ2ðzÞ

p ; ð23Þ

where i∈ f1;…; gg, j∈ f1;…; 2gg.
Assume thatH has an extra involution,which can bemade

manifest using the coordinate transformation z ¼ aẑþb
cẑþd. Then,

Z
dzzi−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2gþ2ðzÞ

p ∝
Z

dwð ffiffiffiffi
w

p � b
aÞi−1ð

ffiffiffiffi
w

p � d
cÞg−ði−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wQgþ1ðwÞ
p ; ð24Þ

where ẑ ¼ � ffiffiffiffi
w

p
. ByexpandingoutEq. (24), all periodsofH

are expressible as linear combinations of the periods of
subcurves H1 and H2 [94]. More generally, we can find
matrices Mω ∈Cg×g and MΓ ∈Z2g×2g such that

Mt
ωPMΓ ¼

�
P1 0

0 P2

�
; ð25Þ

where P1 and P2 are period matrices of H1 and H2. There
must correspondingly be 4 × bg=2c × ⌈g=2⌉ relations
between the periods of the curve defined by P2gþ2ðzÞ [95].

Further examples. Although we have mainly focused in
this paper on the nonplanar crossed box with equal internal
masses, genus drop can be observed in phenomenologi-
cally-relevant examples involving different masses. For
example, Fig. 3 depicts one diagram that contributes to tt̄
production and another that contributes to Møller scatter-
ing. The maximum cut of both diagrams involve curves of
genus 3 in momentum space that enjoy an extra involution
symmetry and can be mapped to curves of genus 2.
In fact, genus drop can be also be seen in an infinite

number of necklace diagrams, as studied in [96]. For
instance, when all of the beads in these necklaces are
taken to be bubbles and all but two external particles are
taken to be soft, we land on the class of “broken” necklace
graphs depicted in Fig. 4. These integrals can be shown to
give rise to integrals over hyperelliptic curves of any genus,
when each propagator is assigned a different mass [97]. In
particular, a naive parametrization of these diagrams in
momentum space naturally give rise to a curve of genus

FIG. 2. The upper figure shows the branch cuts of a g ¼ 3
hyperelliptic curve and a basis of integration contours. The lower
figure illustrates how roots pair up when this curve has an extra
involution and can be put in the form of Eq. (11).

FIG. 3. Examples of hyperelliptic Feynman integrals in which
genus drop via an extra involution can be observed. These
integrals contribute to gg → tt̄ with a top loop, and Møller
scattering e−e− → e−e− with the exchange of three Z bosons.
Thick lines denote massive particles.

FIG. 4. A class of (broken) necklace diagrams, which can be
seen to drop from genus 2L − 3 to L − 1 at all loop orders, when
all propagators are assigned different masses.
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2L − 3; however, by going to Baikov, these curves can be
seen to drop to genus ⌈ 2L−3

2
⌉ ¼ L − 1.

The genus drop mechanism is also relevant in special
kinematic limits. For instance, a further involution sym-
metry appears in the equal-mass nonplanar crossed box
diagram when s ¼ −2t. In this limit there is a permutation
symmetry that exchanges p1 ↔ p2, and the curve becomes

y2 ¼ 8t2ð2ẑ2 −m2tÞð4ẑ2 − 2m2t − t2Þð4ẑ2 þ 6m2t − t2Þ;

with ẑ ¼ z − t
2
. This makes it evident that the maximal cut

of this diagram drops from genus 2 to genus 1 in this limit.
This is consistent with the Picard-Fuchs operator associated
with this integral, which we also observe to drop from order
4 to order 2 when s ¼ −2t.

Conclusion. In this paper we have studied Feynman
diagrams that give rise to integrals over hyperelliptic
curves, and highlighted the fact that different integral
representations of these diagrams can lead to curves with
different genera. We have studied a number of hyperelliptic
integrals exhibiting this phenomenon, highlighting the
nonplanar double box as the first known four-dimensional
genus 2 example at two loops, as well as the infinite class of
necklace diagrams that demonstrate the ubiquity of genus
drop in quantum field theory. Importantly, genus drop
represents a significant simplification in the types of
functions that these diagrams are expected to evaluate to.
In all of our examples,wehave observed that this discrepancy
in genus can be explained by the presence of an extra
involution symmetry that algebraically maps the higher-
genus curve to the lower-genus one. We expect that such
extra involutions in themomentum representation can follow
from discrete Lorentz symmetries (spacetime parity or time
reversal). We also find an algorithm to detect when an extra
involution exists, and showed that this symmetry leads to
linear relations among the periods of the corresponding
curve. We expect that these insights into the geometry of

Feynman integrals will have important impact on future
computations of hyperelliptic scattering amplitudes.
While it is important to be able to diagnose which class

of special functions a given Feynman integral is expected to
be expressible in terms of, given the ubiquity of hyper-
elliptic Feynman integrals, it is even more essential to
develop the technology for working with these classes of
functions. Despite remarkable recent progress on iterated
integrals involving elliptic curves (see [98] for an over-
view), much less technology has been developed for
iterated integrals over hyperelliptic curves (however, for
recent work see [99–101]). The nonplanar crossed box with
equal internal masses represents an ideal example on which
to develop such technology, given that—as we have newly
shown—it involves only a curve of genus 2 [102].
Having identified a novel class of simplifications that can

occur in hyperelliptic Feynman integrals, it is natural to
wonder whether analogous simplifications can occur in
Feynman integrals that involve integrals over more general
varieties, such as curves that are not hyperelliptic or higher-
dimensional Calabi-Yaus. One way to search for evidence
of such simplifications would be to look for unexpected
relations between entries of the period matrix. We leave this
enticing possibility to future work.
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