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The maximal cut of the nonplanar crossed box diagram with all massive internal propagators was
long ago shown to encode a hyperelliptic curve of genus 3 in momentum space. Surprisingly, in
Baikov representation, the maximal cut of this diagram only gives rise to a hyperelliptic curve of
genus 2. To show that these two representations are in agreement, we identify a hidden involution
symmetry that is satisfied by the genus 3 curve, which allows it to be algebraically mapped to the
curve of genus 2. We then argue that this is just the first example of a general mechanism by means
of which hyperelliptic curves in Feynman integrals can drop from genus g to dg/2e or bg/2c, which
can be checked for algorithmically. We use this algorithm to find further instances of genus drop in
Feynman integrals.

Introduction

Our ability to compute scattering amplitudes has ad-
vanced tremendously in recent years. Much of this
progress has stemmed from our theoretical control over
multiple polylogarithms [1–10], which turn out to be suf-
ficient for expressing all amplitudes at one loop and cer-
tain classes of amplitudes to all orders [11–19]. Beyond
one loop, however, it remains unclear what classes of
functions can appear in amplitudes, even at fixed loop
order. Our continued progress thus crucially depends on
begin able to characterize the types of functions that ap-
pear, and in particular on our ability to reliably diagnose
the minimal class of functions a given Feynman integral
can be evaluated in terms of.

One of the types of functions that are known to arise
starting at two loops are integrals over hyperelliptic
curves [20–22]. Hyperelliptic curves are algebraic curves
of genus g > 1 whose defining equation takes the form
y2 = P (z), for some polynomial P (z) of degree (2g + 1)
or (2g + 2). They generalize elliptic curves, whose defin-
ing equation takes the same form when g = 1. Feynman
diagrams that give rise to elliptic curves have received
significant attention in recent years [23–65], as have dia-
grams that give rise to integrals over higher-dimensional
varieties [38, 54, 66–79]. In contrast, Feynman diagrams
that give rise to curves with genus g > 1 have received
little attention. A more in-depth study of these integrals
is long overdue.

The types of integrals that appear in Feynman dia-
grams can be diagnosed by studying their maximal cut,
in which all propagators are put on-shell. In this letter,
we focus on diagrams whose maximal cut is given by a
one-fold integral of the form∫

dz N(z)√
P (z)

, (1)

where N(z) and P (z) are polynomials of z [80], as

these diagrams are expected to give rise to iterated inte-
grals involving differential one-forms related to the curve
y2 = P (z) [81]. In particular, we highlight that the curve
one associates with a given Feynman diagram in this way
can have different genus depending on the integral repre-
sentation one studies. We illustrate this with the example
of the massive nonplanar crossed box diagram shown in
Figure 1; while the maximal cut of this diagram involves
a curve of genus 3 in momentum space [21], its maxi-
mal cut in Baikov representation only involves a curve of
genus 2.

In order to make sense of this discrepancy, we analyze
the properties of these curves in more detail. We find
that the genus 3 curve has an extra involution symme-
try, which can be made manifest through a change of
variables that brings its defining equation into a form
that only depends on z2 (whereupon the action of the
involution is simply z → −z). Through the change of
variables w = z2, this genus 3 curve can then be mapped
to a curve of genus 2 that is isomorphic to the curve that
appears in the Baikov representation.

More generally, we show that any genus g hyperellip-
tic curve that enjoys an extra involution symmetry can
be related to a pair of hyperelliptic curves of genus d g2e
and b g2c. After constructing the explicit mappings be-
tween these curves, we present an algorithm for detect-
ing the existence of such an involution and constructing
the change of variables that makes this involution mani-
fest. Finally, we describe the implications that this extra
involution has for the period matrices of these hyperel-
liptic curves, and show that the entries of this matrix
satisfy linear relations among themselves. We conclude
by pointing to additional examples of Feynman integrals
whose maximal cuts in momentum space experience sim-
ilar genus drops.

The Nonplanar Crossed Box

The main example we focus on in this letter is the
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FIG. 1. The nonplanar crossed box diagram, with massive
internal propagators.

nonplanar crossed box diagram in four dimensions, shown
in Figure 1. It can be written as

INPCB =

∫
d4`1
iπ2

d4`2
iπ2

1∏7
i=1Di

, (2)

where the propagators are given by

D1 = `21 −m2
1 , D2 = (`1 − p1)2 −m2

2 ,

D3 = (`1 − p1 − p2)2 −m2
3 , D4 = `22 −m2

4 ,

D5 = (`2 − p3)2 −m2
5 , D6 = (`1 + `2)2 −m2

6 ,

D7 = (`1 + `2 − p1 − p2 − p3)2 −m2
7 .

(3)

The external momenta are massless with p2
i = 0. This

integral depends on between three and nine kinematic
variables, depending on how many of the internal masses
are taken to be distinct. For the majority of our analysis,
it will be sufficient to take all masses to be identical (but
nonzero), mi = m. In that case, the integral depends on
just s = (p1 + p2)2, t = (p2 + p3)2, and m2.

In [20, 21], the maximum cut of this diagram was com-
puted directly in momentum space, and was found to take
the form

MaxCutMOM(INPCB) ∼
∫

dz z√
P8(z)

, (4)

where P8(z) is a polynomial of degree eight in the variable
z = tr−(p4p2`1p1)/s2 whose coefficients depend on s, t,
and m2

i [82]. The maximal cut thus defines a period of
a hyperelliptic curve of genus 3 [83]. This implies the
full integral should be expressible in terms of iterated
integrals involving one-forms related to the genus 3 curve
defined by P8(z).

We can also compute the maximal cut of this integral
using a loop-by-loop Baikov parametrization. In this rep-
resentation, the maximal cut takes the form

MaxCutLBL(INPCB) ∼
∫

dz√
P6(z)

, (5)

where now the integration variable z = (`1 ·p3) is an irre-
ducible scalar product that was introduced when realiz-
ing the Baikov representation, and P6(z) is a degree-six
polynomial in z. As a result, this form of the maxi-
mal cut seems to imply that the nonplanar crossed box
can be expressed in terms of iterated integrals involving
one-forms related to a curve of genus 2. We have also
computed the Picard–Fuchs operator of the maximal cut
on various generic one-dimensional kinematic slices, and
find that these operators are always of order 4, consistent
with a curve of genus 2.

This leaves us in a perplexing situation, as our expec-
tation for the types of iterated integrals that will appear
in the nonplanar crossed box depends on which repre-
sentation of the integral we start from. Already in the
equal-mass case, where

P6(z) = s
(
2z(s+ 2z)− 3m2s

) (
m2s+ 2z(s+ 2z)

) (
s(s+ t+ 2z)2 − 4m2t(s+ t)

)
,

P8(z) = (s+ t)2
(
t2m2 + s2z(sz + t)

) (
m2(s+ t)2 + s2z(sz + s+ t)

)
×(

s2zm2
(
−3s3z + s2(2tz + t) + st2(2z + 3) + 2t3

)
+ t2

(
m2
)2

(s+ t)2 + s4z2(sz + t)(sz + s+ t)
)
,

(6)

we find curves of different genus, between which there
can exist no birational transformation.

A Mechanism for Genus Drop

The resolution of this apparent discrepancy turns out
to be related to the group of automorphisms that we can
associate to the genus 3 curve. In particular, this curve
has an additional involution symmetry that gives rise to
relations between the entries of its period matrix. As a
result, it can algebraically be mapped to a pair of curves

of lower genus. To see how this comes about, we now
review some properties of hyperelliptic curves.

A hyperelliptic curve of genus g is defined by the
(affine) equation

H : y2 = P (z), (7)

where P (z) is a polynomial of degree 2g + 1 or 2g + 2.
We denote the roots of P (z) as αi ∈ P1, and without loss
of generality we specalize to the case where the degree
is 2g + 2. To study algebraic properties of H, we con-
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sider the field of rational functions on the curve, C(y, z):
rational functions of y and z such that y satisfies equa-
tion (7). Viewing C(y, z) as a field extension of C we can
consider the group of automorphisms of this extension:
Aut (H) ≡ Aut (C(y, z)/C). This is the set of automor-
phisms of C(y, z) that act as the identity on C. This
group Aut (H) naturally always includes the involution

e0 : y → −y , (8)

while the reduced automorphism group Aut (H) ≡
Aut (H)/〈e0〉 is a subgroup of Aut (C(z)/C) ∼= PGL2(C)
and consists of Möbius transformations that permute the
roots of the polynomial P (z) [84, 85].

Let us study the reduced automorphism group by con-
sidering coordinate redefinitions in z via Möbius trans-
formations. For γ =

(
a b
c d

)
∈ PGL2(C), one finds a new

representation of the curve

H : ŷ2 = P̂ (ẑ) , (9)

where

z = γ[ẑ] ≡ aẑ + b

cẑ + d
, y = ŷ

1

(cẑ + d)2g+2
, (10)

and

P̂ (ẑ) = (cẑ + d)2g+2P (γ[ẑ]) . (11)

The roots α̂i of P̂ are related to those of P by

α̂i ≡ γ−1[αi] = −dαi − b
cαi − a

. (12)

A hyperelliptic curve is said to possess an extra involution
e1 ∈ Aut (H) if there exists a γ ∈ PGL2(C), such that
we have

P̂ (ẑ) = Q(ẑ2) ≡ c(ẑ2 − α̂2
1) . . . (ẑ2 − α̂2

g+1) , (13)

where c ∈ C is a constant [86]. The roots thus come in
pairs ±α̂i, and the extra involution acts as

e1 : ẑ → −ẑ . (14)

We can then define another involution by composition,

e2 = e1 ◦ e0 : (ŷ, ẑ)→ (−ŷ,−ẑ). (15)

To our curve H, we can associate the two curves

H1 : v2
1 = Q(w) = c(w − α̂2

1) . . . (w − α̂2
g+1) ,

H2 : v2
2 = wQ(w) = cw(w − α̂2

1) . . . (w − α̂2
g+1) .

(16)

We can recover H via the maps

ρ1 : (v1, w)→ (ŷ, ẑ2) ,

ρ2 : (v2, w)→ (ŷẑ, ẑ2) ,
(17)

which are invariant under e1 and e2 respectively. From
the degree of their defining polynomial in w, the curves
H1 and H2 have genera g1 = b g2c and g2 = b g+1

2 c = d g2e.
Note that, in addition to the roots at α̂2

i , the curve H2

has a branch point at 0; moreover, depending on whether
b g2c is even or odd, either H1 or H2 will have a branch
point at ∞.

To check whether a given curve has such an extra
involution, we can make a generic transformation γ ∈
PGL2(C), and solve for the parameters a, b, c, d such that
the coefficients of odd powers of ẑ in P̂ vanish. Al-
ternatively, we can formulate a necessary and sufficient
condition for the existence of such a transformation on
the roots αi of P (z). Consider the partitioning of the
(2g + 2) roots into pairs (p

(i)
1 , p

(i)
2 ) for i = 1, . . . , g + 1.

It can be shown that there exists a γ ∈ PGL2(C) such
that γ−1[p

(i)
1 ] = −γ−1[p

(i)
2 ] if and only if there exists a

ν = (ν1, ν2, ν3) ∈ C3 with ν2
2 − 4ν1ν3 6= 0 such that

2p
(1)
1 p

(1)
2 p

(1)
1 + p

(1)
2 2

...
...

...

2p
(g+1)
1 p

(g+1)
2 p

(g+1)
1 + p

(g+1)
2 2

 · ν = ~0 , (18)

where the right-hand side corresponds to the (g+1)-
dimensional zero vector. To check whether a curve has
an extra involution we need to test this condition for all
(2g+ 1)!! pairings of the roots. If we find a vector ν that
satisfies this condition, the transformations γ that make
the involution symmetry manifest are (up to an overall
normalization)

γ =


(
ν2 −λν3ν2
0 λ

)
, ν1 = 0,(

ν2 +
√
ν2

2 − 4ν1ν3 λ

√
ν2
2−4ν1ν3−ν2

ν1
−2ν1 2λ

)
, ν1 6= 0 ,

(19)
where λ ∈ C \ {0} is the projective degree of freedom
of [86].

Genus Drop in the Maximal Cut

We now illustrate how this genus drop mechanism
works for the case of the non-planar crossed box. Starting
from a general PGL2(C) transformation z = γ1[ẑ] and
solving for the parameters of this transformation such
that the coefficients of odd power monomials in ẑ vanish,
we find a transformation

γ1 =

(
1 −1
r r

)
, z = γ1[ẑ] =

1

r

ẑ − 1

ẑ + 1
, (20)

where r =
√
s3/(m2t(s+ t)). The polynomial

Q4(ẑ2) = (rẑ + r)8 P8

(
1

r

ẑ − 1

ẑ + 1

)
(21)

then only depends on powers of ẑ2. (Note that Q4(ẑ2) is
of degree 4 in ẑ2, and therefore of degree 8 in ẑ.) In this
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FIG. 2. The upper figure shows the branch cuts of a g = 3
hyperelliptic curve and a symplectic basis of homology cycles.
The lower figure illustrates how roots pair up when this curve
can be put in the form of equation (13).

case, the extra involution maps

e1

[
tr−(p4p2`1p1)

]
= tr+(p4p2`1p1) . (22)

Hence, the extra involution can be associated to parity.
Following the notation introduced in the previous sec-

tion, we define w ≡ ẑ2, v1 ≡ y, and v2 ≡ y w. We can
then associate two curves with the original genus 3 curve:
the elliptic curve

v2
1 = Q4(w) (23)

and the genus 2 hyperelliptic curve

v2
2 = wQ4(w) ≡ Q5(w). (24)

By considering the period matrices of the latter curve,
one can show that its period matrix generates the same
lattice as the curve found from the Baikov representa-
tion, and is therefore isomorphic. Equivalently, we find
that these curves have the same absolute invariants (as
defined by Clebsch or Igusa [87–89]), which characterize
curves of genus 2 [90]. We can therefore find the explicit
transformation,

γ2 =

(
a b
c d

)
= m4

3
√

2s5(s+t)

 1 s+t
2m2 −

√
(s+t)t
sm2

1 s+t
2m2 +

√
(s+t)t
sm2

 , (25)

which allows us to relate these curves via

(cw + d)6Q5(γ2[w]) = P6(w) . (26)

Additional Period Relations

The presence of the extra involution also has conse-
quences for the periods of a hyperelliptic curve. We re-
call that the periods of a curve correspond to the different
possible pairings between a basis of holomorphic differ-
entials ωi and contours Γj . For a hyperelliptic curve of

genus g defined by the polynomial P2g+2(z), a basis of

holomorphic differentials is given by zidz/
√
P2g+2(z) for

i = 0, . . . , g − 1. Furthermore, one can find a symplectic
basis of the homology, which is a basis of 2g contours aj
and bj for j = 0, . . . , g, with the property that their in-
tersection product is ai ◦bj = δij and ai ◦aj = bi ◦bj = 0.
An example of such a basis for a genus 3 curve with real
roots is shown in Figure 2. The entries of the g × 2g
dimensional period matrix P of the curve H are given by

Pij =

∫
Γj

zidz√
P2g+2(z)

, Γj ∈ (a1, . . . , ag, b1, . . . , bg).

(27)
Let us assume that H has an extra involution, which can
be made manifest using the coordinate transformation
z = aẑ+b

cẑ+d . Then,∫
dz zi√
P2g+2(z)

=±
∫

dw(ad− bc)(±a
√
w + b)i(±c

√
w + d)−i+(g−1)

2
√
wQg+1(w)

,

(28)

where ẑ = ±
√
w. Expanding out equation (28), we see

that all of the periods of H are expressible as linear com-
binations of the periods of subcurves H1 and H2 [91].
More generally, we can find matrices Mω ∈ Cg×g and
MΓ ∈ Z2g×2g such that

M t
ωPMΓ =

(
P1 0
0 P2

)
, (29)

where P1 and P2 are period matrices of curves isogenous
to H1 and H2. This reflects the fact that the Jacobian
variety Jac(H), which corresponds to the 2g dimensional
lattice spanned by the column vectors of P, is in this case
isogenous to Jac(H1)× Jac(H2) [84, 92].

Equation (28) can also be used to find relations be-
tween the entries of P. For example, consider the genus
3 curve defined by P8(z) from equation (6): the transfor-
mation γ1 from equation (20) can be inserted into (28)
to find the relation∫

a1

dz√
P8(z)

= r2

∫
a2

dz z2√
P8(z)

. (30)

As can be deduced from the block-diagonal form of equa-
tion (29), we expect there to be 4 × b g2c × d

g
2e relations

between the periods of a curve with an extra involution.

Further examples

Although we have mainly focused in this letter on the
nonplanar crossed box with equal internal masses, genus
drop can be observed in phenomenologically-relevant ex-
amples involving different masses. For example, Figure 3
depicts one diagram that contributes to tt production
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FIG. 3. Examples of hyperelliptic Feynman integrals in which
genus drop via an extra involution can be observed. These
integrals contribute to gg → tt with a top loop, and Møller
scattering e−e− → e−e− with the exchange of three Z bosons.

and another that contributes to Møller scattering. The
maximum cut of both diagrams involve curves of genus 3
in momentum space that enjoy an extra involution sym-
metry and can be mapped to curves of genus 2.

It is also possible to see genus drop via the same mech-
anism in special kinematic limits. For instance, a further
involution symmetry appears in the equal-mass nonpla-
nar crossed box diagram when s = −2t. In this limit
there is a permutation symmetry that exchanges p1 ↔ p2,
and the curve becomes

y2 = 8t2
(
2ẑ2−m2t

) (
4ẑ2−2m2t−t2

) (
4ẑ2+6m2t−t2

)
,

with ẑ = z − t
2 . This makes it evident that the maximal

cut of this diagram drops from genus 2 to genus 1 in this
limit [93]. This is consistent with the Picard–Fuchs oper-
ator associated with this integral, which we also observe
to drop from order 4 to order 2 when s = −2t.

Finally, a similar genus drop can be observed for the
five-point box-pentagon-box integral shown in Figure 4,
for massless external particles and equal internal masses.
In momentum space, we find that the maximal cut of
this integral gives rise to a curve of genus 5 using Sin-
gular [94], which matches our expectations from the
results of [20]. We also find that the maximal cut ob-
tained using a loop-by-loop Baikov parametrization can
be identified with a period of a hyperelliptic curve of
genus 3. Notably—unlike the other examples we have
considered—the momentum space curve is in this case
not hyperelliptic; even so, we expect that a mechanism
similar to the one we have described for hyperelliptic
curves is responsible for this genus drop.

Conclusion

In this letter we have studied Feynman diagrams that
give rise to integrals over hyperelliptic curves, and high-
lighted the fact that different integral representations of
these diagrams can lead to curves with different genera.
Importantly, this drop in genus represents a significant
simplification in the types of functions that these dia-
grams are expected to evaluate to. In all of our hyper-
elliptic examples, we have observed that discrepancy in
genus can be explained by the presence of an extra invo-
lution symmetry that allows the higher-genus curve to be
algebraically mapped to the curve with lower genus. We

FIG. 4. The three-loop box-pentagon-box integral with equal
internal masses and massless external momenta, which ex-
hibits a genus drop from 5 to 3.

expect that the presence of extra involutions in the mo-
mentum representation can follow from discrete Lorentz
symmetries (spacetime parity or time reversal). We also
presented an algorithm to detect when an extra involu-
tion exists, and showed that this symmetry leads to linear
relations among the periods of the corresponding curve.

While it is important to be able to diagnose which class
of special functions a given Feynman integral is expected
to be expressible in terms of, it will be even more es-
sential to develop the technology for working with these
classes of functions. Despite remarkable recent progress
on iterated integrals involving elliptic curves (see [95] for
an overview), much less technology has currently been
developed for iterated integrals over hyperelliptic curves
(however, for recent work see [96–98]). The nonplanar
crossed box with equal internal masses represents an ideal
example on which to develop such technology, given that
it only involves a curve of genus 2 and depends on two
dimensionless variables [99].

Having identified a novel class of simplifications that
can occur in hyperelliptic Feynman integrals, it is natural
to wonder whether analogous simplifications can occur in
Feynman integrals that involve integrals over more gen-
eral varieties, such as curves that are not hyperelliptic or
higher-dimensional Calabi–Yaus. One way to search for
evidence of such simplifications would be to look for un-
expected relations between entries of the period matrix.
We leave this enticing possibility to future work.
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