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The accuracy of parton-shower simulations is often a limiting factor in the interpretation of data
from high-energy colliders. We present the first formulation of parton showers with accuracy one or-
der beyond state-of-the-art next-to-leading logarithms, for classes of observable that are dominantly
sensitive to low-energy (soft) emissions, specifically non-global observables and subjet multiplici-
ties. This represents a major step towards general next-to-next-to-leading logarithmic accuracy for
parton showers.

Parton showers simulate the repeated branching of
quarks and gluons (partons) from a high momentum scale
down to the non-perturbative scale of Quantum Chromo-
dynamics (QCD). They are one of the core components
of the general-purpose Monte Carlo event-simulation pro-
grams that are used in almost every experimental and
phenomenological study involving high-energy particle
colliders, such as CERN’s Large Hadron Collider (LHC).
Parton-shower accuracy is critical at colliders, both be-
cause it limits the interpretation of data and because of
the increasing importance of showers in training powerful
machine-learning based data-analysis methods.

In the past few years it has become clear that it is
instructive to relate the question of parton-shower ac-
curacy to a shower’s ability to reproduce results from
the field of resummation, which sums dominant (loga-
rithmically enhanced) terms in perturbation theory to
all orders in the strong coupling, αs. Given a logarithm
L of some large ratio of momentum scales, resumma-
tion accounts for terms αn

sL
n+1−p, NpLL in a leading-

logarithmic counting for L ∼ 1/αs, or αn
sL

2n−p, NpDL
in a double-logarithmic counting, for L ∼ 1/

√
αs.

Several groups have recently proposed parton showers
designed to achieve next-to-leading logarithmic (NLL)
and next-to-double logarithmic (NDL) accuracy for vary-
ing sets of observables [1–10]. A core underlying require-
ment is the condition that a shower should accurately re-
produce the tree-level matrix elements for configurations
with any number of low-energy (“soft”) and/or collinear
particles, as long as these particles are well separated in
logarithmic phase space [2, 11, 12].

In this letter we shall demonstrate a first major step
towards the next order in resummation in a full parton
shower, concentrating on the sector of phase space in-
volving soft partons. This sector is connected with two
important aspects of LHC simulations, namely the total
number of particles produced, and the presence of soft
QCD radiation around leptons and photons (“isolation”),
which is critical in their experimental identification in a
wide range of LHC analyses. The corresponding areas
of resummation theory, for subjet multiplicity [13–15]

and so-called non-global logarithms [16–42], have seen
extensive recent developments towards higher accuracy
in their own right, with several groups working either
on next-to-next-to-double logarithmic (NNDL) accuracy,
αn
sL

2n−2, for multiplicity [43, 44] or next-to-single log-
arithmic (NSL) accuracy, αn

sL
n−1, for non-global loga-

rithms [45–48].
To achieve NSL/NNDL accuracy for soft-dominated

observables, a crucial new ingredient is that the shower
should obtain the correct matrix element even when there
are pairs of soft particles that are commensurate in en-
ergy and in angle with respect to their emitter. Sev-
eral groups have worked on incorporating higher-order
soft/collinear matrix elements into parton showers [49–
58]. Our approach will be distinct in two respects: firstly,
that it is in the context of a full shower that is already
NLL accurate, which is crucial to ensure that the cor-
rectness of any higher-order matrix element is not broken
by recoil effects from subsequent shower emissions; and
secondly in that we will be able to demonstrate the log-
arithmic accuracy for concrete observables through com-
parisons to known resummations.
We will work in the context of the “PanGlobal” fam-

ily of parton showers, concentrating on the final-state
case [2]. As is common for parton showers, it organises
particles into colour dipoles [59], a picture based on the
limit of a large number of colours Nc. Such showers iter-
ate 2 → 3 splitting of colour dipoles, each splitting thus
adding one particle to the ensemble, and typically break-
ing the original dipole into two dipoles. The splittings are
performed sequentially in some ordering variable, v, for
example in decreasing transverse momentum kt. Given
a dipole composed of particles with momenta p̃i and p̃j ,
the basic kinematic map for producing a new particle k
is

p̄k = akp̃i + bkp̃j + k⊥ , (1a)

p̄i = (1− ak)p̃i , (1b)

p̄j = (1− bk)p̃j . (1c)

followed by a readjustment involving all particles so as to
conserve momentum [60], § 1. For the original PanGlobal
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.

NLL shower, the splitting probability was given by

dPn→n+1

d ln v
=

∑
{ı̃,ȷ̃}∈dip

∫
dη̄

dϕ

2π

αs(kt)

π

(
1 +

αs(kt)Kcmw

2π

)
× [f(η̄)akPı̃→ik(ak) + f(−η̄)bkPȷ̃→jk(bk)] . (2)

Here Pı̃→ik(ak) is a leading-order QCD splitting func-
tion, η̄ = 1

2 ln ak/bk + const., with the constant arranged
so that η̄ = 0 when the emission bisects the dipole in
the event centre-of-mass frame, and f(η̄) = 1/(1 + e−2η̄)
is a partitioning function. Additionally, the MS cou-
pling, αs(kt), uses at least 2-loop running, and Kcmw =(
67/18− π2/6

)
CA − 5/9nf [61].

In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft effective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an effective squared
shower matrix element |Mshower,h|2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|2 is evaluated in the double-soft
limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|2∑

h |Mshower,h|2
. (3)

where |Mds|2 is the known double-soft matrix element
for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value Ω. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor Ω, and accept the emission with probability
Paccept/Ω.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 → λp1, p2 → λp2 and taking the limit λ → 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not affecting regions where the shower was already
correct.
The acceptance procedure is sufficient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
F

(12)
shower − F

(12)
ds

F
(12)
shower

. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. θa1̃ ≪ θab or θ1̃b ≪ θab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
sufficient when θa1 ∼ θ1b ∼ θab, notably because of the



3

non-trivial η̄ dependence in Eq. (2) and the way in which
it connects with the overall event momentum Q. There-
fore we need to generalise Kcmw → K(Φ1̃,ab), where the

full K is a function of the kinematics of 1̃ and of the
opening angle of the ab dipole. In the same vein as the
MC@NLO [65] and POWHEG [66, 67] methods and their
MINLO [68, 69] extension, the correct next-to-leading-
order (NLO) normalisation for the emission is given by

K(Φ1̃,ab) = V (Φ1̃,ab) +

∫
dΦps

12/1̃
|M (ps)

12/1̃
|2 −∆

(ps,1)

1̃
. (5)

Here, V is the exact QCD 1-loop contribution for a
single soft emission, renormalised at scale µ = kt,1̃;

dΦps
12/1̃

|M (ps)

12/1̃
|2 is the product of shower phase space and

matrix element associated with real 1̃ → 12 branching,

including double-soft corrections; and ∆
(ps,1)

1̃
is the co-

efficient of αs/(2π) in the fixed-order expansion of the
shower Sudakov factor. To aid in the evaluation of
K(Φ1̃,ab) we make use of two main elements: firstly, in

the soft-collinear limit,K(Φ1̃,ab) → Kcmw; secondly, both

V (Φ1̃,ab) and ∆
(ps,1)

1̃
are independent of the rapidity of

1̃, as long as 1̃ is soft and (for ∆
(ps,1)

1̃
) kept at some fixed

value of the evolution scale. We can therefore reformulate
Eq. (5) as K = Kcmw +∆K, with

∆K =

∫
r

dΦ
(ps)

12/1̃
|M (ps)

12/1̃
|2 −

∫
rsc

dΦ
(ps)

12/1̃sc
|M (ps)

12/1̃sc
|2. (6)

In the second term, 1̃sc is at the same shower scale v
as 1̃, but shifted by a constant in rapidity with respect
to ab so as to be in the soft-collinear region, wherein
K(Φ1̃sc,ab

) → Kcmw. The labels r and rsc indicate a reg-
ularisation of the phase space, which should be equivalent
between the two terms. Specifically, we separate MDS in
Eq. (3) into correlated and uncorrelated parts, respec-
tively those involving CFCA versus C2

F colour factors for
the q̄ggq matrix element. For the correlated part, we cut
on the relative transverse momentum of 1 and 2, while for
the uncorrelated part, we cut on the transverse momen-
tum with respect to the ab dipole and impose |∆y12| <
∆ymax. In practice we tabulate ∆K as a function of
θab, η̄1̃, and ϕ1̃, though one could also envisage on-the-
fly evaluation. We incorporate ∆K in Eq. (2), through
a multiplicative factor 1 + tanh[αs

2π ∆K(1− ak)(1− bk)].
This form keeps the correction positive and bounded. It
also leaves the shower unmodified in the hard-collinear
region.

We study the above approach with several variants of
the PanGlobal shower. All have been adapted relative
to Ref. [2] with regards to the precise way in which they
restore momentum conservation after the map of Eq. (1).
This was motivated by the discovery that in higher-order
shower configurations involving three similarly collinear
hard particles, the original recoil prescription could lead
to unwanted long-distance kinematic side effects. Details
are given in the supplemental material [60], § 1, and tests
were carried out using the method of Ref. [70].
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NNDL accuracy tests: Lund multiplicity

FIG. 2. The result of Eq. (7) for three variants of the Pan-
Global shower without double-soft corrections (left) and with
them (right). The latter are consistent with NNDL accuracy.
The bands represent statistical errors in an αs → 0 extrapo-
lation based on four finite αs values.

We will consider three variants of the PanGlobal
shower: two choices of the ordering variable, ∼ ktθ

β with
β = 0 (PGβ=0) and 1/2 (PGβ=1/2), and also a “split-

dipole-frame” β = 0 variant (PGsdf
β=0), which replaces

f(±η̄) → f(±η) in Eq. (2), with η = 1
2 log ak/bk. The

η = 0 transition region bisects the dipole in its rest frame
rather than the event frame. This makes the 1̃ → 12
branching independent of the 1̃ rapidity in the dipole
frame, resulting in ∆K = 0. Illustrative plots of ∆K
and its impact are given in Ref. [60], § 2 c. For the three
shower variants, the overhead factors Ω associated with
Eq. (3) are respectively taken equal to 3.1, 20 and 4,
independently of the dipole kinematics.

All results, both with and without double-soft correc-
tions, include NLO 2-jet matching [71], which is required
for the NNDL/NSL accuracy that we aim for. Spin cor-
relations [72, 73] are turned off, because we have yet
to integrate them with the double-soft corrections. The
double-soft corrections are implemented at large-Nc, in
such a way as to preserve the full-Nc NLL/NDL accu-
racies obtained in Ref. [74] for global observables and
multiplicities. All events have (positive) unit weight.

To test the enhanced logarithmic accuracy of the
shower, the first observable that we consider is the Lund
subjet multiplicity [43] in e+e− → qq̄ events. This is
a perturbatively calculable observable that is conceptu-
ally close to the experimentally important total charged-
particle multiplicity. For a centre-of-mass energy Q and
a transverse momentum cutoff kt, the subjet multiplicity
has a double-logarithmic resummation structure αn

sL
2n

with L = ln kt/Q. The PanGlobal showers already re-
produce terms up to NDL αn

sL
2n−1. The addition of the

double-soft corrections and matching [71] is expected to
bring NNDL accuracy, αn

sL
2n−2. To test this, in Fig. 2,

we examine

lim
αs→0

Nps −Nnndl

αsNdl

∣∣∣∣
fixed αsL

2

, (7)
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NSL accuracy tests: energy in a slice

FIG. 3. Determinations of Σ
(ps)
nsl /Σsl for the transverse en-

ergy in a slice. Left: parton showers without double-soft cor-
rections illustrating NSL differences between them. Middle:
with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

where Nps is the parton-shower result and Nnndl (Ndl) is
the known analytic NNDL (DL) result [43]. The αs → 0
limit follows the procedure from earlier work [2]. Eq. (7)
is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly differ from each other and from zero,
by up to ∼ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ∼ 1%.

Next we turn to the study of non-global logarithms at
leading colour. These were recently calculated at NSL ac-
curacy [45, 46, 48], αn

sL
n−1, and are available in the cor-

responding “Gnole” code [46]. We again consider e+e−

events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [75]. The fraction of events
where the sum is below some Et,max is denoted by Σ and
for a given shower we define

Σ
(ps)
nsl = lim

αs→0

Σ(ps) − Σsl

αs

∣∣∣∣
fixed αsL

, L ≡ ln
Et,max

Q
. (8)

Fig. 3 (left) shows Σ
(ps)
nsl /Σsl for our three PanGlobal vari-

ants without double-soft corrections. As expected, they
differ.

Fig. 3 (middle) compares our PGsdf
β=0 shower with

double-soft corrections to the NSL Gnole code, show-
ing good agreement, within < 1%. Gnole has nf = 0
in the real contribution and counterterm, but keeps the
full nf = 5 in the running of the coupling and inclusive
Kcmw (“nreal

f = 0”). Among our showers it is relatively

straightforward to make the same choice with PGsdf
β=0, in

particular because ∆K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.
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FIG. 4. Distribution of energy in a slice |y| < 0.5 for the
PanGlobal shower without double-soft corrections (left) and
with them (right). The bands represent renormalisation scale
variation, with NLO scale-compensation enabled only for the
results with double-soft corrections.

Fig. 3 (right) shows the results from our three Pan-
Global showers with complete (full-nf ) double-soft cor-
rections included. They agree with each other to within
1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and ∆K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e− → Z∗ → jets at Q = 2TeV. This choice
is intended to help gauge the size of non-global effects
at the energies being probed today at the LHC. Fig. 4
shows results for the distribution of energy flow in a ra-
pidity slice, defined with respect to the 2-jet axis, with-
out double-soft corrections (left) and with them, i.e. at
NSL accuracy (right). It uses the nested ordered double-
soft (NODS) colour scheme, which while not full-Nc ac-
curate for non-global logarithms, numerically coincides
with the full-Nc single logarithmic results of Refs. [38–
40], to within their percent-level numerical accuracy [74].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H∗ → gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft effects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
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leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent
a significant step towards a broader future goal of gen-
eral next-to-next-to-leading logarithmic accuracy in par-
ton showers.
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SUPPLEMENTAL MATERIAL

1. Event-wide momentum conservation for the PanGlobal shower

Compared to the original formulation in Ref. [2], this study introduces a revised rescaling procedure for the kinematic
map of the PanGlobal parton shower. Here we outline an important flaw identified in the original PanGlobal map,
before detailing two amended versions which rectify it, one of which has been used for all results in this article.

a. Unsafety of the original formulation

Given a set of splitting variables {v, η̄, ϕ} generated according to Eq. (2), the original PanGlobal kinematic map of
Ref. [2] proceeds by first constructing a set of intermediate post-branching momenta according to Eq. (1), conserving
only longitudinal momentum within the emitting dipole system. All momenta in the event are subsequently rescaled
by a factor r =

√
Q2/(Q+ k⊥)2, which serves to bring the total invariant mass of the event back to Q2. Finally, a

Lorentz boost is applied to all particles restoring the total four-momentum in the event, from r(Q+ k⊥) to Q.
In all kinematic limits where shower emissions are well-separated in logarithmic phase-space, i.e. all limits pertaining

to NLL accuracy, the rescaling factor, r, tends to one. While investigating kinematic configurations relevant beyond
NLL accuracy, we found a specific sequence of emissions, involving three similarly-collinear hard particles, that leads
to r differing from one by an O(1) amount.
The fact that a double-unresolved configuration produces long-range (event-wide) O(1) momentum shifts is in

contradiction with the fundamental construction principle of the PanScales showers. This spurious effect evades NLL-
accuracy tests, which are by definition insensitive to triple-collinear corrections. Nevertheless, since configurations
with three similarly-collinear hard particles can be generated at arbitrarily small angles, the resulting large rescalings
technically mean that the original PanGlobal rescaling prescription violates infrared-and-collinear safety.

The origin of large rescaling coefficients can be simply illustrated as follows. Consider the situation where, in the
event frame, one has a highly-energetic dipole ı̃ȷ̃, with Eı̃ ∼ Q, Eȷ̃ ∼ Q, and an opening angle θı̃ȷ̃ ≪ 1. We then
radiate a hard-collinear emission k from the ı̃ȷ̃ dipole using the kinematic map of Eq. (1). The transverse momentum
of the emission (with respect to the dipole) is given by k2t = akbkm

2
ı̃ȷ̃ which, in the commensurate triple-collinear limit

(ak ∼ bk ∼ 1), becomes k2t ∼ m2
ı̃ȷ̃ ∼ θ2ı̃ȷ̃Q

2. Consequently, in the ı̃ȷ̃ dipole rest frame, the original dipole momenta and
the transverse contribution are all commensurate, and of order θı̃ȷ̃Q. Boosting to the event frame, all momenta receive
a large Lorentz boost factor γ ∼ (Eı̃+Eȷ̃)/mı̃ȷ̃ ∼ 1/θı̃ȷ̃. In particular, this results in the transverse component having
an energy of order Q in the event frame, or equivalently k⊥.Q ∼ (1/θı̃ȷ̃)(θı̃ȷ̃Q).Q ∼ Q2. Since transverse components
are not conserved by the map of Eq. (1), one obtains a rescaling factor r that significantly departs from one.

Below, we introduce two small adaptations of the original kinematic rescaling that each cure this issue.

b. Updated prescriptions with local rescaling

The essential idea of the updated prescriptions that we introduce below is to avoid spuriously large rescalings of
the event as a whole by absorbing the potentially large energy component of the transverse momentum k⊥ via a
dipole-local rescaling. We start with the PanGlobal momentum map from Eq. (1).

In the first of our two updated prescriptions, instead of applying a global rescaling to all the momenta in the event,
we rescale p̄i, p̄j and p̄k by a local rescaling factor rL. As with the original variant, we fix the rescaling by imposing
that the invariant mass of the event is returned to Q2. Defining time-like four-momenta p̄ijk = p̄i + p̄j + p̄k and
p̃m = Q− p̃i − p̃j , we find

rL =
−p̃m.p̄ijk +

√
(p̃m.p̄ijk)2 + p̄2ijk (Q

2 − p̃2m)

p̄2ijk
. (9)

After the (local) rescaling the whole event undergoes a Lorentz boost so as to restore the total four-momentum of the
event to its original value Q (as in the original PanGlobal prescription). This is the prescription used throughout this
paper.

A second possibility is as follows. Noting that the origin of the issue with global rescaling lies in the large energy
component of k⊥, one can proceed with a hybrid approach whereby one first applies a local rescaling r′L to restore
the dipole energy in the original event frame, i.e. imposing r′L p̄ijk.Q = (p̃i + p̃j).Q. One subsequently applies a global
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rescaling r′G to restore the invariant mass Q2 of the whole event, followed by a Lorentz boost, as in the original
formulation. We find

r′L =
(p̃i + p̃j).Q

p̄ijk.Q
, and r′G =

√
Q2

(p̃m + r′Lp̄ijk)
2
. (10)

Note that similar rescaling strategies can be adopted in the formulation of the PanGlobal shower for pp collisions,
deep-inelastic scattering and vector-boson fusion (see Ref. [10] for details).

The specific choice between the two updated schemes does not affect the tests carried out in this paper. This owes
to the following two facts: firstly, in the double-soft region all rescalings go to one (both in the original formulation
and in the two amended versions introduced here); secondly, for the special case of the first emission, where there
are only three post-branching momenta, all three maps are identical, meaning that the matching procedure is also
unaffected [71].

To validate the new rescaling prescription, we have performed numerical tests similar to the infrared-and-collinear-
safety tests carried out for flavoured-jet algorithms in Ref. [70]. While the original prescription fails these tests, the
new approaches described here pass them. Additionally, we have extended those tests to automate the verification of
the more stringent PanScales criteria, proceeding as follows. First, we generate an initial set of emissions. Second,
we add new emissions widely separated from the initial ones by at least a distance ∆ in a logarithmic phase-space
(equivalently, the Lund plane). We then check that the recoil induced on the initial emissions decays exponentially
with increasing ∆. While the original global rescaling approach fails these tests (as do standard dipole showers),
the new variants pass. Note that if we further impose that the additional emissions are themselves widely separated
in logarithmic phase-space, both the original and new rescaling prescriptions pass the test, in accordance with the
expectations from the NLL matrix-element tests performed in earlier work.

2. Matrix element tests and ∆K

This section records expressions for the effective shower matrix elements, before giving illustrative results regarding
the validation of the two key elements of our double-soft corrections, namely the real matrix-element corrections and
the virtual ∆K correction.

a. Effective shower matrix elements

The total effective squared shower matrix element in Eq. (3), at large-Nc, describing the radiation of a double-soft
gluon or quark pair, {1, 2}, from a dipole ab, is most conveniently expressed as a sum of contributions associated to
the two contributing colour connections, a12b and a21b :∑

h

|Mshower,h|2 =
∑

h∈a12b

|M (12)
shower,h|

2 +
∑

h∈a21b

|M (21)
shower,h|

2. (11)

The contribution associated to the a21b colour ordering has the form∑
h∈a21b

|M (21)
shower,h|

2 =(8παs)
2 2C1 J [f(η̂2) 2C2 δa→a2 + f(−η̂2) z2 P1̃→12(z2)] Θ(v1̃ > v2) + {1 ↔ 2} , (12)

wherein J , η̄2, and z2 are given in terms of invariants sij = 2pi.pj and si = 2pi.Q as follows

J =
sab

sb1(sa1 + sa2)

sa1
sa2s12

, η̄2 =
1

2
log

(
sas12
s1sa2

)
= η2 +

1

2
log

(
sasa1

s1(sa1 + sa2)

)
, z2 =

sa2
sa1 + sa2

. (13)

The angular dipole partitioning functions, f(±η̄2), and the splitting functions, P1̃→12(z2), are as given in Ref. [2]; for
PGβ=0 and PGβ=1/2 we have η̂2 = η̄2, as in Eq. (2), while for PGsdf

β=0 this is modified to η̂2 = η2. The δa→a2 factor is
equal to one when the radiated pair comprises of gluons, and zero when it consists of quarks. Colour factors C1 and
C2 are both equal to CF , with CA = 2CF in the large-Nc limit.
The final theta function in Eq. (12) reflects the ordering of the emissions with respect to the shower evolution

variable v. The evolution variable was defined in terms of kt and η̄ in Ref. [2] through kt = ρveβ|η̄|. Θ(v1̃ > v2) in
Eq. (12) is then fully specified given Eq. (13) for η̄2 together with the following additional components

k2
t,1̃

=
sb1(sa1 + sa2)

2

sabsa1
, ρ1̃ =

(
sasb
Q2sab

) β
2

, η̄1̃ =
1

2
log

(
sasb1
sbsa1

)
, k2t,2 =

sa2s12
sa1

, ρ2 =

(
sas1
Q2sa1

) β
2

. (14)
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FIG. 5. Left: rate of emission before (dashed-dot red) and after (solid blue) double-soft matrix-element corrections at O(α2
s).

Right: decomposition in terms of colour flows and flavour channels.

Finally, the contribution to the total effective squared shower matrix element arising from the a12b colour ordering,∑
h∈a12b |M (12)

shower,h|2, is given by swapping a ↔ b everywhere on the right-hand side of Eq. (12).

b. Real double-soft matrix-element corrections

In Fig. 5 (left) we provide an illustration of one of the matrix element tests that we have carried out. It is shown for
the PGsdf

β=0 shower. We start with a dipole ab with an opening angle of θab = π− 2 in the event centre-of-mass frame.

From that system, we generate two soft emissions, and select those configurations where the higher-kt emission (1)
is in a window −12 < ln kt1/Q < −11 and 1 < y1 < 3, while the lower-kt emission (2) satisfies ln kt2/kt1 > −1. We
determine transverse momenta and rapidities in the dipole centre-of-mass frame and, for the purpose of Fig. 5, restrict
our attention to configurations for which, in that frame, the two emissions are both in the ab dipole’s primary Lund
plane [12]. The upper panel shows the differential distribution of the rapidity difference between the two emissions,
∆y21 = y2 − y1.

The results in Fig. 5 have been normalised to 2(αsCA/π)
2 which is the expected result for large ∆y21, at large-Nc,

as long as particle 2 is still soft. The red (dot-dashed) curve shows the default shower, without any double-soft
correction, while the black curve shows the actual double-soft matrix element. Both are shown averaged over ϕ2, the
azimuth of particle 2. The shower and exact double-soft matrix element differ for ∆y21 in the vicinity of zero. The
red dot-dashed curve in the lower panel shows the ratio of the two curves, illustrating the need for O (1) corrections
at small and moderate ∆y12 values. As |∆y21| becomes larger, all curves tend to the same limit corresponding to
independent emission. Once particle 2 starts to become hard, and the physical phase space boundary is approached,
∆y21 ≳ 6, all three predictions begin to depart from that of the independent emission picture, with small technical
kinematic cuts also playing a role in that region. Crucially, however, throughout this hard-collinear region the shower
predictions with and without double-soft corrections are seen to be in perfect agreement.

When the shower is run with the (fully-differential) double-soft correction factor (upper panel, blue solid line), one
sees that it agrees perfectly with the double-soft matrix element for moderate ∆y21. One important point is that at
large positive ∆y21, the correction factor does not modify the shower, even though the shower and the double-soft
matrix element differ: in that limit, where the hard-collinear splitting function corrections are relevant, the shower
already provides the correct answer, and it is important to maintain that correct answer.

The right-hand plot shows the same differential distribution but broken into flavour and colour channels. Let us
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FIG. 6. Left: Plot of the NLO ∆K correction, Eq. (6), for three variants of the PanGlobal shower, as a function of the
rapidity η̄1 of a soft emission from a back-to-back dipole. Kcmw is given for reference. Centre/right: impact of different parts of
the double-soft correction on the NSL contributions for the transverse energy in a slice, showing the difference between PGβ=0

(centre) or PGβ= 1
2

(right) and a reference NSL-accurate shower.

start with the upper left panel, which shows the q̄g1g2q channel, where the particle labelled 1 is always the one with
larger transverse momentum, and the order of the particles corresponds to the order of the colour connections. Of
particular interest is the region of negative ∆y21, i.e. where the rapidity ordering is opposite to the colour ordering.
In this region the true double-soft matrix element is strongly suppressed, as one would expect. However, the shower’s
suppression is parametrically stronger. The pattern is similar in the top-right panel for the opposite q̄g2g1q colour
ordering at positive ∆y21. Had we attempted to correct the shower for each colour-channel separately, there would
have been regions where the acceptance probability in Eq. (3) would have become arbitrarily large. Instead the
approach of Eq. (4) ensures that we only have to make an occasional swap of the colour ordering. The lower panels
show the analogous curves for double-soft quark production.

c. ∆K and evaluation of its impact

Recall that for a soft emission probability (from a q̄q dipole) as given in Eq. (2), NSL accuracy requires an extra
(1+∆Kαs/2π) correction factor. Fig. 6 (left) shows the size of the ∆K contribution, Eq. (6), for our three PanGlobal
shower variants. It is plotted as a function of the rapidity, η̄1 of the soft emission, in the case of a back-to-back parent
dipole. The shower with the largest correction is PGβ= 1

2
, but for the configuration shown here, that correction

remains relatively modest, at most a factor of about (1 + αs) for η̄1 = 0. The correction for PGβ=0 is much smaller.
The PGsdf

β=0 variant has the property that ∆K is identically zero, a consequence of the fact that the shower’s second

emission probability is independent of the rapidity of the first emission, causing the two terms in Eq. (6) to exactly
cancel.

Fig. 6 (centre and right) illustrates the separate impact of the double-soft real matrix element and ∆K corrections
on the slice observable of Fig. 3, for PGβ=0 (centre) and PGβ= 1

2
(right). It shows the difference in NSL contributions

between the PGβ result and an NSL-accurate reference, which is taken to be the PGsdf
β=0 shower including the full

double-soft corrections. The red curve shows the difference with no double soft corrections at all, illustrating e.g.
the fortuitous near agreement with the full NSL result for PGβ= 1

2
. Turning on the real double-soft corrections (blue

curve) introduces a highly visible effect, bringing the PGβ=0 result in better agreement with the full NSL but causing
a significant departure from NSL in the PGβ= 1

2
case. Including also the ∆K correction (green curve) results in

agreement with the NSL result for both showers. The sign of the ∆K effect is consistent with the left-hand plot: ∆K
is always positive, and the resulting higher emission probability reduces the value of Σ.

Finally, let us comment on the numerical accuracy of our results. For λ = −0.35, we find Σnsl/Σsl = 4.832± 0.004
(PGsdf

β=0), 4.817 ± 0.010 (PGβ=0) and 4.787 ± 0.014 (PGβ= 1
2
), where the quoted uncertainties are purely statistical,

as obtained from a cubic polynomial extrapolation αs → 0. These numbers are roughly within 2σ of each other.
Note however that for PGβ= 1

2
, we found the convergence with αs to be slower, making the extraction numerically

more challenging. Accordingly, one should also keep in mind that this comes with additional systematic effects. For
example, we observed that varying the set of αs values yields variations in Σnsl/Σsl of the order of 0.01. We also
estimated the effect of varying ∆K within its numerical uncertainty to be of order 0.005. In all cases, we see a
convincing agreement to within 1% relative to the size of the NSL correction.
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colours) as well as each of the three PanGlobal showers including double-soft corrections (different line styles).

3. Reference NSL results for non-global logarithms

In this last section, we provide additional results for non-global observables. We consider the transverse energy in
a square patch of fixed extent in rapidity and azimuthal angle. In each case, we study the next-to-single logarithmic
contribution, normalised to the single-logarithmic result, Σnsl/Σsl. We have extracted Σnsl using the same variants
of the PanGlobal shower as in the main text. Our results are presented in Fig. 7, showing an excellent degree of
agreement, at the 1-2% level, between the showers across the whole set of observables. These can also serve as
reference results for future studies of non-global logarithms at NSL accuracy.
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